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1 Chapter 1: Introduction

The Introduction part in Quantitative Seismology provides various useful reference books and websites. Hope you’ll
also find them beneficial.

2 Chapter 2: Basic Theorems in Dynamic Elasticity

2.1 Question 1

The equation of motion is
ρ Üui = fi + τi j , j (2.1)

Considering the constitutive law and the expression of strain tensor

τi j = ci jklεkl, εi j =
1
2

(
ui, j + u j ,i

)
,

and taking into account the symmetry of the elastic tensor, we could get

ρ Üui = fi +
(
ci jkluk ,l

)
j . (2.2)

For an isotropic and homogeneous medium, the elastic tensor could be expressed as

ci jkl = λδi jδkl + µ(δikδjl + δilδjk). (2.3)

So the corresponding displacement equation becomes

ρ Üui = fi + λu j , ji + µ(ui, j j + u j , ji)

= (λ + µ)u j , ji + µui, j j (2.4)

Using the following identities

u j , ji = [∇(∇ · u)]i, ui, j j = (∇2u)i, ∇ × (∇ × u) = ∇(∇ · u) − ∇2u,

we could find the vector displacement equation

ρÜu = f + (λ + µ)∇(∇ · u) + µ∇2u

= f + (λ + 2µ)∇(∇ · u) − µ∇ × (∇ × u) (2.5)

2.2 Question 2

From definition, we could derive the well-known identity

εi jkεilm =

�������
δii δji δki

δil δjl δkl

δim δjm δkm

������� = δii(δjlδkm − δjmδkl) − δji(δilδkm − δimδkl) + δki(δilδjm − δimδjl)
= 3 · (δjlδkm − δjmδkl) − (δjlδkm − δjmδkl) + (δklδjm − δkmδjl)

= δjlδkm − δjmδkl, (2.6)

and similarly
εi jkεjlm = −εjikεjlm = δimδkl − δilδkm. (2.7)
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2.3 Question 3

All we need to do is express ekk (dilatation) with τii (isotropic pressure). Using the constitutive law for an isotropic elastic
solid and setting i = j, we could get

τii = λekkδii + 2µeii = (3λ + 2µ)ekk,

which is equal to

ekk =
1

3λ + 2µ
τkk . (2.8)

Substituting Eq.(2.8) into the stress-strain relation, we could obtain the strain-stress relation

2µei j = −
λ

3λ + 2µ
τkkδi j + τi j . (2.9)

2.4 Question 4

Reference: A piece of lecture note from Prof. Paul A. Lagace

https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-20-structural-mechanics-fall-2002/lecture-notes/unit9.pdf

If the material is unrestrained and its temperature is raised, we would expect that the material will undergo thermal
expansion. However, in this question the strain is fixed, which implies that there must be additional thermal stress in the
body. Given that the thermal strain is expressed by the coefficient tensor of thermal expansion

εTkl = αkl∆T, (2.10)

the corresponding thermal stress should be

σT
ij = ci jkl · (−εTkl) = −ci jklαkl∆T . (2.11)

The negative sign represents that the mechanical strain should counteract the thermal strain. Taking into account this
thermal effect, the modified stress-strain relation should be in the following form

σi j = ci jkl(εkl − αkl∆T). (2.12)

2.5 Question 5

Given u(x, t), we could obtain the strain and stress

ε(x, t) =
1
2

[
∇u(x, t) + (∇u(x, t))T

]
, (2.13)

σ(x, t) = c(x, t) : ε(x, t). (2.14)

The traction could be derived from the stress

T(x, t) = n̂(x, t) · σ(x, t), (2.15)

and the body force could be expressed based on the equation of motion

f(x, t) = ρ(x, t)Üu(x, t) − ∇ · σ(x, t) (2.16)

2.6 Question 6

Relations (2.21)-(2.25) in the book do not involve the dependency of stress on strain or strain rate, so they should not
change.
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2.7 Question 7

The traction is obtained by Eq.(2.15). In an isotropic medium,

σi j = λεkkδi j + 2µεi j (2.17)

σ = λ(∇ · u)I + µ[∇u + (∇u)T]. (2.18)

So the traction could be expressed as

T(u, n̂) = n̂ · σ

= λ(∇ · u)n̂ + µ[n̂ · (∇u) + (∇u) · n̂].

Using the following expression

[n̂ × (∇ × u)]i = εi jknj(εklm∂lum)

= (δilδjm − δimδjl)nj∂lum

= nj∂iu j − nj∂jui

= [(∇u) · n̂ − n̂ · (∇u)]i

and its corresponding vector formula

n̂ × (∇ × u) = (∇u) · n̂ − n̂ · (∇u) = (∇u) · n̂ − (n̂ · ∇)u, (2.19)

we could derive the traction

T(u, n̂) = λ(∇ · u)n̂ + µ[n̂ · (∇u) + (∇u) · n̂]

= λ(∇ · u)n̂ + µ[2(n̂ · ∇)u + n̂ × (∇ × u)]

= λ(∇ · u)n̂ + µ
[
2
∂u
∂n
+ n̂ × (∇ × u)

]
. (2.20)

2.8 Question 8

a) Fig. 2.1 is the same with Fig. 2.4 in the book. According to its force equilibrium state, we could find

T(x + δx, n̂) + T(x,−n̂) → 0 as δx→ 0.

Using eq. (2.7) in the book, we could show that traction is a continuous function of position

T(x + δx, n̂) − T(x, n̂) → 0 as δx→ 0. (2.21)

Here, δx is taken parallel to the direction n̂.

b) For the area which the book lies on, the traction is non-zero. However, for the part outside of the above area, the
traction is zero. Assume that the z-direction is perpendicular to the flat surface of the table, the traction is not a continuous
function in the x- or y-direction.

c) In problem a), δx is taken parallel to the direction n̂. The continuity of traction in this sense (i.e. in the z-direction)
still holds true for the table if we analyze the traction inside it, but this does not contradict with the fact that the traction is
not continuous in the x- or y-directions.
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Fig. 2.1 A small disc within a stressed medium (Figure 2.4 in the book)

d) First choose δx to be parallel to the z-direction, the continuity of the traction gives

T(x) =


τxz(x)
τyz(x)
τzz(x)

 is continuous of z.

We could also choose δx to be parallel to the x- or y-directions and obtain that

τi j(x) is continuous in the i- and j-directions.

Using the above conclusion, we could know that τzz need not be continuous in the x- or y-directions, and that τxx , τyy
and τxy need not be continuous in the z-direction.

2.9 Question 9

First, we express the stress tensor with isotropic and deviatoric strain, as well as the Lamé parameters:

τi j = λekkδi j + 2µei j

= λekkδi j + 2µ
(

1
3

ekkδi j + e′i j

)
=

(
λ +

2
3
µ

)
ekkδi j + 2µe′i j .

Therefore the strain energy density is given by

U =
1
2
τi jei j =

1
2

[(
λ +

2
3
µ

)
ekkδi j + 2µe′i j

] (
1
3

ekkδi j + e′i j

)
=

1
2

[(
λ +

2
3
µ

)
eiiekk + 2µe′i je

′
i j

]
, (2.22)

where we use properties δi jδi j = 3 and tr(e′) = e′ii = 0.
Let’s see why θ = eii is called dilatation. Consider a cuboid and the lengths of its three sides are a,b and c separately.

The percentage change of its volume after an infinitesimal deformation is

∆V
V
=

V + ∆V
V

− 1 =
a(1 + exx) · b(1 + eyy) · c(1 + ezz)

abc
− 1

= (1 + exx)(1 + eyy)(1 + ezz) − 1 � eii = tr(e). (2.23)

The isotropic and deviatoric strains and stresses, as well as the corresponding moduli, are summarized in Table 2.1,
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which is modified from Table 6.1 in Dahlen & Tromp (1998). Table 2.1 shows why κ, the bulk modulus or incompress-
ibility, and µ, the shear modulus, are widely used in seismology, since they have clearer physical meanings than Lamé
parameters. In addition, from Eq. (2.22) we know that these two moduli should be positive so that the strain energy
density is positive.

Variable Isotropic Deviatoric

Strain ε θ = tr(e) e′ = e − 1
3 tr(e)I

Stress σ −p = 1
3 tr(τ ) τ ′ = τ − 1

3 tr(τ )I

Modulus M κ 2µ

Table 2.1 Constitutive laws for isotropic and deviatoric components. Modified from Dahlen & Tromp (1998).

Reference: Chapter 6 in Dahlen, F. A., and J. Tromp, Theoretical Global Seismology, Princeton, New Jersey: Princeton

University Press, 1998.

2.10 Question 10

We consider the representation theorem in the following form

u(x, t) =
∭

V

∫ t

0
G(x, t − τ; x′, τ) · f(x′, τ) dτd3x′. (2.24)

In this problem, the force could be expressed as

f(x′, τ) = νδ(x′ − ξ)δ(τ). (2.25)

Therefore, we could obtain the displacement vector

u(x, t) = G(x, t; ξ,0) · ν, (2.26)

and its component in the n-direction

un(x, t) = n · u(x, t) = niGip(x, t; ξ,0)νp . (2.27)

Using the reciprocity of the Green tensor, we could get

un(x, t) = niGip(x, t; ξ,0)νp
= uν(ξ, t) = νpGpi(ξ, t; x,0)ni .
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3 Chapter 3: Representation of Seismic Sources

3.1 Question 1

a) Generalize eq. (3.26) in the book to a vector equation. Using the following relation

M = M0

(
n̂d̂ + d̂n̂

)
, Mi j = M0(nidj + njdi) (3.1)

and the assumption that S is planar and constant (i.e. n̂ does not change) and that the displacement discontinuity for each
event is a shear (i.e. n̂ · d̂ = 0), we could obtain

M · n̂ = M0d̂. (3.2)

The right part of Eq. (3.2) allows us to obtain the slips in each direction. Therefore, the generalized vector version of eq.
(3.26) in the book should be

∆U =

(∑N
i=1 Mi

)
· n̂

µS
(3.3)

b) Generalize eq. (3.34) in the book to a tensor equation. For an isotropic medium with volume V , the relationship
between moment tensors and strains is

Mi j = ci jkl∆eklV . (3.4)

Recall the result in Section 2.3, we could find the total strain, i.e. the generalized tensor version of eq. (3.34) in the book

∆Ei j =
1

2µV
·

N∑
n=1

(
−

λ

3λ + 2µ
Mn

kkδi j + Mn
ij

)
. (3.5)

3.2 Question 2

For eq. (3.2) in the book, we can rewrite it using the reciprocity of Green’s function:

un(x, t) =
∫ ∞

−∞

dτ
∬
Σ

[ui(ξ, τ)]ci jpqνj
∂

∂ξq
Gnp(x, t − τ; ξ,0) dΣ

=

∫ ∞

−∞

dτ
∬
Σ

[ui(ξ,0)]ci jpqνj
∂

∂ξq
Gpn(ξ, t − τ; x,0) dΣ. (3.6)

Therefore, the following part in the integrand

ci jpqνj
∂

∂ξq
Gpn(ξ, t − τ; x,0)

can be interpreted as a traction on the internal surface Σ. According to the continuity of traction, we can still derive eq.
(3.2) from eq. (3.1) in the book, but now ∂Gnp/∂ξq may not be continuous across the surface.

3.3 Question 3

If ū(t) is averaged over the area A(t) that has ruptured at time t, then we need to use A(t) to calculate M0(t) = µū(t)A(t).
Similarly, if ū(t) is averaged over the area A(∞), the ultimate ruptured area, then we need to use A(∞) to calculate
M0(t) = µū(t)A(∞). Hence, consistency of the definition of ‘average’ throughout computation matters.

3.4 Question 4

This problem is equivalent to finding the eigenvalues of matrix M. Since we have

|λI −M| = λ(λ2 − M2
0 ), (3.7)
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the eigenvalues are M0, 0 and −M0. Consequently, under the principal coordinates a double-couple can be equivalently
described by M = diag(M0,0,−M0).

3.5 Question 5

A symmetric second-order moment tensor M can be diagonalized. Therefore, in the principal coordinates, we have

M =


λ1 0 0
0 λ2 0
0 0 λ3

 =
tr(M)

3
· I +


λ′1 0 0
0 λ′2 0
0 0 λ′3


=

tr(M)
3
· I +


λ′1 0 0
0 −λ′1 0
0 0 0

 +

0 0 0
0 −λ′3 0
0 0 λ′3

 , (3.8)

which implies that M can be thought of as an isotropic point source plus two double couples. This decomposition of a
point source is not unique.

We can also write M in the form

M =
tr(M)

3
· I +


λ′1 0 0
0 λ′2 0
0 0 λ′3


=

tr(M)
3
· I +

(
λ′1 +

λ′3
2

) 
1 0 0
0 −1 0
0 0 0

 + λ
′
3


− 1

2 0 0
0 − 1

2 0
0 0 1

 , (3.9)

which implies the decomposition of M into the best double couple and the associated CLVD component.

3.6 Question 6

Integration by parts in three dimensions can be derived based on the product rule for divergence, which is

∇ · (uV) = u∇ · V + ∇u · V. (3.10)

This leads to ∬
S

uV · n̂ dS =
∭

V

u∇ · V dV +
∭

V

∇u · V dV . (3.11)

I will use Eq. (3.11) to derive the equivalent body force.
For the following body force

f(x, t) = −M(t) · ∇δ(x − ξ), (3.12)

the representation theorem gives

un(x, t) =
∫ +∞

−∞

dτ
∭

V

fp(η, τ)Gnp(x, t − τ;η,0) dV(η)

= −

∫ +∞

−∞

dτ
∭

V

Mpq(τ)Gnp(x, t − τ;η,0)
∂δ(η − ξ)

∂ηq
dV(η)

=

∫ +∞

−∞

dτ
∭

V

Mpq(τ)

[
∂

∂ηq
Gnp(x, t − τ;η,0)

]
δ(η − ξ) dV(η)

= Mpq(t) ∗
∂

∂ξq
Gnp(x, t; ξ,0). (3.13)

From the second row to the third row, I use Eq. (3.11) with the scalar function u now being the δ function. Therefore, Eq.
(3.12) is the equivalent body force to a point source at ξ with moment tensor M.
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3.7 Question 7

a) In the spherical coordinate, the curl of a vector A is calculated as

∇ × A =
1

r2 sin θ

�������
er reθ r sin θeϕ
∂r ∂θ ∂ϕ

Ar r Aθ r sin θAϕ

������� . (3.14)

Therefore, when the displacement is only in the radial direction, we have ∇ × u = 0. For the final static displacement,
the inertial term and the external force term are also zero. Based on the vector wave equation in Eq. (2.5), the final static
displacement satisfies ∇(∇ · u) = 0.

b) Since we have

∇(∇ · u) =
d
dr

[
1
r2

d
dr

(
r2ur

)]
= 0, (3.15)

its general solution is

ur = Ar +
B
r2 . (3.16)

For the external solution when r ≥ a, the constraint ur → 0 for r → ∞ guarantees that the radial displacement is
proportional to 1/r2.

c) The stress-strain relation for τrr , based on eq. (2.50) in the book, can be written as

τrr = λ(err + eθθ + eϕϕ) + 2µerr . (3.17)

From eq. (2.45) in the book, with h1 = 1, h2 = r and h3 = r sin θ for the spherical coordinate, we have

err =
ur
r
,

eθθ =
1
r
∂uθ
∂θ
+

ur
r
,

eϕϕ =
1

r sin θ
∂uϕ
∂ϕ
+

ur
r
+

cot θ
r

uθ .

(3.18)

Therefore, when we only have radial displacement ur , Eq. (3.17) leads to

τrr = (λ + 2µ)
∂ur
∂r
+

2λ
r

ur . (3.19)

d) The external solution has the form ur = B/r2. We also know that the walls of the cavity at r = a experience
τrr = −δp. With this condition, we have

− δp = (λ + 2µ) ·
−2B
a3 + 2λ ·

B
a3 = −4µ ·

B
a3 , (3.20)

which gives B = δp · a3/4µ. Therefore, the final outward static displacement at r = a is

δa = ur (a) =
δp · a

4µ
, (3.21)

which is equivalent to

δp = 4µ
δa
a
. (3.22)
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3.8 Question 8

a) Following the procedure in Question 7, the internal solution has the form ur = Ar . With Eq. (3.19) we have

δp = −τrr = −(3λ + 2µ)A. (3.23)

b) The effects of confinement reduces the static displacement at r = a from ∆a to δa, which can be expressed as

ur (a) = Aa = −(∆a − δa), (3.24)

from which we can determine the constant A. This leads to

δp =
3λ + 2µ

a
(∆a − δa). (3.25)

Using Eq. (3.22) from Question 7, we obtain

4µδa = (3λ + 2µ)(∆a − δa)

∆a =
λ + 2µ
λ + 2

3 µ
δa. (3.26)

c) Because ∆V = 4πa2∆a and δV = 4πa2δa, the proportionality between ∆V and δV is the same as in Eq. (3.26).
Therefore,

M0(∞) =

(
λ +

2
3
µ

)
∆V = (λ + 2µ) δV . (3.27)

d) The external solution gives that ur = B/r2 where B is a constant determined by δp and the source region radius a0.
Therefore, when we evaluate the outward actual static displacement for a new surface at r , the corresponding actual final
(static) volume change is

δV = 4πr2ur = 4πB = πa3
0
δp
µ
. (3.28)

Hence, δV is unchanged in value. In other words, it is independent of where the outward actual static displacement is
measured.
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4 Chapter 4: Elastic Waves from a Point Dislocation Source

4.1 Question 1

When the source time function is S(t) = δ(t), we have

Gnp(x, t; 0,0) =
3γnγp − δnp

4πρr3 t [H(t − tP) − H(t − tS)]

+
γnγp

4πρα2r
δ(t − tP) −

γnγp − δnp

4πρβ2r
δ(t − tS). (4.1)

Therefore, the area under the near-field pulse can be calculated as

SNF ∝
1
r3

∫ tS

tP

t dt =
1
2r

(
1
β2 −

1
α2

)
, (4.2)

which is proportional to 1/r . It is obvious that for the far-field terms, the area under each pulse is proportional to 1/r .
In the frequency domain, the P-wave term is

GP
np(x,ω; 0,0) =

eiωr/α

4πρα2r

[
γnγp + (3γnγp − δnp)

(
−
α

iωr

)
+ (3γnγp − δnp)

(
−
α

iωr

)2
]
, (4.3)

and similarly, the S-wave term is

GS
np(x,ω; 0,0) = −

eiωr/β

4πρβ2r

[
(γnγp − δnp) + (3γnγp − δnp)

(
−

β

iωr

)
+ (3γnγp − δnp)

(
−

β

iωr

)2
]
. (4.4)

As ω→ 0, we have

eiωr/α ≈ 1 +
(
iωr
α

)
+

1
2

(
iωr
α

)2
. (4.5)

Therefore, Eqs. (4.3) and (4.4) can be written as

GP
np(x,ω; 0,0) =

1
4πρr

(
δnp − γnγp

2α2 −
3γnγp − δnp

ω2r2

)
+O(ω0), (4.6)

GS
np(x,ω; 0,0) =

1
4πρr

(
δnp + γnγp

2β2 +
3γnγp − δnp

ω2r2

)
+O(ω0), (4.7)

which leads to
lim
ω→0

Gnp(x,ω; 0,0) = lim
ω→0

(
GP

np + GS
np

)
=

1
8πρr

(
δnp − γnγp

α2 +
δnp + γnγp

β2

)
. (4.8)

Hence, the distance dependence as ω → 0 is indeed like 1/r . Besides, Eq. (4.8) is also the static solution as t → ∞ for
the Heaviside source time function S(t) = H(t).

Fig. 4.1 shows the three component seismograms generated by a vertical point-force with a sharp Gaussian source time
function. The near-field and far-field terms are clearly separated. However, when the source time function has a longer
duration, as shown in Fig. 4.2, all terms are equally important in the near field. This can be related to a seismometer that
is sensitive only to periods comparable to (or much longer than) the S-P time.

4.2 Question 2

For a general point-force S(t) in the p-th direction at the origin, we have

un(x, t) =
3γnγp − δnp

4πρr3

∫ tS

tP

τS(t − τ) dτ

+
γnγp

4πρα2r
S(t − tP) −

γnγp − δnp

4πρβ2r
S(t − tS). (4.9)
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Fig. 4.1 Three component seismograms generated by a vertical point-force at receiver x = (2,1,3) km. The time axis
is normalized by the P-wave travel time tP = r/α, and the displacement is multiplied by factor 8πµr , which also helps
visualize the dependence on 1/r . The source time function is a Gaussian with σ = 0.01 s.

Fig. 4.2 Three component seismograms generated by a vertical point-force at receiver x = (2,1,3) km. The source time
function is a Gaussian with σ = 0.1 s.
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When the force is constant, we have S(t) = H(t), which leads to

un(x, t) =
3γnγp − δnp

8πρr3

[
(t2 − t2

P)H(t − tP) − (t2 − t2
S)H(t − tS)

]
+

γnγp

4πρα2r
H(t − tP) −

γnγp − δnp

4πρβ2r
H(t − tS). (4.10)

Hence, the static solution at t →∞ is

ustatic
n (x) =

1
8πρr

(
δnp − γnγp

α2 +
δnp + γnγp

β2

)
, (4.11)

which is the same as derived in Section 4.1.

4.3 Question 3

Under the principal coordinates, the moment tensor can be described as M = diag(M0,0,−M0). Therefore, ξ ′1 marks the
tension axis (T), while ξ ′3 marks the pressure axis (P).

The tension axis (T) corresponds to maximum outward particle motion, while the pressure axis (P) corresponds to
maximum inward particle motion.

4.4 Question 4

Note that δ∆ should be measured at the same radius for two ray paths close to each other. Now consider a point x on
the ray path in a spherically symmetric medium. In the azimuth direction, the elementary area has a side length of
|x| sin∆ δφ. For the take-off angle direction, when the rays are going down, the elementary area has a side length of
|x| cos ix δ∆, with ix < 90◦ and δ∆ > 0. On the contrary, when the rays are going up, the length is also |x| cos ix δ∆, with
ix > 90◦ and δ∆ < 0. This case is shown in Fig. 4.3. Therefore, the cross-sectional area of the ray tube at x is

δA = |x|2 cos ix sin∆ δ∆ δφ. (4.12)

Fig. 4.3 Illustration of the side length in the take-off angle direction.
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Given that the solid angle δΩ = sin iξ δiξ δφ, the geometrical spreading function is

R(x,ξ) =
√
δA
δΩ
= |x|

√
cos ix sin∆ δ∆

sin iξ δiξ
. (4.13)

From the ray parameter, we have

p =
|ξ | sin iξ

c(ξ)
, δp =

|ξ | cos iξ
c(ξ)

δiξ = p cot iξ δiξ . (4.14)

Using Eq. (4.14), we have δp > 0 (assuming iξ < 90◦), and thus we obtain

R(x,ξ) c(ξ) = |x|
|ξ | sin iξ

p

√
p cos ix cos iξ sin∆ δ∆

sin2 iξ δp

= |x| |ξ |
[ cos ix cos iξ sin∆

p
∂∆

∂p

]1/2
.

(4.15)

Eq. (4.15) directly implies the reciprocity R(x,ξ) c(ξ) = R(ξ,x) c(x).

4.5 Question 5

From the following far-field P-wave Green’s function

GP
ij =

γiγj

4πρα2r
δ
(
t −

r
α

)
, (4.16)

we need to generalize it into the form

GP,ray
i j =

C(ξ) F P

4π
√
ρ(x)α(x) RP(x,ξ)

δ
[
t − TP(x,ξ)

]
. (4.17)

Here, we already identify and generalize r/α as the ray travel time TP , 1/r as the geometrical spreading factor 1/RP(x,ξ),
and 1/ρ α2 as the factor C(ξ)/

√
ρ(x)α(x), which implies that the constant C(ξ) = 1/

√
ρ(ξ)α3(ξ). The radiation pattern

γiγj , similarly, can be generalized by replacing the source-receiver direction unit vectors γ̂ with the ray direction unit
vector l̂(ξ) and l̂(x). Therefore, we obtain

GP,ray
i j =

li(x) lj(ξ)

4π
√
ρ(x)α(x) ρ(ξ)α3(ξ) RP(x,ξ)

δ
[
t − TP(x,ξ)

]
. (4.18)

Reciprocity states that
Gi j(x; ξ) = G ji(ξ; x), (4.19)

which, using Eq. (4.18), gives

li(x) lj(ξ)√
ρ(x)α(x) ρ(ξ)α3(ξ) RP(x,ξ)

=
lj(ξ) li(x)√

ρ(ξ)α(ξ) ρ(x)α3(x) RP(ξ,x)
. (4.20)

Now we prove that
RP(x,ξ)α(ξ) = RP(ξ,x)α(x) (4.21)

4.6 Question 6

The far-field radiation patterns for P and S waves from a point source of fault slip are

AFP = sin 2θ cos φ r̂, AFS = cos 2θ cos φ θ̂ − cos θ sin φ φ̂. (4.22)
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The RMS values for these radiation patterns, averaged over the focal sphere, are calculated as

aFP =

√
1

4π

∫ 2π

0
dφ

∫ π

0
dθ |AFP(θ, φ)|2 sin θ =

√
1

4π

∫ 2π

0
cos2 φ dφ ·

∫ π

0
sin2 2θ sin θ dθ

=

√
1

4π
· π · 8

(
2
3
−

4
5
·

2
3

)
=

√
4
15
.

(4.23)

aFS =

√
1

4π

∫ 2π

0
dφ

∫ π

0
dθ |AFS(θ, φ)|2 sin θ

=

√
1

4π

∫ 2π

0
cos2 φ dφ ·

∫ π

0
cos2 2θ sin θ dθ +

√
1

4π

∫ 2π

0
sin2 φ dφ ·

∫ π

0
cos2 θ sin θ dθ

=

√
1

4π
· π ·

(
14
15
+

2
3

)
=

√
2
5
.

(4.24)

The energy radiated seismically from a double-couple point source in a homogeneous full-space, as P waves for
example, is

EP =

∫ 2π

0

∫ π

0
r2 sin θ dθ dφ

∫ +∞

0
dt ρα |uP(r, θ, φ, t)|2 . (4.25)

Note that only far-field P waves behave as r−1 decay, which is able to cancel out the factor r2 from the spherical surface
area in Eq. (4.25). Therefore, the total radiated energy we will obtain later is far-field result in the limit of r → ∞.
Through calculation, we have

EP = 4π · (aFP)2 ·

∫ ∞
0

[
ÜM0(t)

]2 dt

16π2ρα5 =

∫ ∞
0

[
ÜM0(t)

]2 dt

15πρα5 , (4.26)

ES = 4π · (aFS)2 ·

∫ ∞
0

[
ÜM0(t)

]2 dt

16π2ρβ5 =

∫ ∞
0

[
ÜM0(t)

]2 dt

10πρβ5 . (4.27)

These formulae indeed represent the source (i.e., its integrated source time function), but to convert observed EP or ES to
the source property, we need to use the radiated energy measured at the far-field.

4.7 Question 7

The point force solution described in the Cartesian coordinates, only showing the far-field components, is

ui = Fj ∗ Gi j =
γiγj

4πρα2r
Fj

(
t −

r
α

)
−
γiγj − δi j

4πρβ2 Fj

(
t −

r
β

)
. (4.28)

In vector form, with γ̂ = r̂, we have

u =
r̂ (r̂ · F)
4πρα2r

+
F − r̂ (r̂ · F)

4πρβ2r
. (4.29)

Since in the spherical polar coordinates, there is identity F = (r̂ ·F) r̂+ (θ̂ ·F) θ̂+ (φ̂ ·F) φ̂, which is simply the projection
of a vector onto the basis vectors, we thus obtain

u =
r̂ (r̂ · F)
4πρα2r

+
θ̂ (θ̂ · F) + φ̂ (φ̂ · F)

4πρβ2r
. (4.30)

Each component can be written as

ui = Fj ∗ Gi j =
1

4πρα2
r̂i r̂j
r

Fj

(
t −

r
α

)
+

1
4πρβ2

θ̂i θ̂ j + φ̂i φ̂ j

r
Fj

(
t −

r
β

)
. (4.31)
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4.8 Question 8

Start from the ray equation
dx
ds
= c∇T . (4.32)

We choose a scalar variable σ to define the position along the ray with

dσ
ds
= c(x(s)), σ(s) =

∫ s

0
c(x(s)) ds, (4.33)

which represents the integral of wave speed along the ray path. Therefore, we have

dx
ds
=

dx
dσ

dσ
ds
= c∇T,

dx
dσ
= ∇T . (4.34)

When deriving the differential equation for a ray, we have the following result

d
ds
∇T =

c
2
∇

(
1
c2

)
. (4.35)

Similarly, we can obtain
d2x
dσ2 =

d
dσ
∇T =

1
2
∇

(
1
c2

)
, (4.36)

which demonstrates that solving for a ray path is equivalent to solving for the motion of a particle moving in a force field
with potential 1/(2c2).

4.9 Question 9

As the wave speed c(z) only depends on depth z, the ray paths are within the xz-plane. From Snell’s law, we know

p =
sin i
c(z)
= const. (4.37)

The angle i is the one between the z-direction (downward) and the ray. It also depends on ray distance s (although the
function dependence is not explicitly written out). The ray equation is

dx
ds
= sin i,

dz
ds
= cos i. (4.38)

With c(z) = az + b, Eqs (4.37) and (4.38) lead to

sin i = p(az + b), cos i ·
di
ds
= pa ·

dz
ds
= pa · cos i. (4.39)

Therefore, we obtain the following result
1
R
=

���� di
ds

���� = |pa| = const, (4.40)

which indicates that the radius of curvature R is a constant, and the ray path is thus a circular arc with radius R = |pa|−1.
To find the center of the circle, we can first solve for the ray turning depth zm, which is

c(zm) = azm + b =
1
p
, zm =

1
pa
−

b
a
= R −

b
a
. (4.41)

Hence, the center of the circle lies at the depth z = −b/a.
A more general way is to directly apply the definition of the radius of curvature R. Denoting the ray path as z = z(x)

16



for the portion with well-defined z(x), we have

R =

[
1 + (z′)2

] 3
2

|z′′ |
. (4.42)

The derivatives can be obtained as

z′ =
dz
dx
= cot i, z′′ =

d2z
dx2 = −

1
sin2 i

·
di
dx
. (4.43)

From the Snell’s law in Eq. (4.37), we have

sin i = pc(z), cos i ·
di
dx
= pc′(z)

dz
dx
,

di
dx
=

pc′(z)
sin i

. (4.44)

Therefore, the radius of curvature is evaluated as

R =

(
1 + cot2 i

) 3
2��pc′(z)/sin3 i
�� = 1
|pc′(z)|

. (4.45)

With c(z) = az + b, we have a constant R = |pa|−1.
For a spherically symmetric medium, Snell’s law and the ray equation now become

p =
r sin i
c(r)

= const.
rdθ
ds
= sin i,

dr
ds
= − cos i, (4.46)

where r and θ are the polar coordinates for the ray plane. Now denoting the ray path as r = r(θ) for the portion with
well-defined r(θ), we have the following equation for the radius of curvature

R =

(
r2 + r2

θ

) 3
2��r2 + 2r2

θ − rrθθ
�� . (4.47)

The derivatives can be similarly obtained as

rθ =
dr
dθ
= −r cot i, rθθ =

d2r
dθ2 = − cot i ·

dr
dθ
+

r
sin2 i

·
di
dθ
= r cot2 i +

r
sin2 i

·
di
dθ
. (4.48)

From the Snell’s law, we have

sin i =
pc(r)

r
, cos i ·

di
dθ
=

rpc′(r) − pc(r)
r2 ·

dr
dθ
,

di
dθ
= −

rpc′(r) − pc(r)
r sin i

. (4.49)

Therefore, the radius of curvature is evaluated as(
r2 + r2

θ

) 3
2
=

r3

sin3 i
,

��r2 + 2r2
θ − rrθθ

�� = r2

sin2 i

����1 − di
dθ

���� , (4.50)

R =
r2����r sin i − r sin i ·

di
dθ

���� =
r

|pc′(r)|
. (4.51)

With c(r) = a − br2, we have a constant R = |2pb|−1, and thus the ray paths are circular arcs. We can also solve for the
ray turning radius rm, which satisfies

pc(rm)
rm

= 1, r2
m +

rm
pb
−

a
b
= 0. (4.52)

4.10 Question 10

In this problem, the unit tangent along a ray is l, and the travel time gradient is ∇T = l/c.
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a) Since the curl of a gradient is zero, we have

∇ ×

(
l
c

)
= ∇ × (∇T) = 0. (4.53)

b) Using the identity ∇ × (ψA) = ψ (∇ × A) + (∇ψ) × A, we have

∇ × l = ∇ × (c∇T) = ∇c ×
(

l
c

)
=

(
∇c
c

)
× l = −c l ×

(
∇c
c2

)
= c l × ∇

(
1
c

)
. (4.54)

c) We know the differential equation for a ray (eq. 4.44 in the book) is

l =
dx
ds
,

d
ds

(
1
c

dx
ds

)
= ∇

(
1
c

)
. (4.55)

This leads to
d
ds

(
1
c

dx
ds

)
=

1
c

dl
ds
+ l

d
ds

(
1
c

)
= ∇

(
1
c

)
,

dl
ds
= c∇

(
1
c

)
− cl

d
ds

(
1
c

)
. (4.56)

On the other hand, using the triple product expansion (a × b) × c = b (c · a) − a (b · c), we have

(∇ × l) × l =
[
c l × ∇

(
1
c

)]
× l = c∇

(
1
c

)
− cl

[
l · ∇

(
1
c

)]
. (4.57)

Finally, note that the derivative along the ray path d/ds can be expanded as

d
ds
=

dx
ds
· ∇ = l · ∇. (4.58)

Therefore, we prove that

(∇ × l) × l =
dl
ds
. (4.59)

d) Based on the following result

∇ (ln c) =
∇c
c
= −c∇

(
1
c

)
, (4.60)

Eq. (4.57) can be modified to

dl
ds
= c∇

(
1
c

)
−

[
cl · ∇

(
1
c

)]
l = [l · ∇ (ln c)] l − ∇ (ln c) . (4.61)

e) Using the forward Euler scheme, we have

dx
ds
= l → xm+1 = xm + ∆s lm, (4.62)

dl
ds
= [l · ∇ (ln c)] l − ∇ (ln c) → lm+1 = lm + ∆s [(lm · gm) lm − gm] , (4.63)

where g = ∇ (ln c) and the subscript m denotes variables evaluated at step m.

f) We can further simplify Eq. (4.61) as
dl
ds
= −
∇c
c
+

(
l ·
∇c
c

)
l. (4.64)

Using the orthogonal unit vectors l and n, the gradient of the wave speed can be described as ∇c = αl+ βn with α, β ∈ R.
Therefore, the change of ray direction becomes

dl
ds
= −

αl + βn
c

+
αl
c
=
βn
c
. (4.65)
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If l is parallel to ∇c, we have β = 0, dl/ds = 0 and thus l does not change direction along the ray. If l is perpendicular to
∇c, we have α = 0 and β reaches the largest magnitude at this location, which implies that the ray changes direction at
the maximum rate here.

4.11 Question 11

For P-wave generated by a shear dislocation with scalar moment M0(t), the far-field and intermediate-field terms are
(from eq. 4.32 in the book)

uP(x, t) =
1

4πρα3 AFP 1
r
ÛM0

(
t −

r
α

)
+

1
4πρα2 AIP 1

r2 M0

(
t −

r
α

)
. (4.66)

Only focused on the radial component, the radiation patterns AFP and AIP become (from eq. 4.33 in the book)

AFP · r̂ = sin 2θ cos φ, AIP · r̂ = 4 sin 2θ cos φ. (4.67)

Now with TP = r/α as the travel time, the P-wave displacement pulse shape is proportional to

uP
r (x, t) ∝ ÛM0

(
t − TP

)
+

4α
r

M0

(
t − TP

)
= ÛM0

(
t − TP

)
+

4
TP

M0

(
t − TP

)
. (4.68)

4.12 Question 12

The rays whose travel times are stationary but not minima correspond to surface-reflected phases. As an example shown
in Fig. 4.4, consider the true ray path A-P0-B with the surface reflection point P0. Without losing generality, we assume
that the radius of the sphere is R = 1 and A is the North pole with coordinate (θ, φ) = (0,0). Under this coordinate system,
we can set P0 = (θ,0) and B = (2θ,0). The distance of the true ray path can be calculated as

L0 = AP0 + P0B = 4 sin
(
θ

2

)
. (4.69)

Now consider another P = (θP,0) which is not the true surface reflection point. The path length can be calculated as

L(P) = AP + PB = 2
[
sin

(
θP
2

)
+ sin

(
θ −

θP
2

)]
= 4 sin

(
θ

2

)
cos

(
θ − θP

2

)
. (4.70)

Therefore, we always have L(P) < L0 as long as P , P0. By taking the derivative, we can also show that

∂L
∂θP

= 2 sin
(
θ

2

)
sin

(
θ − θP

2

)
= 0 at θP = θ. (4.71)

This demonstrates that the true ray path corresponds to a travel time that is stationary, and moreover, is maximal along the
θ-direction. On the other hand, along the φ-direction, the travel time should be minimal.

A

B

P0 P

O

θ θ

Fig. 4.4 Illustration of the surface-reflected phase in a homogeneous sphere. The true ray path is A-P0-B with P0 being
the midpoint of the arc, while P denotes the perturbed surface reflection point.
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4.13 Question 13

Consider a Cartesian coordinate system with x-, y-, and z-directions in the North, East, and Down directions, respectively.
The Cartesian components of moment tensor M are related to the components of fault slip ū and fault normal ν as

Mpq = µA
(
ūpνq + ūqνp

)
. (4.72)

a) If we have Mxz = Mzx , 0 as the only non-zero components, the shear faulting can have two potential setups.

1. A horizontal fault plane (ν = êz) with slip in the North direction (ū = ū êx).

2. A vertical fault plane following East-West strike direction (ν = êx) with slip in the vertical direction (ū = ū êz).

b) As already shown in a), there are two scenarios corresponding to the same moment tensor.

c) If we have Mxz = Mzx , 0 and Myz = Mzy , 0 as the only non-zero components, we can first consider a horizontal
fault plane (ν = êz) and then sum up the fault slips. The total fault slip can be obtained as

ū =
Mxz

µA
êx +

Myz

µA
êy, in the direction φ = arctan

(
Myz

Mxz

)
. (4.73)

Note that the direction φ is with respect to the x-axis, pointing toward the y-axis. Therefore, this moment tensor can have
two potential setups.

1. A horizontal fault plane (ν = êz) with slip in the φ direction.

2. A vertical fault plane whose strike is orthogonal to the φ direction, with slip in the vertical direction (ū = ū êz).

d) Based on the Hooke’s Law for an isotropic solid elastic medium, we have

ezx =
τzx
2µ

, ezy =
τzy

2µ
. (4.74)

At the traction-free surface of the Earth, there are no shear strains ezx and ezy .

4.14 Question 14

For a shear dislocation of arbitrary orientation, its moment tensor M can be decomposed into four elementary moment
tensors (Box 4.4 in the book)

M =M(1) cos δ cos λ +M(2) sin δ cos λ −M(3) cos 2δ sin λ +M(4) sin 2δ sin λ. (4.75)

The elementary matrices M(2) and M(4) are given as

M(2) (φs) = M0


− sin 2φs cos 2φs 0
cos 2φs sin 2φs 0

0 0 0

 , M(4) (φs) = M0


− sin2 φs

1
2 sin 2φs 0

1
2 sin 2φs − cos2 φs 0

0 0 1

 . (4.76)

For this problem, we denote

M̃(2) =M(2) (φs) , M̃(4) =M(4)
(
φ
(4)
s

)
, with φ

(4)
s = φs +

π

4
. (4.77)

Since we have
sin2 φ

(4)
s =

1 + sin 2φs
2

, cos2 φ
(4)
s =

1 − sin 2φs
2

, sin 2φ(4)s = cos 2φs, (4.78)
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when the strike of the M̃(4) dislocation is π/4 greater than that of the M̃(2) dislocation, we have

1
2

M̃(2) = M̃(4) + M0


1
2 0 0
0 1

2 0
0 0 −1

 . (4.79)

Note that M̃(2) represents a vertical strike-slip fault, while M̃(4) represents a thrust fault dipping at 45◦ with pure up-dip
slip, but having a strike angle that is 45◦ greater.

We now focus on the radiation pattern of the far-field SH waves. Note that the second term on the right-hand side of
Eq. (4.79) represents a CLVD source. For an arbitrary moment tensor, the far-field S wave is (eq. 4.29 in the book)

uFS
n = −

(
γnγp − δnp

4πρβ3

)
γq

1
r
ÛMpq

(
t −

r
β

)
. (4.80)

For a CLVD source, the displacement becomes

uFS
n ∝ −

1
2
(γnγ1 − δn1) γ1 −

1
2
(γnγ2 − δn2) γ2 + (γnγ3 − δn3) γ3, (4.81)

where γ̂ is the same as the radial direction r̂ in the spherical coordinate. The SH direction then corresponds to φ̂, which
has φ3 = 0 and is orthogonal to γ̂, stated as below

φ̂ = (− sin φ,cos φ,0) , γ̂ · φ̂ = γnφn = γ1φ1 + γ2φ2 = 0. (4.82)

Therefore, we can show that

uFS · φ̂ = uFS
n φn ∝ −

1
2
γnφn

(
γ2

1 + γ
2
2 − 2γ2

3

)
+

1
2
(γ1φ1 + γ2φ2 − 2γ3φ3) = 0, (4.83)

which indicates that a CLVD source does not contribute to far-field SH waves. Hence, the two elementary moment tensors
M̃(2)/2 and M̃(4) have the same radiation pattern, and thus generate same SH waves in a spherically symmetric Earth.

However, if the sources are in an isotropic but laterally inhomogeneous Earth, the heterogeneity can couple the P-SV
and SH systems together, so a CLVD source can also contribute to SH waves and the above conclusion will be changed.
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5 Chapter 5: Plane Waves in Homogeneous Media and their Reflection and
Transmission at a Plane Boundary

5.1 Question 1

Start from the inhomogeneous P-wave and SV-wave given in eqns (5.52) and (5.53) in the book

P̀
(
αp, 0, i

√
α2p2 − 1

)
exp

(
−ω

√
p2 −

1
α2 z

)
exp [iω(px − t)], (5.1)

S̀
(
i
√
β2p2 − 1, 0, −βp

)
exp

(
−ω

√
p2 −

1
β2 z

)
exp [iω(px − t)], with

1
α
<

1
β
< p. (5.2)

For a rigid surface, we have ux = uz = 0 at z = 0. These two conditions give
αp P̀ + i

√
β2p2 − 1 S̀ = 0,

i
√
α2p2 − 1 P̀ − βp S̀ = 0.

(5.3)

The determinant of coefficients should vanish, which leads to

− αβp2 +

√
α2p2 − 1

√
β2p2 − 1 = 0, α2p2 + β2p2 = 1. (5.4)

However, when α−1 < β−1 < p we always have α2p2 + β2p2 > 2. This implies that Eq. (5.4) does not have a solution,
and there can be no corresponding surface wave of tractions when the surface is rigid.

5.2 Question 2

At the boundary between two homogeneous half-spaces, the interface SH-wave is given as

Ś exp

(
ω

√
p2 −

1
β2

1
z

)
exp [iω(px − t)], (5.5)

S̀ exp

(
−ω

√
p2 −

1
β2

2
z

)
exp [iω(px − t)], with p > max

{
1
β1
,

1
β2

}
. (5.6)

The continuity of displacement uy and shear traction τyz at z = 0 gives


Ś − S̀ = 0,√

p2 −
1
β2

1
Ś +

√
p2 −

1
β2

2
S̀ = 0.

(5.7)

There is no appropriate p that can make the determinant of coefficients. Hence, there is no interface SH-wave at the
boundary between two homogeneous half-spaces.

5.3 Question 3

For a solid half-space z > 0, the P-SV scattering matrix can be obtained from eq. (5.34) in the book, by setting all
amplitudes in medium 1 to zero and choosing the appropriate equations for boundary conditions. We then rearrange them
into a convenient form to obtain the scattering matrix, as shown below

M

[
P̀

S̀

]
= N

[
Ṕ

Ś

]
, M−1N =

[
ṔP̀ ŚP̀

ṔS̀ ŚS̀

]
. (5.8)
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a) When we set uz = 0 and τzx = 0 on z = 0, we obtain


cos i

(
P̀ − Ṕ

)
− sin j

(
S̀ − Ś

)
= 0,

2βp cos i
(
P̀ − Ṕ

)
+ (1 − 2β2p2)

(
S̀ − Ś

)
= 0.

(5.9)

In this case, we have

M = N =

[
cos i − sin j

2βp cos i 1 − 2β2p2

]
, M−1N =

[
ṔP̀ ŚP̀

ṔS̀ ŚS̀

]
=

[
1 0
0 1

]
. (5.10)

b) When we set ux = 0 and τzz = 0 on z = 0, we obtain


sin i

(
P̀ + Ṕ

)
+ cos j

(
S̀ + Ś

)
= 0,

α(1 − 2β2p2)
(
P̀ + Ṕ

)
− 2β2p cos j

(
S̀ + Ś

)
= 0.

(5.11)

In this case, we have

M = −N =

[
sin i cos j

α(1 − 2β2p2) −2β2p cos j

]
, M−1N =

[
ṔP̀ ŚP̀

ṔS̀ ŚS̀

]
=

[
−1 0
0 −1

]
. (5.12)

Therefore, by adding the reflections derived from the above two sets of boundary conditions, all downward reflections are
eliminated. This trick can be useful in numerical methods to eliminate unwanted reflections from grid boundaries.

5.4 Question 4

a) The inhomogeneous P-wave and S-wave are again shown below

P̀
(
αp, 0, i

√
α2p2 − 1

)
exp

(
−ω

√
p2 −

1
α2 z

)
exp [iω(px − t)], (5.13)

S̀
(
i
√
β2p2 − 1, 0, −βp

)
exp

(
−ω

√
p2 −

1
β2 z

)
exp [iω(px − t)], with

1
α
<

1
β
< p. (5.14)

Taking the real part of the expression gives

uP ∝

(
αp cos [ω(px − t)], 0, −

√
α2p2 − 1 sin [ω(px − t)]

)
, (5.15)

uSV ∝

(√
β2p2 − 1 sin [ω(px − t)], 0, βp cos [ω(px − t)]

)
. (5.16)

The plane waves propagate in the +x-direction and note that +z-direction points downward. To determine the particle
motion, we can set x = 0 and consider the time t = 0 to t = 0+. In the xz-plane, we have the following analysis:

• P-wave goes from (αp, 0) at t = 0 to (αp−, 0+) at t = 0+, corresponding to a prograde motion.

• SV-wave goes from (0, βp) at t = 0 to (0−, βp−) at t = 0+, corresponding to a prograde motion.

b) & c) The free surface boundary conditions constrain the ratio between P̀ and S̀. From eq. (5.54) in the book, we have

S̀ = i
2pβ

√
α2p2 − 1

2β2p2 − 1
P̀. (5.17)
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Adding Eqs (5.13) and (5.14) together with this amplitude ratio, at the free surface z = 0, the real part gives

uR
x ∝

(
αp −

2pβ
√
α2p2 − 1

√
β2p2 − 1

2β2p2 − 1

)
cos [ω(px − t)] = Ax cos [ω(px − t)], (5.18)

uR
z ∝ −

(√
α2p2 − 1 −

2β2p2
√
α2p2 − 1

2β2p2 − 1

)
sin [ω(px − t)] = Az sin [ω(px − t)]. (5.19)

We need to determine the signs of Ax and Az . From the Rayleigh function (eq. 5.56 in the book), we can obtain√
α2p2 − 1

√
β2p2 − 1 =

α

4p2β3

(
2β2p2 − 1

)2
. (5.20)

The amplitudes Ax and Az can be simplified to

Ax =
α

2pβ2 > 0, Az =

√
α2p2 − 1

2β2p2 − 1
> 0. (5.21)

This implies that the particle motion for the free surface is retrograde elliptical.

d) The exponential decay for the P-wave amplitude is faster. At sufficient depth, the sum of the two components will be
dominated by SV-wave, which itself is prograde elliptical.

Note The above result is consistent with the displacement vector given in the book. The complex displacement field at
z = 0 can be derived as

ũR
x = iS̀

(
−
α

2β
·

2β2p2 − 1√
α2p2 − 1

+

√
β2p2 − 1

)
exp [iω(px − t)], (5.22)

ũR
z = S̀

(
2β2p2 − 1

2βp
− βp

)
exp [iω(px − t)] =

−S̀
2βp

exp [iω(px − t)]. (5.23)

Again, using Eq. (5.20) to substitute
√
α2p2 − 1, we can show that

ũR
x = −

iS̀
√
β2p2 − 1

2β2p2 − 1
exp [iω(px − t)],

ũR
x

ũR
z

=
2iβp

√
β2p2 − 1

2β2p2 − 1
. (5.24)

Note that p = c−1
R for Rayleigh wave. For the expressions given in the book, we can similarly calculate

ũR
x

ũR
z

=
2i
cR

√
1
c2

R

−
1
β2 ·

(
2
c2

R

−
1
β2

)−1

=
2ip

√
p2 − β−2

2p2 − β−2 =
2iβp

√
β2p2 − 1

2β2p2 − 1
. (5.25)

Therefore, we can also write out the complex displacement field using the vector given in the book.

5.5 Question 5

We only need to compare the signs of the Rayleigh wave amplitudes, as given in Eqs (5.23) and (5.24), with those for
the pure SV-wave which dominates at sufficient depth, as given in Eq. (5.14). It is the horizontal (and not the vertical)
component of the Rayleigh wave that goes through zero as depth increases.

Im {Ax} Re {Az}

Rayleigh −
S̀
√
β2p2 − 1

2β2p2 − 1
< 0

−S̀
2βp

< 0

SV-wave S̀
√
β2p2 − 1> 0 −S̀βp< 0
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5.6 Question 6

For a P-wave incident from below, the total displacement at the free surface z = 0 is

uP = Ṕ
(
sin i + ṔP̀ sin i + ṔS̀ cos j, 0, − cos i + ṔP̀ cos i − ṔS̀ sin j

)
exp [iω(px − t)]. (5.26)

Similarly, for an SV-wave incident from below, we have

uSV = Ś
(
cos j + ŚP̀ sin i + ŚS̀ cos j, 0, sin j + ŚP̀ cos i − ŚS̀ sin j

)
exp [iω(px − t)]. (5.27)

Denote the following symbols

m =
1
β2 − 2p2, sα = 2p

cos i
α

, sβ = 2p
cos j
β

. (5.28)

The displacement reflection coefficients can be simply expressed as

ṔP̀ =
−m2 + sαsβ
m2 + sαsβ

, ṔS̀ =
2α
β

msα
m2 + sαsβ

, ŚP̀ =
2β
α

msβ
m2 + sαsβ

, ŚS̀ =
m2 − sαsβ
m2 + sαsβ

. (5.29)

As a result, using the definition of p, we have

sin i + ṔP̀ sin i + ṔS̀ cos j =
1

m2 + sαsβ
·
αsαsβ
β2p

,

− cos i + ṔP̀ cos i − ṔS̀ sin j =
−m

m2 + sαsβ
·
αsα
β2p

,

cos j + ŚP̀ sin i + ŚS̀ cos j =
m

m2 + sαsβ
·

sβ
βp
,

sin j + ŚP̀ cos i − ŚS̀ sin j =
1

m2 + sαsβ
·

sαsβ
βp

. (5.30)

The total displacement at the free surface becomes

uP =

Ṕ
[
4αp
β2

cos i
α

cos j
β

, 0,
−2α
β2

cos i
α

(
1
β2 − 2p2

)]
exp [iω(px − t)](

1
β2 − 2p2

)2
+ 4p2 cos i

α

cos j
β

, (5.31)

uSV =

Ś
[

2
β

cos j
β

(
1
β2 − 2p2

)
, 0,

4p
β

cos i
α

cos j
β

]
exp [iω(px − t)](

1
β2 − 2p2

)2
+ 4p2 cos i

α

cos j
β

. (5.32)

For an SH-wave incident from below, as ŚS̀ = 1 at the free surface, the displacement is simply doubled.

5.7 Question 7

For the incident SV-wave, using cos 2 j = 1 − 2β2p2, we have

R(t) = Ś(t)
2α cos j cos 2 j

α cos2 2 j + 4p2β3 cos i cos j
, Z(t) = −Ś(t)

4pβ2 cos i cos j
α cos2 2 j + 4p2β3 cos i cos j

. (5.33)

The minus sign in Z(t) is because Z(t) is measured as positive upward. Also using sin j = βp, we can see that

Ś(t) =
cos 2 j
2 cos j

· R(t) − sin j · Z(t) =
1 − 2β2p2

2
√

1 − β2p2
· R(t) − βp · Z(t). (5.34)
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Similarly, for the incident P-wave we have

R(t) = Ṕ(t)
4pαβ cos i cos j

α cos2 2 j + 4p2β3 cos i cos j
, Z(t) = Ṕ(t)

2α cos i cos 2 j
α cos2 2 j + 4p2β3 cos i cos j

. (5.35)

The incident waveform can be estimated as

Ṕ(t) =
cos 2 j
2 cos i

· Z(t) +
β

α
sin j · R(t) =

1 − 2β2p2

2
√

1 − α2p2
· Z(t) +

β2p
α
· R(t). (5.36)

When p > 1/α, we have
√

1 − α2p2 → i
√
α2p2 − 1, and this leads to a Hilbert transform of Z(t).

5.8 Question 8

If the two half-spaces under consideration have similar properties, correct to first order in the jumps ∆ρ, ∆α, ∆β, the
reflection coefficient P̀Ṕ can be approximated as (eq. 5.46 in the book)

P̀Ṕ =
1
2

(
1 − 4β2p2

)
∆ρ

ρ
− 4β2p2∆β

β
+

1
2 cos2 i

∆α

α
. (5.37)

Note that p = α−1 sin i also depends on the incident angle i. At small angle we have cos−2 i ≈ 1+sin2 i, and the expression
is simplified to

P̀Ṕ ≈
1
2

(
∆ρ

ρ
+
∆α

α

)
+ B sin2 i, with B =

1
2
∆α

α
− 2

β2

α2

(
∆ρ

ρ
+ 2
∆β

β

)
. (5.38)

This formula is related to the amplitude variation with offset analysis (AVO).

5.9 Question 9

Consider a general plane P-wave propagating in k̂ direction (longitudinal), where k is the wavenumber

uP = AP k̂ exp [i (k · x − ωt)]. (5.39)

Note that the P-wave particle motion is in the propagating direction. The compressional P-wave corresponds to AP > 0,
and the first motion is in k̂ direction (outward). Vice versa, the first motion of the dilatational P wave is inward.

5.10 Question 10

With the plane wave factor exp [iω(px − t)], we can recognize

∂

∂t
↔ −iω,

∂

∂x
↔ iωp.

For P-SV waves, we have the equations of motion

− ρω2ux = iωpτxx +
∂τxz
∂z

, −ρω2uz = iωpτzx +
∂τzz
∂z

. (5.40)

The constitutive relations become

τxx = iωp(λ + 2µ)ux + λ
∂uz
∂z

, τzz = iωpλux + (λ + 2µ)
∂uz
∂z

, τxz = µ
∂ux

∂z
+ iωpµuz . (5.41)

We have f1(z) ∼ f4(z) corresponds to ux,uz, τzx and τzz , respectively. From the constitutive relations (eq. 5.41), we obtain

d f1
dz
= −iωp f2 +

f3
µ
,

d f2
dz
= −

iωpλ
λ + 2µ

f1 +
f4

λ + 2µ
. (5.42)
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From the equations of motion (eq. 5.40), we can obtain

d f3
dz
= −ρω2 f1 + ω2p2(λ + 2µ) f1 − iωpλ

d f2
dz
=

[
4ω2p2µ(λ + µ)

λ + 2µ
− ρω2

]
f1 −

iωpλ
λ + 2µ

f4,

d f4
dz
= −ρω2 f2 − iωp f3. (5.43)

The corresponding ODE system is written in the form of

d
dz



ũx

ũz

τ̃zx

τ̃zz


=



0 −iωp
1
µ

0

−iωpλ
λ + 2µ

0 0
1

λ + 2µ
4ω2p2µ(λ + µ)

λ + 2µ
− ρω2 0 0

−iωpλ
λ + 2µ

0 −ρω2 −iωp 0





ũx

ũz

τ̃zx

τ̃zz


,

df(z)
dz
= Af(z). (5.44)

Consider eq. (5.63) in the book, and we can show that when A is constant, it is the solution of the ODE system

f = vα exp [λα (z − zref)],
df
dz
= λαvα exp [λα (z − zref)] = Avα exp [λα (z − zref)] = Af, (5.45)

where λα and vα are the eigenvalue and eigenvector of A. However, when the properties ρ,λ, µ also vary with z, we have

df(z)
dz
= A(z) f(z). (5.46)

Now λα(z) and vα(z) also depends on z, and thus f ′(z) becomes more complicated and does not equal to A(z) f(z). In fact,
Eq. (5.46) does not have a close-form solution.

Note The solution of Eq. (5.44) can be expressed in the form of a matrix exponential

f(z) = eA(z−z0) f0, where eX =

+∞∑
k=0

Xk

k!
= lim

n→∞

(
I +

X
n

)n
. (5.47)

Compare with eq. (5.64) in the book, we can identify that

f(z) = Fw, with F = EeΛ(z−z0), w = E−1f0, A = EΛE−1, (5.48)

where the last expression represents the diagonalization of matrix A. The columns of E are the eigenvectors.

5.11 Question 11

For a P-wave potential φ(x, z, t), the displacement u = (ux,uy,uz) and traction T = (τzx, τzy, τzz) are calculated as

uP =

(
∂φ

∂x
, 0,

∂φ

∂z

)
, TP =

(
2µ

∂2φ

∂x∂z
, 0, λ∇2φ + 2µ

∂2φ

∂z2

)
. (5.49)

For an SV-wave potential ψ(x, z, t), the displacement and traction are calculated as

uSV =

(
−
∂ψ

∂z
, 0,

∂ψ

∂x

)
, TSV =

(
µ
∂2ψ

∂x2 − µ
∂2ψ

∂z2 , 0, 2µ
∂2ψ

∂x∂z

)
. (5.50)

For a down-going P-wave φ = A exp [iω(px + ξz − t)], we have

ux = iωpφ, uz = iωξφ, τzx = −2µω2pξφ, τzz = −λ
ω2

α2 φ − 2µω2ξ2φ (5.51)
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The first eigenvector v1 is related to this down-going P-wave, which is

v1 =
−iα
ω

[
iωp, iωξ, −2ω2ρβ2pξ, −ω2ρ

(
1 − 2β2p2

)]T
=

[
αp, αξ, 2iωραβ2pξ, iωρα

(
1 − 2β2p2

)]T
. (5.52)

For a down-going SV-wave ψ = B exp [iω(px + ηz − t)], we have

v2 =
iβ
ω

[
−iωη, iωp, ω2ρ

(
1 − 2β2p2

)
, −2ω2ρβ2pη

]T
=

[
βη, −βp, iωρβ

(
1 − 2β2p2

)
, −2iωρβ3pη

]T
. (5.53)

For an up-going P-wave φ = C exp [iω(px − ξz − t)], we simply substitute ξ → −ξ and obtain

v3 =
[
αp, −αξ, −2iωραβ2pξ, iωρα

(
1 − 2β2p2

)]T
. (5.54)

For an up-going SV-wave ψ = D exp [iω(px − ηz − t)], we simply substitute η→ −η and obtain (by reversing the sign to
ensure that the first element is positive)

v4 =
[
βη, βp, −iωρβ

(
1 − 2β2p2

)
, −2iωρβ3pη

]T
. (5.55)

These wave potentials are equivalent to the wave system f = Fw with

w =
[
iωA
α
,
−iωB
β

,
iωC
α

,
iωD
β

]T

. (5.56)

For example, the first coefficient for the down-going P-wave is recognized by comparing Eqs (5.51) and (5.52).

5.12 Question 12

The attenuation of amplitude can be expressed as

A(t) = A0 exp
[
−

ωt
2Q(ω)

]
. (5.57)

Note that for both ω > 0 and ω < 0, Eq. (5.57) should give an exponential decay of the amplitude. Hence, Q(ω) should
be an odd function with Q(−ω) = −Q(ω). The pulse shape of the attenuated wave p(x, t) is given by eq. (5.72) in the book

p(x, t) =
1

2π

∫ +∞

−∞

exp
[
−

ωx
2cQ(ω)

]
exp

[
iω

( x
c
− t

)]
dω. (5.58)

If there is no dispersion (constant c), at a specific distance x, the Fourier transform of p(t − x/c) is

p̂(ω) = F
{
p
(
t −

x
c

)}
= exp

[
−

ωx
2cQ(ω)

]
, p̂(ω) = p̂(−ω), (5.59)

which is an even function of ω. Therefore, the attenuated impulse is always symmetric about t = x/c.

5.13 Question 13

The Kramers-Krönig relation implies that the real and imaginary parts of the complex wavenumber K should satisfy

K =
ω

c(ω)
+ iα(ω),

ω

c(ω)
=

ω

c∞
+H {α(ω)} , (5.60)

in order to ensure causality (i.e., there is no signal when t < x/c∞). The attenuation factor Q(ω) is then, by definition,
related to α(ω) and c(ω) as

α(ω) =
ω

2c(ω)Q(ω)
. (5.61)
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a) The imaginary wavenumber is given as (for ω > 0)

α(ω) =
α0ω

1 + α2ω2 , H {α(ω)} =
α0
π

ω

1 + α2ω2 ln
(

1
α2ω2

)
. (5.62)

With α2ω
2 � 1 for the seismic band, we can obtain

1
c(ω)

=
1

c∞
+
α0
π

1
1 + α2ω2 ln

(
1

α2ω2

)
≈

1
c∞
+
α0
π

ln
(

1
α2ω2

)
. (5.63)

The attenuation factor Q(ω) is approximately constant over the seismic frequencies

Q(ω) ≈
1

2c∞α0
+

1
2π

ln
(

1
α2ω2

)
≈

1
2c∞α0

. (5.64)

The phase velocity ratio can thus be approximated as

c(ω1)

c(ω2)
≈

[
1 +

c∞α0
π

ln
(

1
α2ω2

)] [
1 −

c∞α0
π

ln
(

1
α2ω2

)]
≈ 1 +

1
πQ

ln
(
ω1
ω2

)
. (5.65)

b) The imaginary wavenumber is given as (for ω > 0)

α(ω) = α0ω [H(ω − ωl) − H(ω − ωh)] , H {α(ω)} =
α0ω

π
ln

(
ω2

h − ω
2

ω2 − ω2
l

)
. (5.66)

With ωl � ω � ωh for the seismic band, we can obtain

1
c(ω)

=
1

c∞
+
α0
π

ln

(
ω2

h − ω
2

ω2 − ω2
l

)
≈

1
c∞
+

2α0
π

ln
(ωh

ω

)
. (5.67)

The attenuation factor Q(ω) is approximately constant over the seismic frequencies

Q(ω) ≈
1

2c∞α0
+

1
π

ln
(ωh

ω

)
≈

1
2c∞α0

, for ωl < ω < ωh. (5.68)

The phase velocity ratio can thus be approximated as

c(ω1)

c(ω2)
≈

[
1 +

2c∞α0
π

ln
(
ωh

ω2

)] [
1 −

2c∞α0
π

ln
(
ωh

ω1

)]
≈ 1 +

1
πQ

ln
(
ω1
ω2

)
, (5.69)

5.14 Question 14

The imaginary wavenumber is given as (with s slightly less than one)

α(ω) = α0 |ω |
s, H

{
α(ω)

ω

}
= α0H

{
sgnω · |ω |s−1} = α0 |ω |

s−1 tan
sπ
2
. (5.70)

The modified relation between c(ω) and α(ω), appropriate for this problem, is

1
c(ω)

=
1

c∞
+H

{
α(ω)

ω

}
=

1
c∞
+
α(ω)

|ω |
tan

sπ
2
. (5.71)

The absolute dispersion (with respect to c∞) may be large for s slightly less than one, since the term tan (sπ/2) dominates
over c−1

∞ . On the other hand, α0 |ω |
s−1 is effectively a constant, which implies that the dependency of c−1(ω) on ω is very

weak. Hence, the relative dispersion over the seismic frequency range might be small and hard to detect.
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5.15 Question 15

The phase velocity can be approximated from eq. (5.102) in the book as

c =

√
Reµ
ρ

√
2(1 +Q−2)

1 +
√

1 + sec2 γQ−2
≈

√
Reµ
ρ
·
√

2
(
1 +

1
2

Q−2
)
·

[
1 + 1 +

sec2 γ

2
Q−2

]−1/2

≈

√
Reµ
ρ

(
1 +

1
2

Q−2
) (

1 −
sec2 γ

8
Q−2

)
≈

√
Reµ
ρ

[
1 +

(
1
2
−

sec2 γ

8

)
Q−2

]
. (5.72)

The correction of order Q−1 on velocity is related to the phase velocity dispersion, i.e., c as a function of ω. However, Eq.
(5.72) describes the variation of c related to angle γ between P and A for two-dimensional plane waves.

5.16 Question 16

Based on the complex elastic moduli, the attenuation factors Q for S-wave and P-wave are defined as

Q−1
S = −

Im {µ}
Re {µ}

, Q−1
P = −

Im {κ + 4µ/3}
Re {κ + 4µ/3}

. (5.73)

The wave speeds are defined as

β =

√
Re {µ}
ρ

, α =

√
Re {κ + 4µ/3}

ρ
. (5.74)

When the bulk modulus κ is purely real, the ratio of Q is calculated as

QP

QS
=

Re {κ + 4µ/3}
Re {µ}

·
Im {µ}

Im {4µ/3}
=

3α2

4β2 . (5.75)

More generally, we can obtain

Qκ

QP
=

(
1 −

4β2

3α2

) (
1 +

4 Im {µ}
3 Im {κ}

)
,

Qκ

QS
=

(
α2

β2 −
4
3

)
Im {µ}
Im {κ}

. (5.76)

This leads to
Qκ/QP

1 − 4β2/3α2 − 1 =
4β2

3α2
Qκ/QS

1 − 4β2/3α2 ,
Qκ

QP
− 1 =

4β2

3α2

(
Qκ

QS
− 1

)
. (5.77)

Hence, we obtain the following result
1

QP
−

1
Qκ
=

4β2

3α2

(
1

QS
−

1
Qκ

)
. (5.78)

5.17 Question 17

Consider a box function f (t) that is unity for T < t < 2T . Its Hilbert transform is

H { f (t)} =
1
π

∫ 2T

T

dτ
τ − t

=
1
π

ln
����2T − t

T − t

����. (5.79)

When |t − T | � T , we have |2T − t | ≈ T , and the box function f (t) is effectively a Heaviside function H(t − T). This
eventually leads to

H {H(t − T)} ≈ −
1
π

ln
���� t − T

T

����, for |t − T | � T . (5.80)

5.18 Question 18

For an attenuating plane wave at frequency ω, the stress-strain relation is given by eq. (5.84) in the book

MUε(t) = σ(t)
[
1 +

∫ +∞

0
Ûφ(τ)eiωτ dτ

]
. (5.81)
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One example of the creep function φ(t) for rocks is described by the logarithmic law

φ(t) = q ln (1 + at)H(t), Ûφ(t) =
aq

1 + at
H(t). (5.82)

in which the fundamental frequency a may be as high as the vibration frequency of a vacancy in the crystal lattice (i.e., of
the order of 10 GHz), and the parameter q is related to the attenuation factor as q ∼ 2/(πQ). For seismic frequencies, we
have ω � a and the Fourier transform of Ûφ(t) is evaluated as (eq. 5.87 in the book)

F
{
Ûφ(t)

}
= aq

∫ +∞

0

eiωτ

1 + aτ
dτ ∼ −q

[
γ + ln

(ω
a

)
−

iπ
2

]
e−iω/a . (5.83)

As a result, we obtain
MUε(t)
σ(t)

= 1 − q
[
γ + ln

(ω
a

)
−

iπ
2

]
e−iω/a . (5.84)

With q ∼ Q−1 � 1 and ω � a, the real and imaginary parts are approximated as

Re
{

MUε(t)
σ(t)

}
= 1 − q

[
γ + ln

(ω
a

)]
cos

(ω
a

)
+
πq
2

sin
(ω

a

)
≈ 1,

Im
{

MUε(t)
σ(t)

}
= q

[
γ + ln

(ω
a

)]
sin

(ω
a

)
+
πq
2

cos
(ω

a

)
≈
πq
2
. (5.85)

Therefore, the phase difference between stress and strain is

φ = Arg
{

MUε(t)
σ(t)

}
= arctan

( πq
2

)
≈

1
Q
, (5.86)

which amounts to 1/(ωQ) seconds. The stress leads the strain. Fig. 5.1 shows the hysteresis loop of the stress-strain curve
(exaggerated for visualization). One definition of Q is based on the energy loss over one cycle, which is

Q−1 = −
∆E
2πE

. (5.87)

Because the area is proportional to the squared amplitude, Eq. (5.87) can be evaluated as

−
∆E
2πE

∼
A2

0 − A2
1

2πA2
0
=

1 − e−2π/Q

2π
≈

1
Q
. (5.88)

Fig. 5.1 Stress-strain hysteresis loop. The attenuation is exaggerated for visualization.
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6 Chapter 6: Reflection and Refraction of Spherical Waves; Lamb’s Problem

6.1 Question 1

Eq. (6.93) in the book is the solution for two half-spaces in welded contact along z = 0 with a point source of SH-wave
acting at z0 < 0 in the upper medium. When head waves can occur, the contribution from the Cagniard path starts at the
branch cut p(th) = β−1

2 , with th being the head wave arrival time. The approximation |pr | � t − t ′ is thus equivalent to

min |pr | � max (t − t ′), rp(th) =
r
β2
� t − th . (6.1)

When β2 < β1, the contribution from the Cagniard path starts at the departure point p(t0) corresponding to the reflection,
which is given as

t0 =
R0
β1
, p(t0) =

r
R0β1

, R0 =
√

r2 + (z + z0)2. (6.2)

The approximation |pr | � t − t ′ is thus equivalent to

min |pr | � max (t − t ′), rp(t0) =
r2

R0β1
� t − t0 = t −

R0
β1
. (6.3)

Now we compare the convolution solution with the wavefront approximation. In the wavefront approximation, e.g.,
eq. (6.26) in the book, at distances near critical with L → 0, the head wave amplitude r−1/2L−3/2 blows up. Meanwhile,
the approximation of the wide-angle reflection wave (eq. 6.21 in the book) also fails. On the contrary, for the convolution
solution (eq. 6.96 in the book), the singularity in ψ(t) is integrable near the reflection time (1/

√
t2 − R2

0/β
2
1), and there is

no issue with applying it near the critical distance.

6.2 Question 2

Eq. (6.42) in the book states the equation of motion for an SH-wave

ρÜv = A δ(x)δ(z)δ(t) + µ∇2v = A δ(x)δ(z)δ(t) +
(
∂σyx

∂x
+
∂σyz

∂z

)
. (6.4)

With the double transform (Fourier transform in x, Laplace transform in t), we have

∂

∂z
σyz(kx, z, s) = −A δ(z) + ρs2v(kx, z, s) − ikxσyx(kx, z, s). (6.5)

Integrating Eq. (6.5) from z = 0− to z = 0+ gives the magnitude of the step A in the stress component σyz , which is
related to the discontinuity in ∂v/∂z.

6.3 Question 3

We start with the transmitted field given by eq. (6.14) in the book

Ptrans = iωe−iωt

∫ ∞

0

Cp
ξ1

J0(ωpr) exp (−iωξ1z0 + iωξ2z) dp, in z > 0, (6.6)

in which the vertical slowness is defined as

ξ1 =
√
α−2

1 − p2, ξ2 =
√
α−2

2 − p2, with Im ξ1, Im ξ2 ≥ 0. (6.7)

The amplitude C(p) is determined from the boundary conditions as (eq. 6.15 in the book)

C(p) = A
2ρ2ξ1

ρ1ξ2 + ρ2ξ1
. (6.8)
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First, we rewrite Eq. (6.6) using the Hankel function and the fact that C(p) is even in p, which leads to

Ptrans =
iω
2

e−iωt

∫ +∞

−∞

Cp
ξ1

H(1)0 (ωpr) exp (−iωξ1z0 + iωξ2z) dp, in z > 0. (6.9)

Second, when r � λ we have ωpr � 1, and the asymptotic expansion of the Hankel function is

H(1)0 (ωpr) =

√
2

πωpr
ei(ωpr−π/4)

[
1 −

i
8ωpr

+O
(

1
ω2p2r2

)]
. (6.10)

Keep the first term in the expansion, and note that the source location z0 < 0. We finally obtain

Ptrans =

√
ω

2πr
e−i(ωt−π/4)

∫ +∞

−∞

C(p)
√

p
ξ1

exp [iω (pr + ξ1 |z0 | + ξ2z)] dp. (6.11)

The saddle-point analysis is carried out as

f (p) = i (pr + ξ1 |z0 | + ξ2z) , f ′(p) = i
(
r −

p|z0 |

ξ1
−

pz
ξ2

)
, f ′′(p) = −i

(
|z0 |

α2
1ξ

3
1
+

z
α2

2ξ
3
2

)
. (6.12)

Therefore, the saddle point p = ps satisfies

ps =
sin i1
α1
=

sin i2
α2

, r =
p|z0 |

ξ1
+

pz
ξ2
= |z0 | tan i1 + z tan i2. (6.13)

The saddle occurs for the ray parameter p which gives the transmitted ray between the source and the receiver, as illustrated
in Fig. 6.1.

interface

i1

i2

|z0 |

z

r

Fig. 6.1 Illustration of the transmitted ray, and the condition satisfied in Eq. (6.13).

6.4 Question 4

The Rayleigh function R(p) is defined as

R(p) = 4p2ξη +
(
β−2 − 2p2

)2
, with ξ =

√
α−2 − p2, η =

√
β−2 − p2. (6.14)

In one of the nonphysical Riemann sheet {Re ξ < 0; Re η ≥ 0}, for a real ray parameter p within the range 0 < p < α−1,
now we have

ξ̃ = −

√
α−2 − p2, η̃ =

√
β−2 − p2. (6.15)

Based on Snell’s law, the incidence angles for P- and S-waves satisfy

p =
sin i
α
=

sin j
β

=⇒ ξ̃ = −
cos i
α

, η̃ =
cos j
β

. (6.16)
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Fig. 6.2 (Left) Riemann sheets of η =
√
β−2 − p2. Red surface corresponds to Re η > 0, which is discontinuous across

the branch cuts. (Middle) Rayleigh poles on the physical Riemann sheet {Re ξ ≥ 0; Re η ≥ 0}. Branch points are denoted
by ×, and poles by ◦ at p = ±1/cR. (Right) Rayleigh poles on the nonphysical Riemann sheet {Re ξ < 0; Re η ≥ 0}. The
poles are near p = ±1/α in this case with ν = 0.25 (i.e., Poisson solid).

Therefore, on this nonphysical Riemann sheet (−+), the Rayleigh function becomes

R̃(p) =
(
β−2 − 2p2

)2
− 4p2 cos i

α

cos j
β

, with 0 < p < α−1. (6.17)

This is exactly the numerator of ṔP̀ and ŚS̀ (see eqs 5.28 & 5.32 in the book). Therefore, the zero crossings of ṔP̀ and ŚS̀

occur precisely at the zero of Rayleigh function on the nonphysical Riemann sheet {Re ξ < 0; Re η ≥ 0}. For figure 5.6
in the book, the coefficients are plotted for α = 5 km/s and β = 3 km/s, corresponding to ν ≈ 0.23 < 0.263 and thus, the
P̄-pole is on the real p-axis for this case.

To visualize the Riemann sheets and the Rayleigh poles, Fig. 6.2 plots the complex function η =
√
β−2 − p2 and the

inverse Rayleigh function 1/R(p). The Poisson’s ratio is chosen as ν = 0.25. Now we see the branch cuts separating the
{Re η ≥ 0} sheet from the {Re η < 0} sheet. Furthermore, we see the Rayleigh poles in both the physical and nonphysical
Riemann sheets and, more importantly, the leaking mode from the P̄-pole into the physical Riemann sheet.

6.5 Question 5: 2D Lamb’s Problem (First kind)

1. Solution to the homogeneous wave equations for potentials
Because the source is at the surface z = 0, we can treat it as the boundary condition and solve the homogeneous wave
equations. The displacement u is related to the scalar potentials φ and ψ as

u = ∇φ + ∇ × (0, ψ, 0) =
(
∂φ

∂x
−
∂ψ

∂z
, 0,

∂φ

∂z
+
∂ψ

∂x

)
. (6.18)

Since the problem is y-invariant, we consider φ(x, z, t) and ψ(x, z, t). The potentials satisfy

Üφ = α2∇2φ, Üψ = β2∇2ψ. (6.19)

Taking the Fourier transform in x and the Laplace transform in t, we have

∂2

∂z2 φ(kx, z, s) =
(
k2
x +

s2

α2

)
φ(kx, z, s),

∂2

∂z2ψ(kx, z, s) =
(
k2
x +

s2

β2

)
ψ(kx, z, s). (6.20)

In the halfspace z > 0, we require the solutions to be bounded as z →∞. The homogeneous solutions are given as

φ(kx, z, s) = Ae−sξz, ψ(kx, z, s) = Be−sηz, (6.21)
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in which the coefficients A and B are to be determined by the boundary conditions, and we define

kx = isp, ξ =

√
α−2 − p2, η =

√
β−2 − p2, with Re ξ > 0, Re η > 0. (6.22)

Note When p is slightly above the branch cut (e.g., in the case z = 0), the above definition gives
√

z0 − z = −i
√

z − z0

for real variable z > z0. This should be taken care of when coding up the expressions.

2. Boundary conditions at z = 0
The traction components are calculated as

τxz = 2µ
∂2φ

∂x∂z
+ µ

(
∂2ψ

∂2x
−
∂2ψ

∂2z

)
, τzz = λ∇

2φ + 2µ
∂2φ

∂2z
+ 2µ

∂2ψ

∂x∂z
. (6.23)

At the surface, we have the boundary conditions

τxz(x, t) = 0, τzz(x, t) = −I δ(x) δ(t), at z = 0. (6.24)

In the transformed domain, these become

τxz(kx, s) = 0, τzz(kx, s) = −I, at z = 0. (6.25)

From Eqs (6.21) and (6.25), we obtain the linear system for the coefficients


−2pξ η2 − p2

α2ξ2 +
(
α2 − 2β2) p2 2β2ηp



A

B

 =


0

−I/ρs2

 . (6.26)

The determinants are obtained as

|D | = −β2R(p), |DA | =

��������
0 η2 − p2

−I/ρs2 2β2ηp

�������� =
I(η2 − p2)

ρs2 , |DB | =
2Ipξ
ρs2 , (6.27)

where we see the Rayleigh function R(p) shows up. The coefficients are solved as

A =
|DA |

|D |
= −

I
ρβ2s2

η2 − p2

R(p)
, B =

|DB |

|D |
= −

I
ρβ2s2

2pξ
R(p)

. (6.28)

3. Exact solution of displacement fields
In the transformed domain, the displacement components at arbitrary depth z become

ux(kx, z, s) = uP
x + uS

x =
I

ρβ2s
p(η2 − p2)

R(p)
e−sξz −

I
ρβ2s

2pξη
R(p)

e−sηz, (6.29)

uz(kx, z, s) = uP
z + uS

z =
I

ρβ2s
ξ(η2 − p2)

R(p)
e−sξz +

I
ρβ2s

2p2ξ

R(p)
e−sηz . (6.30)

The inverse Fourier transform of uP
x , as an example, is obtained as

uP
x(x, z, s) =

I
2πρβ2

∫ +∞

−∞

p
(
η2 − p2)
s R(p)

eikx x−sξz dkx . (6.31)
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With kx = isp, we have

uP
x(x, z, s) =

I
2πρβ2

∫ +i∞

−i∞

−ip
(
η2 − p2)

R(p)
e−s(px+ξz) dp

=
I

πρβ2 Im

{∫ i∞

0

p
(
η2 − p2)
R(p)

e−s(px+ξz) dp

}
. (6.32)

The final step is similar to eq. (6.48) in the book. To demonstrate it, denote

p
(
η2 − p2)
R(p)

e−s(px+ξz) = E(p̃) + iO(p̃), with p = i p̃, p̃ ∈ R. (6.33)

We can show that

E(p̃) =
p̃
(
β−2 + 2p̃2)

−4p̃2ξη +
(
β−2 + 2p̃2)2 e−sξz sin (sp̃x), O(p̃) =

p̃
(
β−2 + 2p̃2)

−4p̃2ξη +
(
β−2 + 2p̃2)2 e−sξz cos (sp̃x), (6.34)

and thus, E(p̃) is even and O(p̃) is odd for p̃, which leads to Eq. (6.32). Now define t = px + ξz, and the path C, given by
p = p(t) where t is real and positive, is the Cagniard path. Solving for p as a function of t gives (for x > 0)

p =



xt − z

√
R2

α2 − t2

R2 for 0 ≤ t ≤
R
α
,

xt + iz

√
t2 −

R2

α2

R2 for t ≥
R
α
,

(6.35)

where R =
√

x2 + z2 is the distance function. It can be shown that the integral (6.32) up the positive imaginary p-axis can
instead be taken over the Cagniard path C on which t increases from zero to infinity, which leads to

uP
x(x, z, s) =

I
πρβ2 Im

{∫ ∞

0

p
(
η2 − p2)
R(p)

e−st
dp
dt

dt

}
. (6.36)

The exact solution in the time domain becomes

uP
x(x, z, t) =

I
πρβ2 Im

{
p
(
η2 − p2)
R(p)

dp
dt

}�����
p=p(t)

. (6.37)

The derivative is given as

dp
dt
=



ξ√
R2

α2 − t2

for 0 < t <
R
α
,

iξ√
t2 −

R2

α2

for t >
R
α
,

(6.38)

in which an integrable singularity is present at the ray arrival time of direct P waves, t = R/α. For other components uP
z ,

uS
x and uS

z , the procedure is the same. The exact solution of displacement fields is summarized below.

• P-wave components

uP
x(x, z, t) =

I
πρβ2 Im

{
p
(
η2 − p2)
R(p)

dp
dt

}�����
p=p(t)

, uP
z (x, z, t) =

I
πρβ2 Im

{
ξ
(
η2 − p2)
R(p)

dp
dt

}�����
p=p(t)

. (6.39)
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The complex ray parameter p = p(t) is given as (we can set p = 0 for t < z/α)

p =



xt − z

√
R2

α2 − t2

R2 for
z
α
≤ t ≤

R
α
,

xt + iz

√
t2 −

R2

α2

R2 for t ≥
R
α
,

dp
dt
=



ξ√
R2

α2 − t2

for 0 < t <
R
α
,

iξ√
t2 −

R2

α2

for t >
R
α
.

(6.40)

• S-wave components

uS
x(x, z, t) = −

I
πρβ2 Im

{
2pξη
R(p)

dp
dt

}����
p=p(t)

, uS
z (x, z, t) =

I
πρβ2 Im

{
2p2ξ

R(p)
dp
dt

}����
p=p(t)

. (6.41)

The complex ray parameter p = p(t) is given as

p =



xt − z

√
R2

β2 − t2

R2 for
z
β
≤ t ≤

R
β
,

xt + iz

√
t2 −

R2

β2

R2 for t ≥
R
β
,

dp
dt
=



η√
R2

β2 − t2

for 0 < t <
R
β
,

iη√
t2 −

R2

β2

for t >
R
β
.

(6.42)

4. Numerical illustration
Figs 6.3 and 6.4 show the displacement fields at (x, z) = (5 km,0+) and (5 km,1 km), respectively, with shear wave speed
β = 1.73 km/s and Poisson’s ratio ν = 0.2. We can identify the P and S arrivals, as well as the head wave for z > 0. The
head wave corresponds to p = α−1, and the arrival time can be calculated as

th =
x
α
+ z

√
β−2 − α−2. (6.43)

Fig. 6.3 Displacement fields at (5 km,0+). Numerically, the depth is set to 10−6 km. The time axis is normalized by
P-arrival time tP = R/α. The displacement is normalized by I/πµ. The thick gray line is 20× the original amplitude to
visualize this part of the seismogram. The contributions from uP

x , uS
x , uP

z and uS
z are shown in the right panels.
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Fig. 6.4 Same as Fig. 6.3 but for displacement fields at (5 km,1 km). The head wave becomes a separate pulse.

At the surface, we have th = tP and thus the S components uS
x and uS

z also contribute to the P arrival. After the S arrival,
the Rayleigh wave shows up in both components. As t →∞, both P and S components are divergent, but they cancel out
each other due to their similar behavior (as discussed later in Problem 6.8).

• Convolution with Gaussian pulse
Fig. 6.5 shows the synthetic seismograms by convolution of the previous results with a Gaussian pulse ψ(t) defined as

ψ(t) =
γ
√
πτ

exp
[
−

(γt
τ

)2]
(6.44)

where γ = 1.628 is the decay rate and τ is the half duration of the Gaussian pulse. The first motions can be better identified
from the synthetic seismograms.

Fig. 6.5 Synthetic seismograms by convolution of signals in Figs. 6.3 and 6.4 with a Gaussian pulse. The central
frequency of the Gaussian pulse is fc = 20/tP. Note the difference in the ranges of vertical axes. The thick gray line is
60× the original amplitude of uz to visualize this part of the seismogram.
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Fig. 6.6 Particle motion plots at different depths z = 0.01 km, 0.04 km and 0.1 km. Increasing time is indicated by the
rainbow color order. The particle motion transitions from retrograde elliptical to prograde elliptical as the depth increases.

• Rayleigh wave particle motion
Based on the synthetic seismograms, we can further analyze the Rayleigh wave particle motion. Fig. 6.6 shows the
Rayleigh pulse particle motion at different receiver depths. The time window 0.95 tR < t < 1.05 tR is selected for plots.
The central frequency of the Gaussian pulse is fc = 20/tP, which corresponds to a Rayleigh wavelength of λR = 0.14 km
with cR = 1.576 km/s. The transition from retrograde to prograde motion occurs around z ∼ 0.36 λR.

• Rayleigh poles and leaking mode
Fig. 6.7 shows the influence of Poisson’s ratio ν on the synthetic seismograms. When ν < 0.263, the P̄-pole on the
nonphysical Riemann sheet {Re ξ < 0; Re η ≥ 0} is on the real p-axis and close to p = 1/α (Fig. 6.2), which contributes
to the head wave arrival. On the other hand, when ν > 0.263, the P̄-pole is in the fourth quadrant of the nonphysical (−+)
sheet with 1/α < Re p < 1/β. This leads to the P̄-pulse after the head wave.

5. Exact solution of surface displacement fields
A special case occurs when the receiver is on the surface z = 0. The Cagniard path then becomes the real p-axis

p =
t
x
,

dp
dt
=

1
x
, for t > 0. (6.45)

Fig. 6.7 Influence of Poisson’s ratio ν on synthetic seismograms. The portion between P-wave and S-wave arrivals is
zoomed in. The receiver is at (5 km,0). Two example values of Poisson’s ratio ν = 0.1 and ν = 0.45 are chosen. Note that
P̄-pulse appears when ν > 0.263.

39



Eq. (6.45) is appropriate except when dealing with the Rayleigh pole. In the distribution sense, we can show that1

lim
z→0

p =
t
x
+ i

√
t2 −

x2

α2

(
lim
z→0

z
x2 + z2

)
=

t
x
+ iπ

√
t2 −

x2

α2 δ(x)

=
t
x
+ iπt δ(x) =

t
x
+ iπ δ

( x
t

)
. (6.46)

Note that the wave speed taking α or β gives the same result. We only need to be careful about the following expression

Im

{
p

p − c−1
R

}
= −πcR δ

( x
t
− cR

)
= −πtR δ (t − tR) , (6.47)

which arises after expanding the Rayleigh function around the pole p = c−1
R . Other than this, we can just use Eq. (6.45)

for derivation. When t < tP, everything is real and there is no displacement as expected. We thus need to discuss the
following two cases.

• tP < t < tS
Within this time interval, we have

ξ = −
i
x

√
t2 − t2

P, η =
1
x

√
t2
S − t2, R(p) =

1
x4

[(
t2
S − 2t2

)2
− 4it2

√
t2 − t2

P

√
t2
S − t2

]
. (6.48)

Now denote the following quantities

A(t) =
(
t2
S − 2t2

)2
≥ 0, B(t) = 4t2

√
t2 − t2

P

√
t2
S − t2 ≥ 0,

D(t) =
√

A2(t) + B2(t) > 0, θ(t) = arctan
[

B(t)
A(t)

]
∈

[
0,
π

2

]
. (6.49)

The surface displacement fields can then be expressed as

uP
x(x,0, t) =

I
πµ

t
(
t2
S − 2t2

) sin θ(t)
D(t)

, uP
z (x,0, t) = −

I
πµ

√
t2 − t2

P

(
t2
S − 2t2

) cos θ(t)
D(t)

. (6.50)

uS
x(x,0, t) =

I
πµ

2t
√

t2 − t2
P

√
t2
S − t2 cos θ(t)

D(t)
, uS

z (x,0, t) = −
I
πµ

2t2
√

t2 − t2
P

cos θ(t)
D(t)

. (6.51)

• t > tS
Within this time interval, we have

ξ = −
i
x

√
t2 − t2

P, η = −
i
x

√
t2 − t2

S, R(p) =
1
x4

[(
t2
S − 2t2

)2
− 4t2

√
t2 − t2

P

√
t2 − t2

S

]
. (6.52)

Now we can denote
R(t) =

(
t2
S − 2t2

)2
− 4t2

√
t2 − t2

P

√
t2 − t2

S, with R(tR) = 0, (6.53)

where tR = x/cR is the Rayleigh arrival time. Its derivative can be computed as

R′(tR) = −
2

tR
(
t2
S − 2t2

R

)2

[
t6
S

(
t2
S − 4t2

R

)
+ 8t6

R

(
t2
S − t2

P

)]
. (6.54)

For the horizontal displacement, we need to expand the Rayleigh function around p = c−1
R and apply the following result

Im
{

p
R(p)

}
� Im

{
p

R′(c−1
R )

(
p − c−1

R

) } � −
πc3

Rt4
R

R′(tR)
δ (t − tR) . (6.55)

1Eringen, A. C. and Suhubi, S. S., 1975, Elastodynamics, Academic Press, Vol. II, eq. 7.15.3
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The surface displacement fields can then be expressed as

uP
x(x,0, t) =

I
πµ

2t2
R − t2

S

R′(tR)
πtR δ (t − tR) , uP

z (x,0, t) = −
I
πµ

√
t2 − t2

P

(
t2
S − 2t2

) 1
R(t)

. (6.56)

uS
x(x,0, t) = −

I
πµ

2πtR
R′(tR)

√
t2
R − t2

P

√
t2
R − t2

S δ (t − tR) , uS
z (x,0, t) = −

I
πµ

2t2
√

t2 − t2
P

1
R(t)

. (6.57)

We can further obtain

ux(x,0, t) =
I
πµ

πt2
S

(
2t2

R − t2
S

)
2tRR′(tR)

δ (t − tR) , uz(x,0, t) = −
I
πµ

t2
S

√
t2 − t2

P
1

R(t)
. (6.58)

Around t = tR, the vertical displacement can be approximated as

uz(x,0, t) ≈ −
I
πµ

t2
S

√
t2 − t2

P
1

t − tR

1
R′(tR)

∝
1

t − tR
. (6.59)

Therefore, the horizontal component of the Rayleigh wave has the same shape as the input pulse, while the vertical
component is the Hilbert transform of the input pulse.

6.6 Question 6

In general, the SV-displacement is represented by uSV = ∇ × ∇ × (0, 0, ψ). If the field is independent of the y-coordinate,
we have ψ = ψ(x, z, t) and then

∇ × ψ =

(
∂ψ

∂y
, −

∂ψ

∂x
, 0

)
=

(
0, −

∂ψ

∂x
, 0

)
. (6.60)

Now we can define a new scalar function ψ̃ = −∂ψ/∂x, and then the SV-displacement becomes uSV = ∇ ×
(
0, ψ̃, 0

)
.

6.7 Question 7

The new path gives the same result as Γ in Fig. 6.9 in the book. Note that F ′ and D are on the sheet {Im ξ1 > 0; Im ξ2 > 0},
while E is on the sheet {Im ξ1 > 0; Im ξ2 < 0}. For the closed path F ′ → D → E → F ′, the integrand is analytic within
the path, and thus, the net contribution is zero. Fig. 6.8 visualizes the analytic nature of ξ on different Riemann sheets
across the branch cut.

Fig. 6.8 Riemann sheets of ξ =
√
α−2 − p2. The z-axis indicates Re ξ and the color for Im ξ. The z-axis is flipped to see

Im ξ > 0 in the first quadrant where F ′ and D are located. The magenta line shows a portion of the integration path in
Figure 6.9 in the book.
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6.8 Question 8

Eq. (6.70) in the book gives

uSS(x, z, t) =
M0

2πµ
Im

{
4p2ξη −

(
β−2 − 2p2)2

4p2ξη +
(
β−2 − 2p2)2

dp
dt

}
p=p(t)

. (6.61)

When t is large, we have the following expressions

p(t) =
1
R0

©«t sin θ + i

√
t2 −

R2
0
β2 cos θª®¬ , dp

dt
=

iη√
t2 − R2

0/β
2
, t >

R0
β
, (6.62)

where θ denotes the incidence angle. As t →∞, we have√
t2 −

R2
0
β2 ≈ t

(
1 −

R2
0

2β2t2

)
= t (1 − ε) , with ε =

R2
0

2β2t2 . (6.63)

Therefore, from Eq. (6.62) we have

p ≈
ite−iθ

R0

(
1 − εeiθ cos θ

)
,

dp
dt
≈

iη
t
(1 + ε) , as t →∞. (6.64)

On the Riemann sheet {Re ξ > 0; Re η > 0}, we have

ξ =

√
1
α2 − p2 ≈ −ip

(
1 −

1
2α2p2

)
≈

te−iθ

R0
+

R0
2t

(
eiθ

α2 −
cos θ
β2

)
, (6.65)

η =

√
1
β2 − p2 ≈ −ip

(
1 −

1
2β2p2

)
≈

te−iθ

R0
+

iR0 sin θ
2tβ2 , as t →∞. (6.66)

Therefore, the numerator and denominator in Eq. (6.61) can be approximated as

N(p) = −8p4 +O(p2), R(p) = 2p2
(

1
α2 −

1
β2

)
+O(1). (6.67)

Note that the denominator is just the Rayleigh function R(p). Finally, we obtain

uSS(x, z, t) =
2M0
πµρ

λ + 2µ
λ + µ

Im

{
−it2e−i3θ

R3
0

+O(1)

}
∝ t2, (6.68)

which shows that uSS diverges to infinity as t →∞.
Similarly, we can write down the motion uSP in the transformed domain as (for a step function M0(t) = M0H(t))

uSP(kx, z, s) = −
M0

2ρβ2s
αp
βη

ŚP̀ exp [−s (ξz + ηh)]. (6.69)

Although ŚP̀ is odd in p, the factor p ŚP̀ is still even. The inverse kx-transform can be written as (recall that kx = isp)

uSP(x, z, s) = −
M0

2πµ
α

β
Im

{∫ i∞

0

p
η

ŚP̀(p) exp [−s(px + ξz + ηh)]
}
. (6.70)

Define a Cagniard path by t = px + ξz + ηh, and for large t we also have

p(t) =
ite−iθ

R0
+O(t−1),

dp
dt
=

ie−iθ

R0
+O(t−2). (6.71)
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The exact solution of uSP in the time domain is

uSP(x, z, t) =
M0

2πµ
Im

{
4p2 (

2p2 − β−2)
4p2ξη +

(
β−2 − 2p2)2

dp
dt

}
p=p(t)

. (6.72)

Now the numerator is approximated as N(p) = 8p4 + O(p2), which has the exact opposite dominant term compared with
the SS-wave. Therefore, the divergent behavior of uSS is canceled out by the similar behavior arising from uSP.
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7 Chapter 7: Surface Waves in a Vertically Heterogeneous Media

7.1 Question 1

a) For the body wave between A and B, the ray path length and the phase shift related to the travel time are

l =
2H

cos j1
, ψl =

ωl
β1
=

2Hω
β1

sec j1. (7.1)

The SH reflection coefficient at the free surface is 1, and no phase shift is induced. However, the supercritical reflection
at the layer interface results in a phase shift when β1 < β2. When supercritical reflection occurs, we have

p =
sin j1
β1
=

sin j2
β2
=

1
c
>

1
β2
,

cos j2
β2
= i

√
p2 −

1
β2

2
, (7.2)

in which c(ω) is the phase velocity of the corresponding surface wave. Now, we can evaluate the following terms as

ρ1β1 cos j1 = µ1

√
1
β2

1
−

1
c2 , ρ2β2 cos j2 = iµ2

√
1
c2 −

1
β2

2
. (7.3)

The reflection coefficient gives

S̀Ś =
ρ1β1 cos j1 − ρ2β2 cos j2
ρ1β1 cos j1 + ρ2β2 cos j2

, arg S̀Ś = −2 arctan


µ2

√
1
c2 −

1
β2

2

µ1
√

1
β2

1
− 1

c2

 . (7.4)

Note that |S̀Ś | = 1 for supercritical reflection. The total phase shift thus becomes

ψ =
2Hω
β1

sec j1 − 2 arctan


µ2

√
1
c2 −

1
β2

2

µ1

√
1
β2

1
−

1
c2


. (7.5)

b) The requirement for constructive interference is

ψ =
Xω
c
+ 2kπ, k ∈ Z, (7.6)

where X = 2H tan j1 is the horizontal distance. Eq. (7.6) is equivalent to

arctan


µ2

√
1
c2 −

1
β2

2

µ1
√

1
β2

1
− 1

c2

 =
Hω
β1

sec j1 −
Hω

c
tan j1 + kπ = ωH

√
1
β2

1
−

1
c2 + kπ, k ∈ Z, (7.7)

which gives the same dispersion relation as eq. (7.6) in the book

tan

[
ωH

√
1
β2

1
−

1
c2

]
=
µ2
µ1

√
1
c2 −

1
β2

2√
1
β2

1
−

1
c2

. (7.8)

c) If β1 < β2, each bottom reflection at the interface will lead to a decrease in amplitude since S̀Ś < 1, which does
not sustain the horizontal propagation. Furthermore, energy transmission into the bottom halfspace can not guarantee an
exponential amplitude decay as z →∞ for a surface wave.
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7.2 Question 2

SH system Since the vector w =
[
S̀, Ś

]T consisting of displacement amplitudes is constant, from eqs (7.49) and (7.50)
in the book, we can identify the propagator matrix

l(z) = F(z)w = F(z)F−1(z0) l(z0), P(z, z0) = F(z)F−1(z0). (7.9)

From the expressions of F(z) and F−1(z)

F(z) =

[
e−νz eνz

−νµe−νz νµeνz

]
, F−1(z) =

1
2νµ

[
νµeνz −eνz

νµe−νz e−νz

]
, (7.10)

we can obtain the same expression of the propagator matrix as in eq. (7.43) in the book

P(z, z0) = F(z)F−1(z0) =

[
cosh ν(z − z0) (νµ)−1 sinh ν(z − z0)

νµ sinh ν(z − z0) cosh ν(z − z0)

]
. (7.11)

P-SV system From the expressions of F(z) and F−1(z) given in eqs (7.55) and (7.56) in the book, we can similarly
calculate the propagator matrix for Rayleigh waves. The result should be the same as in eq. (7.45) in the book.

7.3 Question 3

Now denote the general displacement-stress vector as f(z). Based on Question 7.2, the propagator in a specific layer can
be identified as

f(zl) = P(zl, zl−1) f(zl−1), P(zl, zl−1) = Fl(zl)F−1
l (zl−1). (7.12)

Hence, the propagator from z0 to zk is

P(zk, z0) =

k∏
i=1

P(zi, zi−1) =

k∏
i=1

Fi(zi)F−1
i (zi−1)

=
[
Fk(zk)F−1

k (zk−1)
] [

Fk−1(zk−1)F−1
k−1(zk−2)

]
· · ·

[
F1(z1)F−1

1 (z0)
]
. (7.13)

7.4 Question 4

An intuitive picture of the propagator matrix method is that each of the columns of F is separately a basic solution of
∂f/∂z = Af, and that w is a vector of constants that give the weight of each basic solution present in the sum Fw. For the
first column of F, the corresponding wave in the sum Fw is

f =
P̀e−γz

ω

[
αk, αγ, −2αµkγ, −αµ (k2 + ν2)

]T
. (7.14)

When k > ω/α, the vertical wavenumber γ =
√

k2 − ω2/α2 is real, which results in an inhomogeneous P-wave with
displacement fields given as

u = Re
{

f1 ei(kx−ωt)
}
=

P̀e−γz

ω
αk cos (k x − ωt), (7.15)

w = Re
{
i f2 ei(kx−ωt)

}
= −

P̀e−γz

ω
αγ sin (k x − ωt). (7.16)

Therefore, the displacement amplitude at each time t is calculated as

|u| =
√

u2 + w2 = P̀e−γz
√
α2k2

ω2 − sin2 (k x − ωt). (7.17)
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7.5 Question 5

The transformation r → r , φ → φ + π, z → h, h → z switches the source and receiver locations. For the Love wave
Green’s function given by eq. (7.146) in the book, the term l1(z) l1(h) is symmetric to the source and receiver depths. The
geometrical spreading and phase terms depend on distance r , which is unchanged. The radiation pattern is analyzed as

AL(φ) =


sin2 φ − sin φ cos φ 0

− sin φ cos φ cos2 φ 0
0 0 0

 , AL(φ + π) =
[
AL(φ)

]T
. (7.18)

For the Rayleigh wave Green’s function given by eq. (7.147), the radial function term and the radiation pattern are coupled
together, which is shown as

AR(z, h, φ) =


r1(z) r1(h) cos2 φ r1(z) r1(h) cos φ sin φ −ir1(z) r2(h) cos φ

r1(z) r1(h) sin φ cos φ r1(z) r1(h) sin2 φ −ir1(z) r2(h) sin φ
ir2(z) r1(h) cos φ ir2(z) r1(h) sin φ r2(z) r2(h)

 . (7.19)

This matrix can be shown to satisfy
AR(h, z, φ + π) =

[
AR(z, h, φ)

]T
. (7.20)

Based on the above matrix properties, we verify that the reciprocity

Gnp(0,0, h; x, y, z;ω) = Gpn(x, y, z; 0,0, h;ω) (7.21)

is satisfied for surface wave components.

7.6 Question 6

Given a fixed wavenumber k, we consider a perturbation

l1 + δl1 = l1 (ρ + δρ, µ + δµ, k, ω + δω) . (7.22)

Applying eq. (7.69) in the book, which states ω2I1 = k2I2 + I3, to the new eigenfunction gives

(ω + δω)2
∫ ∞

0
(ρ + δρ) (l1 + δl1)2 dz = k2

∫ ∞

0
(µ + δµ) (l1 + δl1)2 dz +

∫ ∞

0
(µ + δµ)

[
d
dz
(l1 + δl1)

]2
dz. (7.23)

To first order, the perturbations satisfy

ω2
∫ ∞

0

(
δρ l2

1 + 2ρ l1δl1
)

dz + 2ω δω
∫ ∞

0
ρ l2

1 dz = k2
∫ ∞

0

(
δµ l2

1 + 2µ l1δl1
)

dz

+

∫ ∞

0
δµ

(
dl1
dz

)2
dz +

∫ ∞

0
2µ

dl1
dz

dδl1
dz

dz. (7.24)

From Hamilton’s principle, the stationary condition gives

ω2δI1 − k2δI2 − δI3 = 0, (7.25)

which is eq. (7.67) in the book. This is equivalent to

ω2
∫ ∞

0
ρ l1δl1 dz − k2

∫ ∞

0
µ l1δl1 dz −

∫ ∞

0
µ

dl1
dz

dδl1
dz

dz = 0. (7.26)
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Subtracting Eq. (7.26) from (7.24) gives

ω2
∫ ∞

0
δρ l2

1 dz + 2ω δω
∫ ∞

0
ρ l2

1 dz = k2
∫ ∞

0
δµ l2

1 dz +
∫ ∞

0
δµ

(
dl1
dz

)2
dz. (7.27)

Therefore, the phase velocity perturbation at fixed wavenumber is derived as(
δc
c

)
k

=
δω

ω
=

∫ ∞
0

[
k2l2

1 + (dl1/dz)2
]
δµ dz −

∫ ∞
0 ω2l2

1 δρ dz

2ω2
∫ ∞

0 ρ l2
1 dz

. (7.28)

7.7 Question 7

For the Rayleigh wave system in a halfspace, the infinity condition requires Ṕ = Ś = 0. Using the free surface condition
at z = 0, we have [

r3 (z = 0)
r4 (z = 0)

]
= −

[
2αµkγ βµ

(
k2 + ν2)

αµ
(
k2 + ν2) 2βµkν

] [
P̀

S̀

]
= 0. (7.29)

The existence of a nontrivial solution requires the determinant to be zero, which is

det

([
2αµkγ βµ

(
k2 + ν2)

αµ
(
k2 + ν2) 2βµkν

])
= −µ2αβω4 R(p) = 0, (7.30)

where the Rayleigh function R(p) here is expressed as

R(p) =
(
β−2 − 2p2

)2
− 4p2

√
p2 − α−2

√
p2 − β−2, k =

ω

c
= ωp, k >

ω

β
>
ω

α
. (7.31)

The requirement on k guarantees that γ and ν are positive real for surface waves. Solving for R(p) = 0 gives the
relationship between the amplitudes P̀ and S̀. For a Poisson solid with Poisson’s ratio 0.25, we have

p−1 = cR = 0.9194 β, S̀ = −
2αkγ

β
(
k2 + ν2) P̀ = −2.5425 P̀. (7.32)

We can also evaluate the vertical wavenumbers as

γ

k
=

√
1 −

c2
R

α2 = 0.8475,
ν

k
=

√
1 −

c2
R

β2 = 0.3933. (7.33)

The displacement eigenfunction is given as

r1 =
P̀e−γz

ω
αk +

S̀e−νz

ω
βν ∝ e−γz +

S̀βν

P̀αk
e−νz, (7.34)

r2 =
P̀e−γz

ω
αγ +

S̀e−νz

ω
βk ∝

γ

k
e−γz +

S̀β

P̀α
e−νz . (7.35)

Numerically, we obtain the following eigenfunctions

r1 = e−0.8475 kz − 0.5774 e−0.3933 kz, (7.36)

r2 = 0.8475 e−0.8475 kz − 1.4679 e−0.3933 kz . (7.37)

The energy integral I1 becomes

I1 =
1
2

∫ ∞

0
ρ
(
r2

1 + r2
2

)
dz = 0.6204

ρ

k
. (7.38)

Finally, from eq. (7.150) in the book, the explicit formula for Rayleigh waves due to a point source with arbitrary moment
tensor located at depth h can be obtained. Note that for the halfspace, there is only one mode with a non-dispersive phase
velocity c = cR. The eigenfunction and an example amplitude spectrum are shown in Fig. 7.1.
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Fig. 7.1 (Left) Eigenfunctions r1(z) and r2(z) for Rayleigh waves, corresponding to Eqs (7.36) and (7.37). (Right)
Amplitude spectra of Rayleigh waves (vertical displacement) at r = 2000 km for an underground explosion with unit
seismic moment of 1 dyne·cm. Each curve represents a source depth from [0,5,15,33,55,75,95] km. The halfspace has a
density of 3 g/cm3, an S-wave speed of 3 km/s, and a Poisson’s ratio of 0.25.

7.8 Question 8

Taylor expansion of |F(ω)| and φ(ω) around ω = ωi gives

|F(ω)| = |F(ωi)| +
d|F(ωi)|

dω
(ω − ωi) , φ(ω) = φ(ωi) + tgi (ω − ωi) , (7.39)

in which the group delay time is defined as tgi = dφ(ωi)/dω. Therefore, the waveform of a dispersed wave train can be
evaluated as

f (t) =
1
π

∫ ∞

0
|F(ω)| cos [ωt − φ(ω)] dω

∼
∑
i

1
π

∫ ωi+∆ωi/2

ωi−∆ωi/2

[
|F(ωi)| +

d|F(ωi)|

dω
(ω − ωi)

]
cos

[
ω(t − tgi) − φ(ωi) + ωitgi

]
dω

=
∑
i

|F(ωi)|

π

∫ ωi+∆ωi/2

ωi−∆ωi/2
cos (Aω + ϕ) dω +

∑
i

1
π

d|F(ωi)|

dω

∫ ωi+∆ωi/2

ωi−∆ωi/2
(ω − ωi) cos (Aω + ϕ) dω, (7.40)

in which we denote
A = t − tgi, ϕ = ωitgi − φ(ωi), Aωi + ϕ = ωi(t − tpi) (7.41)

with the phase delay time defined as tpi = φ(ωi)/ωi . Based on the following integration results∫ ωi+∆ωi/2

ωi−∆ωi/2
cos (Aω + ϕ) dω =

2
A

cos (Aωi + ϕ) sin
(

A∆ωi

2

)
,∫ ωi+∆ωi/2

ωi−∆ωi/2
(ω − ωi) cos (Aω + ϕ) dω = −

sin (Aωi + ϕ)

A

[
2
A

sin
(

A∆ωi

2

)
− ∆ωi cos

(
A∆ωi

2

)]
,

we can obtain the expected expression

f (t) ∼
∑
i

∆ωi

π

|F(ωi)| cos
[
ωi

(
t − tpi

) ] sin
[
∆ωi

2
(
t − tgi

) ]
∆ωi

2
(
t − tgi

)
−

d|F(ωi)|

dω
sin

[
ωi

(
t − tpi

) ]
t − tgi


sin

[
∆ωi

2
(
t − tgi

) ]
∆ωi

2
(
t − tgi

) − cos
[
∆ωi

2
(
t − tgi

) ]
 . (7.42)
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7.9 Question 9

Within the period band under analysis, the surface wave has a constant group velocity of U = 4.4 km/s. Furthermore,
the wave shape changes with the travel distance, but comes back to the same shape every L = 8800 km. Based on the
definitions of phase and group velocities, we can obtain the following relationship

U = c(k) + kc′(k) (7.43)

where c(k) is the phase velocity. Since the phase velocity increases with period, we have c′(k) < 0 and thus U < c(k).
Now, we can translate the property of the wave shape into the expression below

φ(x, tg(x)) − φ(x + L, tg(x + L)) = 2nπ, n ∈ Z, (7.44)

in which the phase function is φ(x, t) = k x − ωt. The interpretation is that after traveling distance L, the phase of each
frequency content around the group arrival time tg remains the same. Eq. (7.44) further gives

ωL
U
− kL = 2nπ,

L
U
−

L
c(T)

= nT, (7.45)

where T denotes period. Since the distance L is the minimal one to recover the wave shape, we have n = 1 and thus, the
phase velocity is obtained as

c(T) =
UL

L −UT
=

8800
2000 − T

km/s. (7.46)

An numerical example is shown in Fig. 7.2. The dispersive wave trains are calculated from Eq. (7.42) based on the
dispersion relationship given in Eq. (7.46). A band spectrum |F(ω)| is used, in which the flat spectrum covering the
period range 40 s − 200 s with tapering to corner periods 20 s and 300 s. The surface wave pulse is very impulsive due to
the constant group velocity U = 4.4 km/s.

Fig. 7.2 Wave trains calculated from the dispersion relationship in Eq. (7.46). Note that the wave shape comes back to
the same one from 8000 km distance to 16800 km.
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7.10 Question 10

Based on eqs (7.69) and (7.70) in the book

ω2I1 = k2I2 + I3, U =
I2

cI1
, (7.47)

we can evaluate
I3

ω2 = I1 −
I2

c2 =
I2
c

(
1
U
−

1
c

)
, c −U =

c2UI3

ω2I2
> 0. (7.48)

Therefore, the phase velocity of a Love wave mode exceeds the group velocity.

7.11 Question 11

The decay of amplitude with depth is governed by the vertical wavenumbers γ and ν. As an example, given a dispersion
relationship cn(ω), we have

γn(ω) = ω

√
c−2
n − α−2. (7.49)

Because cn(ω) < cn+1(ω), we have γn(ω) > γn+1(ω). This indicates that for a fixed frequency ω, the rate of decay of
amplitude with depth is greater for the fundamental mode than for the higher modes. Similarly, for a fixed wavenumber
k, we have cn(k) < cn+1(k) and the following expression

γn(k) = k
√

1 − (cn/α)2 (7.50)

indicates γn(k) > γn+1(k), which also shows that the fundamental mode decays faster with depth.

7.12 Question 12

a) For a very shallow source, compared to the seismic wavelength, the eigenfunctions can be approximated as follows

l2(h) = µ
dl1
dz

����
h

= 0, r3(h) = µ
(

dr1
dz
− kr2

)
h

= 0,
dr2
dz

����
h

=

(
2β2

α2 − 1
)

kr1(h). (7.51)

Based on Eqs (7.148) to (7.151) in the book and using the symmetry of the moment tensor, the surface wave displacement
fields are simplified to

uL(x,ω) =
∑
n

l1(z)
8cUI1

√
2

πknr
exp

[
i
(
knr +

π

4

)]
φ̂

×
[
iknl1(h)

(
Mxx sin φ cos φ − Mxy cos 2φ − Myy sin φ cos φ

) ]
, (7.52)

uR(x,ω) =
∑
n

1
8cUI1

√
2

πknr
exp

[
i
(
knr −

π

4

)]
[r1(z) r̂ + ir2(z) ẑ]

×

[
knr1(h)

(
Mxx cos2 φ + 2Mxy sin φ cos φ + Myy sin2 φ

)
+ knr1(h)

(
2β2

α2 − 1
)

Mzz

]
, (7.53)

Therefore, by defining the radiation pattern coefficients

U1 =
1
2

(
Mxx + Myy

)
−

(
1 −

2β2

α2

)
Mzz, U2 =

1
2

(
Mxx − Myy

)
, U3 = Mxy, (7.54)

and the Green’s vector

GL(x; h,ω) =
∑
n

iknl1(h)
8cUI1

√
2

πknr
exp

[
i
(
knr +

π

4

)]
l1(z) φ̂,

GR(x; h,ω) =
∑
n

knr1(h)
8cUI1

√
2

πknr
exp

[
i
(
knr −

π

4

)]
[r1(z) r̂ + ir2(z) ẑ] , (7.55)
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the surface wave displacement fields become

uL(x,ω) = GL (U2 sin 2φ −U3 cos 2φ) , uR(x,ω) = GR (U1 +U2 cos 2φ +U3 sin 2φ) . (7.56)

b) For a shallow vertical dip-slip fault with δ = 90◦ and λ = 90◦, from Box 4.4 in the book we have

Mxx = Mxy = Myy = Mzz = 0, Mxz = −Myz = sin φS . (7.57)

Therefore, long-period surface waves are not excited as U1 = U2 = U3 = 0. The implication is that Mxz and Myz

components cannot be estimated from surface waves alone if the source is very shallow.

c) Now consider an explosion with isotropic moment MI and an associated tectonic release with parameters M0, φS , δ
and λ. We have

Mxx = MI − SS sin 2φS − 2DS sin2 φS, Mxy = SS cos 2φS + DS sin 2φS,

Myy = MI + SS sin 2φS − 2DS cos2 φS, Mzz = MI + 2DS. (7.58)

The radiation pattern coefficients thus become

U1 =
2β2

α2 MI −

(
3 −

4β2

α2

)
DS, U2 = DS cos 2φS − SS sin 2φS, U3 = SS cos 2φS + DS sin 2φS, (7.59)

where SS is the strength of the strike-slip component and DS is the dip-slip component, defined as

SS = M0 sin δ cos λ, DS =
1
2

M0 sin 2δ sin λ. (7.60)

The surface wave excitation now becomes

uL = GL [DS sin 2 (φ − φS) − SS cos 2 (φ − φS)] ,

uR = GR
[
2β2

α2 MI −

(
3 −

4β2

α2

)
DS + DS cos 2 (φ − φS) + SS sin 2 (φ − φS)

]
. (7.61)

d) If the tectonic release is associated with thrusting, we have λ > 0 and thus DS > 0 being positive. Given a specific
estimate of U1, if DS increases, the result MI also increases.

e) If SS = 0, the Rayleigh wave radiation pattern becomes

2β2

α2 MI −

(
4 −

4β2

α2

)
DS ≤ UR =

2β2

α2 MI −

(
3 −

4β2

α2

)
DS + DS cos 2 (φ − φS) ≤

2β2

α2 MI −

(
2 −

4β2

α2

)
DS. (7.62)

For Rayleigh wave to have reverse polarity at some azimuths, we require

2β2

α2 MI −

(
4 −

4β2

α2

)
DS < 0, DS >

1
2

β2

α2 − β2 MI . (7.63)

For Rayleigh wave to have reverse polarity at all azimuths, we require

2β2

α2 MI −

(
2 −

4β2

α2

)
DS < 0, DS >

β2

α2 − 2β2 MI . (7.64)

f) This problem explores the non-uniqueness of the solution (MI ,DS,SS, φS) for a shallow source given the observed
long-period Rayleigh and Love waves. Consider the following five sets of solutions. We will prove that they are all
equivalent to the first one. For notation simplicity, denote Ψ = 2 (φ − φS) and θ = arctan (DS/SS).
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MI DS SS φS

M (1)I 0 SS(1) =
√

DS2 + SS2 φ
(1)
S
= φS −

1
2 arctan (DS/SS)

M (2)I DS(1) =
√

DS2 + SS2 0 φ
(2)
S
= φS +

1
2 arctan (SS/DS) = φ(1)

S
+ 45◦

M (1)I 0 −SS(1) φ
(1)
S
+ 90◦

M (3)I −DS(1) 0 φ
(2)
S
+ 90◦

Table 7.1 Equivalent sets of solutions that satisfy the same radiation pattern for a very shallow source.

Second solution For Love wave, we can show that it is the same

UL = −SS(1) cos (Ψ + θ) =
√

DS2 + SS2 (sinΨ sin θ − cosΨ cos θ) = DS sinΨ − SS cosΨ. (7.65)

The Rayleigh wave pattern solves for the isotropic moment M (1)I , which is

UR =
2β2

α2 M (1)I + SS(1) sin (Ψ + θ) =
2β2

α2 MI −

(
3 −

4β2

α2

)
DS + DS cosΨ + SS sinΨ,

M (1)I = MI −

(
3α2

2β2 − 2
)

DS. (7.66)

Third solution For Love wave, we can similarly show

UL = DS(1) sin
(
Ψ + θ −

π

2

)
= −

√
DS2 + SS2 (cosΨ cos θ − sinΨ sin θ) = DS sinΨ − SS cosΨ. (7.67)

The isotropic moment M (2)I is solved as

M (2)I = MI +

(
3α2

2β2 − 2
) (√

DS2 + SS2 − DS
)
.

Fourth solution When the strike angle is increased by 90◦, the argument of the cosine function becomes Ψ + θ − π,
which leads to an extra minus sign that is accounted for by the amplitude −SS(1). Therefore, this set of solution also
satisfies the same Love and Rayleigh radiation patterns.

Fifth solution Similar analysis applies, but because DS goes into the coefficient U1, the estimation of MI should be
modified. The final result becomes

M (3)I = MI −

(
3α2

2β2 − 2
) (√

DS2 + SS2 + DS
)
. (7.68)
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8 Chapter 8: Free Oscillations of the Earth

8.1 Question 1

From eq. (8.34) in the book, the torsional oscillations of a homogeneous elastic solid sphere satisfy

dW
dr
=

W
r
+

T
µ
, (8.1)

dT
dr
=

[
µ(l − 1)(l + 2)

r2 − ρω2
]

W −
3T
r
. (8.2)

This 1st-order ODE system is equivalent to the following second-order ODE

d
dr

(
r2 dW

dr

)
= r

dW
dr
+W +

1
µ

(
r2 dT

dr
+ 2rT

)
(8.3)

From Eq. (8.2) we can obtain

r2 dT
dr
+ 2rT = µ

[
(l − 1)(l + 2) −

ω2r2

β2

]
W − rT . (8.4)

Eventually, we have
1
r2

d
dr

(
r2 dW

dr

)
+

[
ω2

β2 −
l(l + 1)

r2

]
W = 0. (8.5)

Although Eq. (8.5) looks the same as the governing equation for free oscillations of a homogeneous liquid sphere, except
for a different wave speed, the free surface condition should be applied to traction T . Furthermore, the angular degree
starts from l = 1 for toroidal modes because C00 = 0. The solution of W(r) is the spherical Bessel function, and the
traction T(r) can be obtained as

W(r) ∝ jl

(
ωr
β

)
, T(r) =

µ

r
d (rW)

dr
∝
µ

r

[
(l − 1) jl

(
ωr
β

)
−
ωr
β

jl+1

(
ωr
β

)]
. (8.6)

For l = 1, we have

T1(r) ∝ j2

(
ωr
β

)
=

(
3
x3 −

1
x

)
sin x −

3
x2 cos x, with x =

ωr
β
. (8.7)

To satisfy T1(r0) = 0 at the free surface, the eigenfrequencies should be

xn =
nω1r0

β
, tan xn =

3xn
3 − x2

n

, n = 1,2,3, · · · . (8.8)

The first root with n = 0 is 0ω1 = 0 which corresponds to the rigid-body rotation, as 0W1(r) = j1(0) = 1 is a non-trivial
solution. With r0 = 6000 km and β = 5 km/s, the periods can be evaluated as

1T1 =
2π

5.76 (β/r0)
≈ 21.8 min, 2T1 =

2π
9.10 (β/r0)

≈ 13.8 min. (8.9)

For l = 2, we have

T2(r) ∝ j2(x) − x j3(x) =
(

5
x
−

12
x3

)
sin x −

(
1 −

12
x2

)
cos x. (8.10)

The first root with n = 0 is still x = 0, but for l ≥ 2, we have jl(0) = 0 corresponding to a trivial solution of W(r). Hence,
we start with the non-zero roots and obtain

0T2 =
2π

2.50 (β/r0)
≈ 50.3 min, 1T2 =

2π
7.14 (β/r0)

≈ 17.6 min. (8.11)

Similarly, for l = 3 we obtain

0T3 =
2π

3.86 (β/r0)
≈ 32.5 min, 1T3 =

2π
8.44 (β/r0)

≈ 14.9 min. (8.12)
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Fig. 8.1 Radial eigenfunction W(r) and T(r) for mode 0T2, as well as the radial derivative dW/dr and the quantity W/r .
All amplitudes are normalized by their maximum value.

In summary, the two longest periods are 0T2 ≈ 50.3 min and 0T3 ≈ 32.5 min. They are not so different from the periods
of these two modes calculated in the PREM model, i.e., 0T2(PREM) ≈ 44.0 min and 0T3(PREM) ≈ 28.5 min.

For a single force, the excitation coefficient of the i-th normal mode is

Ei = iu
∗ · f = nWl(r)T

m
l · f. (8.13)

A horizontal force contributes to Tm
l
· f , 0. Therefore, we only need to study the radial eigenfunction W(r). For a force

couple with moment about a vertical axis, the forces are horizontal and the separation is also in the horizontal direction.
The difference thus lies in an extra horizontal derivative of the eigenfunction, which results in W(r)/r as the excitation
coefficient and it also reaches the maximum at the surface. For 0T2 mode in a homogeneous elastic solid sphere, the
displacement eigenfunction 0W2(r) = j2(0ω2r/β) is plotted in Fig. 8.1. The horizontal force at the Earth’s surface is the
most favorable for exciting Love mode.

If the horizontal force couple is separated in the vertical direction, then we need the radial derivative dW/dr to evaluate
coefficient excitation, which is also plotted in Fig. 8.1.

8.2 Question 2

From eq. (7.91) in the book, we have(
δc
c

)
l

=

(
c
ce
− 1

)
−

i
2Q

, Q−1 = −2 Im
(
δc
c

)
l

. (8.14)

According the phase velocity c = ω/k, for a fixed angular order l, which is equivalent to a fixed wavenumber k, we have

δc =
δω

k
,

(
δc
c

)
l

=

(
δω

ω

)
l

. (8.15)

Eq. (8.65) in the book states that (
δω

ω

)
l

=

∫ r⊕

0

[
ρ

ω

(
∂ω

∂ρ

)
l,β

δρ

ρ
+
β

ω

(
∂ω

∂β

)
l,ρ

δβ

β

]
dr . (8.16)

Similar to Eq. (8.14) the attenuation factor Qβ is defined as

Im
{
δβ

β

}
= −

1
2Qβ

. (8.17)
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Eventually, the temporal Q of a toroidal mode is related to the Qβ(r) of body waves at radius r by

Q−1 = −2 Im
(
δω

ω

)
l

= −2
∫ r⊕

0

β

ω

(
∂ω

∂β

)
l,ρ

Im
{
δβ

β

}
dr =

∫ r⊕

0

β

ω

(
∂ω

∂β

)
l,ρ

Q−1
β (r) dr . (8.18)

8.3 Question 3

The argument is wrong in several aspects:

1. The Earth’s daily rotation is not a free oscillation because it is unrelated to the elastic wave equation under study.

2. The trivial toroidal mode 0T1, although denoted as the rigid-body rotation, is different from Earth’s daily rotation.
The toroidal mode 0T1 has a frequency 0ω1 = 0, which means that we can add an arbitrary static rigid-body rotation
to the final displacement field, and it still satisfies the elastic wave equation.

3. The Earth’s daily rotation causes the splitting of normal modes, especially for modes with very long periods. This
effect is similar to the Zeeman effect.

8.4 Question 4

Fig. 8.2 shows the spheroidal mode dispersion computed by MINOS with an isotropic PREM model. The identified
spheroidal modes in seismic data are indicated by larger symbols and listed below.

30S10 29S11 30S12 31S12 28S13 27S14 28S14 25S15

22S18 25S18 22S19 23S19 25S19 23S20 23S21

The reference phase-velocity lines in Fig. 8.2 correspond to a ray parameter regime

c
αc−

< p <
b
αb+

, (8.19)

where r = b and r = c denote CMB and ICB, respectively. In fact, this range of ray parameter p includes Regime VII and
Regime VIII. To analyze if a mode is associated with PKP but not with PKIKP, it is better to visualize the eigenfunctions,
as shown in Fig. 8.3. A PKP mode eigenfunction is expected to have negligible values below ICB. Therefore, we can
conclude that among the selected modes, those from the second row (i.e., with l ≥ 18) are associated with PKP but not

Fig. 8.2 Spheroidal mode dispersion diagram. Red lines are reference phase-velocity lines. The larger blue symbols
indicate modes identified in seismic data, with frequencies around 13 and 14 mHz. The overtone number n is annotated
on the plot.
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Fig. 8.3 Radial eigenfunctions of the selected spheroidal modes. Solid and dashed lines correspond to U(r) and V(r)
respectively. Red horizontal lines indicate the depth of CMB and ICB. The second row shows the modes associated with
PKP but not with PKIKP.

PKIKP, with one potential exception 23S19 which is more likely to be contributed from CMB reflection phases. On the
other hand, modes from the first row (i.e., with l ≤ 15) mostly correspond to PKIKP, with two exceptions 30S10 and 28S13
which are dominated by JSV.

8.5 Question 5

Denote the Earth’s radius as RE and the station epicentral distance as ∆. Assume the overtone number n > m and their
arrival time difference is tn − tm.

1. When they differ by an even number, i.e., n − m = 2N , the polar phase shift results in an (extra) phase advance Nπ

of Gn compared to Gm. Therefore, the phase velocity satisfies

ω(tn − tm) − k(xn − xm) = Nπ, c(T) =
N · 2πRE

tn − tm − NT/2
, (8.20)

where k denotes wavenumber and T is the period.

2. When they differ by an odd number, i.e., n − m = 2N − 1, the polar phase shift results in an (extra) phase advance
(N−1/2) π of Gn compared to Gm. However, in this case, we must also consider the initial phase difference φn−φm
originating from the source. Therefore, the phase velocity satisfies

ω(tn − tm) − k(xn − xm) + (φn − φm) =
(
N −

1
2

)
π. (8.21)

This results in

c(T) = (xn − xm)
[
tn − tm +

φn − φm
2π

T −
(

N
2
−

1
4

)
T
]−1

, (8.22)

while the difference in distance depends on if Gm is related to the minor arc RE∆ or the major arc RE (2π − ∆).

The arrival time difference tn − tm “can be uncertain by a multiple of the period T , and the computation of c(T) leads to a
discrete set of possible phase velocity curves, one of which must be correct” (Nafe & Brune, 1960).
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Based on eq. (7.149) in the book, the azimuthal dependence of Love wave radiation occurs in the following factor

ALove = aLove + ibLove, (8.23)

with the real and imaginary parts given as (with source depth denoted by h)

aLove = −
dl1
dz

����
h

(
Mxz sin φ − Myz cos φ

)
,

bLove = kl1(h)
(
Mxx sin φ cos φ − Myx cos2 φ + Mxy sin2 φ − Myy sin φ cos φ

)
. (8.24)

For Love waves, we can see that if the moment tensor does not contain Mxz and Myz component in general, then with
φ→ φ + π the initial phase does not change. Similarly, for Rayleigh waves, we can obtain

aRayleigh = kr1(h)
[
Mxx cos2 φ + (Mxy + Myx) sin φ cos φ + Myy sin2 φ

]
+

dr2
dz

����
h

Mzz,

bRayleigh =
dr1
dz

����
h

(
Mxz cos φ + Myz sin φ

)
− kr2(h)

(
Mzx cos φ + Mzy sin φ

)
. (8.25)

We can see that the conclusion remains the same, and the initial phase at opposite azimuths will be influenced by Mxz and
Myz components of the moment tensor.

8.6 Question 6

a) As shown in Problem 4.13, at the traction-free surface of the Earth, we have ezx = ezy = 0. Therefore, we have

ie
∗
zx(xS)Mzx + ie

∗
xz(xS)Mxz + ie

∗
zy(xS)Mzy + ie

∗
yz(xS)Myz ≈ 0 (8.26)

if the source position xS is taken very close to the surface.

b) A dip-slip earthquake (vertical fault, vertical slip) has a moment tensor consisting of Mxz and Myz . From part a), we
know that if the hypocenter is very shallow, a dip-slip earthquake is very inefficient in exciting normal modes.

c) From Table 8.1 and Table 8.2 in the book, the shear strain components ezx and ezy are related to the radial eigenfunc-
tions as

eS
zx ∝

√
l(l + 1)

U
r
+

dV
dr
−

V
r
, eT

zx ∝
dW
dr
−

W
r

(8.27)

for spheroidal and toroidal modes, respectively. Fig. 8.4 shows the shear strain component for several surface wave modes
with periods on the order of 100 s. Note that the traction-free surface condition is satisfied. For a fixed depth h, if the

Fig. 8.4 Shear strain component evaluated from radial eigenfunctions. The amplitudes are normalized.
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period (equivalently the wavelength) is long enough with λ � h, the radial eigenfunctions are approximately constant
when z < h. This is true not only for the shear strain component shown in Fig. 8.4, but also for other strain components.

d) The excitation coefficient for a particular mode i is

ie
∗
pq(xS)Mpq . (8.28)

For a dip-slip earthquake, as we have shown that ezx and ezy are essentially zero when h � λ, the sum of amplitudes in
the P-wave group and the S-wave group should also be close to zero, given that the period is sufficiently long.

e) In general, there are six independent moment tensor components: Mrr ,Mrθ,Mrφ,Mθθ,Mθφ,Mφφ . For a large shallow
earthquake, the dip-slip components Mrθ,Mrφ are very inefficient in generating normal modes, and thus, the seismic data
are not sensitive to them (in other words, null space of the inverse problem).

The traction-free surface condition also states err = 0, which indicates that an earthquake is inefficient in generating
normal modes as well if the moment tensor satisfies

Mrr =
κ + 4

3 µ

κ − 2
3 µ

Mθθ =
κ + 4

3 µ

κ − 2
3 µ

Mφφ . (8.29)

This is from eq. (10.68) in Dahlen & Tromp (1998). This non-uniqueness in the isotropic components can be eliminated
by considering a pure deviatoric moment tensor with tr(M) = 0.

f) The previous answers are based on the Earth’s free oscillations in an SNREI model, which is Spherically symmetric,
Non-Rotating, Elastic and Isotropic. If the Earth is laterally heterogeneous, then the radial and surface eigenfunctions are
coupled together, making the analysis much more complicated.
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12 Chapter 12: Principles of Seismometry

12.1 Question 1

The response ζ(t) of the seismometer to an arbitrary ground acceleration Üu(t) can be obtained by a convolution with the
acceleration impulse response f (t), as given by eq. (12.13) in the book:

ζ(t) =
∫ +∞

0
Üu(t − τ) f (τ) dτ. (12.1)

For an inertial seismometer, the response f (t) satisfies

f (t) = 0, for t < 0. (12.2)

Therefore, the integral can be evaluated from −∞ to +∞, and in the frequency domain we have

ζ̂(ω) = (−iω)2û(ω) · f̂ (ω) = û(ω) · (−iω)2 f̂ (ω). (12.3)

The derivative operator can be applied to either u(t) or f (t). From Eq. (12.2), the initial rest condition also holds for Üf (t).
Hence, we obtain

ζ(t) =
∫ +∞

−∞

u(t − τ) Üf (τ) dτ =
∫ +∞

0
u(t − τ) Üf (τ) dτ. (12.4)

12.2 Question 2

At equilibrium, the mass-spring system satisfies
mg = k(l − l0), (12.5)

where k is the spring stiffness. The period of small oscillation is

T = 2π
√

m
k
= 2π

√
l − l0
g

. (12.6)

12.3 Question 3

a) At the surface z = 0, the boundary conditions τzx = 0 and τzz = −P exp [iω(x/c − t)] give

Fw = f = [ũx, ũz, 0, −P]T , with p =
1
c
. (12.7)

The ray parameter p is determined by matching the horizontal slowness of the moving pressure. The procedure to solve
this problem is first to consider w = [w1, w2, 0, 0]T including only downgoing P and SV waves, and then match (Fw)3 = 0
and (Fw)4 = −P with z = 0 substituted into the matrix F. The above two equations finally give the solution of w1 and w2.
However, since w is provided for this question, we can directly check if it satisfies the boundary conditions. Choosing
zref = 0, from eq. (5.69) in the book, at the surface we have

F(z = 0) = E =



αp βη αp βη

αξ −βp −αξ βp

2iωραβ2pξ iωρβ
(
1 − 2β2p2) −2iωραβ2pξ −iωρβ

(
1 − 2β2p2)

iωρα
(
1 − 2β2p2) −2iωρβ3pη iωρα

(
1 − 2β2p2) −2iωρβ3pη


. (12.8)
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The solution vector w is given as

w =
iP

ωρβ2R(p)

[(
1
β2 − 2p2

)
1
α

−2pξ
β

0 0

]T

. (12.9)

The Rayleigh function R(p) and the parameters ξ and η are given as

R(p) =
(

1
β2 − 2p2

)2
− 4p2

√
p2 −

1
α2

√
p2 −

1
β2 , ξ =

√
1
α2 − p2, η =

√
1
β2 − p2. (12.10)

We can evaluate the product Fw as

(Fw)3 = −
P

βR(p)
·

2pξ
β

[(
1 − 2β2p2

)
−

(
1 − 2β2p2

)]
= 0, (12.11)

(Fw)4 = −
P

R(p)

[(
1
β2 − 2p2

)2
+ 4p2ξη

]
= −P. (12.12)

The boundary conditions are satisfied as expected.

b) The displacement at arbitrary depth z > 0 can be obtained as

ũx(z) = (Fw)1 =
iP

ωρβ2
p

R(p)

[(
1
β2 − 2p2

)
eiωξz − 2ξηeiωηz

]
, ux = ũxeiω(px−t), (12.13)

ũz(z) = (Fw)2 =
iP

ωρβ2
ξ

R(p)

[(
1
β2 − 2p2

)
eiωξz + 2p2eiωηz

]
, uz = ũzeiω(px−t). (12.14)

With p = c−1 and the assumption c � β < α, we can expand all terms into powers of c/α and c/β, and only retain the
low-order terms. The following approximations can be made

ξ ≈
i
c

(
1 −

1
2

c2

α2

)
, η ≈

i
c

(
1 −

1
2

c2

β2

)
, R(p) ≈

2
c2

(
1
α2 −

1
β2

)
. (12.15)

With another assumption ωzc/2β2 � 1 (ω > 0), the exponential term can be approximated as

eiωξz ≈ e−ωz/c
(
1 +

ωzc
2α2

)
, eiωηz ≈ e−ωz/c

(
1 +

ωzc
2β2

)
. (12.16)

After some algebra, we can obtain

ux(x, z, t) =
icP

2ωρβ2

(
β2

α2 − β2 −
ωz
c

)
e−ωz/ceiω(x/c−t), (12.17)

uz(x, z, t) =
cP

2ωρβ2

(
α2

α2 − β2 +
ωz
c

)
e−ωz/ceiω(x/c−t). (12.18)

Eqs (12.17) and (12.18) are the same as eqs (21) and (22) in Sorrells (1971), except for a difference in the sign convention
for the vertical displacement. The expressions given in the book are not correct. Both ux and uz exponentially decay with
depth and propagate in x-direction with the pressure wave speed c.

c) Consider P ∼ 100 Pa, T ∼ 300 s and c ∼ 5 m/s for the pressure wave. Using the PREM upper crust properties, we
have ρ = 2600 kg/m3, α = 5.8 km/s and β = 3.2 km/s. To ensure that the seismic noise due to atmospheric disturbances
is at most a few nanometers, long-period seismometers should be buried 2 km deep. The depth profiles of the displacement
amplitudes are shown in Fig. 12.1.
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Fig. 12.1 Depth profiles of horizontal and vertical displacement amplitudes under surface pressure wave loading.

12.4 Question 4

The coil response is proportional to ω, which can be expressed as

Xc(ω) = Aω, 20 log10

(
Xc(2ω)
Xc(ω)

)
= 20 log10 2 dB = 6 dB. (12.19)

The coil response rises at 6 dB per octave. The low frequency total response (ω < ωg) is proportional to ω3, which can
be expressed as

X(ω) = Bω3, 20 log10

(
X(2ω)
X(ω)

)
= 20 log10 8 dB = 18 dB. (12.20)

The total response rises at 18 dB per octave at low frequency ω < ωg.

12.5 Question 5

For a monochromatic surface wave at frequency ω, the ratio between strain and displacement amplitudes is the wavenum-
ber k(ω). The phase velocity c(ω) can thus be measured from the narrow-band filtered strain and displacement recordings.

12.6 Question 6

For a velocity feedback seismometer, the coil output goes to an amplifier with output voltage V(s) = K Asξ(s). The
feedback system then delivers an acceleration βV , which is applied as a negative acceleration to the inertial sensor. The

Fig. 12.2 Schematic for a velocity feedback seismometer. The seismometer damping is made to appear very high.
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governing equations for this system are

Üxtotal = Üu − Üxf, V =
K As

s2 + 2εs + ω2
s
Üxtotal, Üxf = βV . (12.21)

The overall response can be solved as
V
Üu
=

K As
s2 + (2ε + K Aβ) s + ω2

s
. (12.22)

The original damping 2ε has been increased to 2ε + K Aβ.

12.7 Question 7

The building is subjected to ground acceleration Üu(t) = A sin (Ωt)H(t). The resulting building displacement ξ(t) satisfies

Üξ + 2ε Ûξ + ω2ξ = −Üu. (12.23)

When ε = 0 (no damping), the solution is given as

ξ(t) = −Üu(t) ∗
[
sin (ωt)
ω

H(t)
]
= −

A
ω

∫ t

0
sin (Ωt) sin [ω(t − τ)] dτ

=
A

2ω

∫ t

0
[cos (Ωτ − ωτ + ωt) − cos (Ωτ + ωτ − ωt)] dτ

=
A

2ω

[
sin (Ωt) − sin (ωt)

Ω − ω
−

sin (Ωt) + sin (ωt)
Ω + ω

]
=

A
2ω

[
sin (∆ωt)
∆ω

cos [(ω + ∆ω) t] −
sin [(ω + ∆ω) t]

ω + ∆ω
cos (∆ωt)

]
. (12.24)

The difference between the forcing frequency and resonant frequency is denoted as ∆ω = (Ω − ω) /2. According to Eq.
(12.24), in the limit as Ω→ ω, we have

ξ(t) =
A

2ω

[
t cos (ωt) −

sin (ωt)
ω

]
=

A
2ω2 [ωt cos (ωt) − sin (ωt)] . (12.25)

In summary, displacements can grow with time to large and thus hazardous values if a building is subjected to ground
motion close to its resonant frequency. The growth continues indefinitely because the input shaking has no end.

Now consider that the ground motion has a finite duration at a fixed frequency, i.e., Üu(t) = A sin (Ωt)H(t)H(T − t).
When t < T , the convolution result is the same as Eq. (12.24). On the other hand, when t > T we have

ξ(t) =
A

2ω

[
sin (ΩT − ωT + ωt) − sin (ωt)

Ω − ω
−

sin (ΩT + ωT − ωt) + sin (ωt)
Ω + ω

]
, for t > T . (12.26)

The engineering displacement response spectrum SD(ω,ε) is defined to be the maximum value of |ξ(t)| given a specific
frequency ω and damping parameter ε. Consider |(Ω − ω)T | � 1 and ωT � 1. For small t < T , we have |∆ωt | � 1 and
thus can directly apply Eq. (12.25), which gives

|ξ(t)| ≈
A

2ω2 |ωt cos (ωt) − sin (ωt)| ≤
A
√
ω2t2 + 1
2ω2 .

AT
2ω

. (12.27)

For large t > T , Eq. (12.26) leads to

|ξ(t)| ≈
A

2ω2 |0 − sin [(ω + ∆ω)T] cos [(ω + ∆ω)T − ωt]| ≈
A

2ω
|sin (ωT)|

ω
�

AT
2ω

. (12.28)

Therefore, we conclude that SD(ω,ε = 0) ≈ AT/(2ω). The duration of shaking is important because, close to the resonant
frequency, the undamped response spectrum has an amplitude proportional to T .
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