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1 Chapter 1: Introduction

The Introduction part in Quantitative Seismology provides various useful reference books and websites. Hope you’ll

also find them beneficial.

2 Chapter 2: Basic Theorems in Dynamic Elasticity

2.1 Question 1

The equation of motion is
pii; = fi + Tij,j

Considering the constitutive law and the expression of strain tensor

Tij = Cijki€kl» gij =5 (i j +uji),

and taking into account the symmetry of the elastic tensor, we could get
pii; = fi + (Cijkluk,l)j .
For an isotropic and homogeneous medium, the elastic tensor could be expressed as
Cijki = A6;j0k1 + u(ik0j1 + 0710k)-
So the corresponding displacement equation becomes

piii = fi + Auj ji + plui jj + ujji)

= (A + wuj j; + pu; jj

Using the following identities

wiji = [VV-wl,  wi = (V) V x(Vxu)=V(V-u) -V,

we could find the vector displacement equation
pii = f+ (A + p)V(V-u)+ uVu
=f+(A1+2wV(V-u)—uV x(Vxu)
2.2 Question 2

From definition, we could derive the well-known identity

0ii  0ji Ok

EijkEitm = |6i1  6j1 k1| = 6ii(010km — OjmOki) — 0;i(0i10km — OimOk1) + Oki(0i10jm — Sim0j1)

6im 6j 6km
3 (810km — 6jmOk1) — (8;16km — OjmOki) + (OkiOjm — OkmJj1)

= 0j10km — OjmOkls

and similarly

EijkEjlm = —E€jikEjlm = OimOkl — OilOkm.

(2.1)

(2.2)

2.3)

(2.4)

2.5)

(2.6)

2.7)



2.3 Question 3

All we need to do is express ek (dilatation) with 7;; (isotropic pressure). Using the constitutive law for an isotropic elastic
solid and setting i = j, we could get
Tji = dexx i + 2pe;; = (34 + 2p)e,

which is equal to

1
= . 2.8
ek = 3 (2.8)
Substituting Eq.(2.8) into the stress-strain relation, we could obtain the strain-stress relation
2/,[6,'1' = Tkkéij + Tij- (29)

T34+ 2u

2.4 Question 4

Reference: A piece of lecture note from Prof. Paul A. Lagace

https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-20-structural-mechanics-fall-2002/lecture-notes/unit9.pdf]

If the material is unrestrained and its temperature is raised, we would expect that the material will undergo thermal
expansion. However, in this question the strain is fixed, which implies that there must be additional thermal stress in the

body. Given that the thermal strain is expressed by the coefficient tensor of thermal expansion
&l = auAT, (2.10)
the corresponding thermal stress should be
ol = cijr - (—&];) = —Cijraan AT 2.11)

The negative sign represents that the mechanical strain should counteract the thermal strain. Taking into account this

thermal effect, the modified stress-strain relation should be in the following form
oij = Cijki(exr — @ AT). (2.12)

2.5 Question 5

Given u(x, t), we could obtain the strain and stress

e(x,1) = % [Vu(x,?) + (Vu(x,))"], (2.13)

o(x,t) = c(x,1): e(x,1). (2.14)
The traction could be derived from the stress
T(x,t) = a(x,1) - o(X,1), (2.15)
and the body force could be expressed based on the equation of motion
f(x,t) = p(x,0)ii(x,1) = V - o(X,1) (2.16)

2.6 Question 6

Relations (2.21)-(2.25) in the book do not involve the dependency of stress on strain or strain rate, so they should not
change.


https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-20-structural-mechanics-fall-2002/lecture-notes/unit9.pdf

2.7 Question 7

The traction is obtained by Eq.(2.15). In an isotropic medium,

gij = /lskkél-j + Z/Jé‘[j 2.17)
o= AV -wl+ pu[Va+ (Vu)']. (2.18)

So the traction could be expressed as

T(wf) =00

= AV -wi + yi - (Vu) + (Vu) - ii].
Using the following expression

(h X (Vxu)]; = &ijunj(EximOium)
= (0:10jm — Oim01)n;Opitm,
= nj[)iuj - njé‘jui

=[(Vu) - —i - (Vu)];
and its corresponding vector formula
AxX(Vxu)=(Va)-fi—fi-(Va)=(Vu)-f—(fi- V)u, (2.19)
we could derive the traction

T(u,i) = AV -wi + y[i - (Vu) + (Vu) - ]
= AV -wh + y[2(0 - V)u + i x (Vxu)]

=AV-uwi+pu 23—2+ﬁx(qu) . (2.20)
2.8 Question 8
a) Fig. [2.]]is the same with Fig. 2.4 in the book. According to its force equilibrium state, we could find
T(x +ox,0) + T(x,—-n) - 0 as o6x— 0.
Using eq. (2.7) in the book, we could show that traction is a continuous function of position
T(x + ox,i)) — T(x,i) >0 as 6x — 0. (2.21)
Here, x is taken parallel to the direction fi.

b) For the area which the book lies on, the traction is non-zero. However, for the part outside of the above area, the
traction is zero. Assume that the z-direction is perpendicular to the flat surface of the table, the traction is not a continuous

function in the x- or y-direction.

¢) In problem a), 6x is taken parallel to the direction fi. The continuity of traction in this sense (i.e. in the z-direction)
still holds true for the table if we analyze the traction inside it, but this does not contradict with the fact that the traction is

not continuous in the x- or y-directions.



Fig. 2.1 A small disc within a stressed medium (Figure 2.4 in the book)

d) First choose dx to be parallel to the z-direction, the continuity of the traction gives
Txz (X)

T(x) = |7y,(x)| is continuous of z.

Tz2(X)

We could also choose 0x to be parallel to the x- or y-directions and obtain that
7;j(X) is continuous in the i- and j-directions.

Using the above conclusion, we could know that 7., need not be continuous in the x- or y-directions, and that 7, 7y,

and 7, need not be continuous in the z-direction.

2.9 Question 9

First, we express the stress tensor with isotropic and deviatoric strain, as well as the Lamé parameters:
T;j = Adexid;j + 2ue;;
1 ,
= /lekkéij + 2,u gekkéi}- + el.j
2 ,
=4+ 5/.1 Ekk(sij + 2/,l€l~j.

Therefore the strain energy density is given by

1
U = —Tijeij = E

2

2 (1] '
(/l + §“) eik0ij + 2,uel-j] (gekkdij + eij)

(2.22)

2
(/l + 5”) eirexk +2pel;el; |,

1
2
where we use properties 6;;0;; = 3 and tr(e’) = e;, = 0.

Let’s see why 6 = ¢;; is called dilatation. Consider a cuboid and the lengths of its three sides are a,b and c separately.
The percentage change of its volume after an infinitesimal deformation is

AV V+AV | = a(l + exy) - b(1 + eyy) - c(1 + e;z) |
Vv Vv - abc
= (1 +ex)(1+eyy)(1 +eyz) =1 = e =tr(e). (2.23)

The isotropic and deviatoric strains and stresses, as well as the corresponding moduli, are summarized in Table 2]



which is modified from Table 6.1 in Dahlen & Tromp (1998). Table [2.1|shows why «, the bulk modulus or incompress-

ibility, and p, the shear modulus, are widely used in seismology, since they have clearer physical meanings than Lamé

parameters. In addition, from Eq. (2.22) we know that these two moduli should be positive so that the strain energy

density is positive.

Variable Isotropic Deviatoric

Strain & 0 = tr(e) e =e— jtr(e)l

Stress o -p = %tr(*r) T =7- %tr(T)I
Modulus M K 2u

Table 2.1 Constitutive laws for isotropic and deviatoric components. Modified from Dahlen & Tromp (1998).

Reference: Chapter 6 in Dahlen, F. A., and J. Tromp, Theoretical Global Seismology, Princeton, New Jersey: Princeton

University Press, 1998.

2.10 Question 10

We consider the representation theorem in the following form

u(x,t) = ///V /Or G(x,t —1:X,7) - £(x', 1) drd’X’.

In this problem, the force could be expressed as

f(x',7) = vo(x’ - €)6(7).

Therefore, we could obtain the displacement vector

and its component in the n-direction

u(x, 1) = G(x,1;€,0) - v,

Using the reciprocity of the Green tensor, we could get

I/ln(X, t) = niGip(X9t; 5’ O)Vp

=u, (& 1) = vpGpi(€,1;X,0)m;.

un(x,1) =n-wx1) = n;Gip(x,1;£,0)v,.

(2.24)

(2.25)

(2.26)

(2.27)



3 Chapter 3: Representation of Seismic Sources

3.1 Question 1

a) Generalize eq. (3.26) in the book to a vector equation. Using the following relation
M= My (ﬁ& + &ﬁ) , Mij = M()(I’lidj + i’ljdl') (31)

and the assumption that S is planar and constant (i.e. fi does not change) and that the displacement discontinuity for each
event is a shear (i.e. i - d= 0), we could obtain
M - i = Mod. (3.2)

The right part of Eq. (3.2) allows us to obtain the slips in each direction. Therefore, the generalized vector version of eq.
(3.26) in the book should be
(2 0) s

AU =
uS

(3.3)

b) Generalize eq. (3.34) in the book to a tensor equation. For an isotropic medium with volume V, the relationship
between moment tensors and strains is
M,'j = cijklAele. (3.4)

Recall the result in Section[2.3] we could find the total strain, i.e. the generalized tensor version of eq. (3.34) in the book

N

1 1
AE;; = — - ———— M5+ M. 3.5
T 2uv ;( 344 2p KW G-

3.2 Question 2
For eq. (3.2) in the book, we can rewrite it using the reciprocity of Green’s function:
® 0
up(x,1) = dr [[ [ui(€,T)]cijpqVis—GCnp(x,t —7;£,0) dZ
—00 z 8&1
® 0
= / dT//[W(aO)]CiquVj_Gpn(gJ - 7;%,0)dX. (3.6)
—00 z afq

Therefore, the following part in the integrand
0
CijpqVj EGpn(g’t - TX 0)
Sq

can be interpreted as a traction on the internal surface X. According to the continuity of traction, we can still derive eq.

(3.2) from eq. (3.1) in the book, but now 0G,, /3¢, may not be continuous across the surface.

3.3 Question 3

If &(r) is averaged over the area A(r) that has ruptured at time #, then we need to use A(t) to calculate My(r) = pia(t)A(r).
Similarly, if i(¢) is averaged over the area A(co), the ultimate ruptured area, then we need to use A(o0) to calculate

My(t) = pi(t)A(eo). Hence, consistency of the definition of ‘average’ throughout computation matters.

3.4 Question 4

This problem is equivalent to finding the eigenvalues of matrix M. Since we have

AL - M| = A(A% - MD), (3.7)



the eigenvalues are My, 0 and —M,. Consequently, under the principal coordinates a double-couple can be equivalently
described by M = diag(M,, 0, —Mp).

3.5 Question 5

A symmetric second-order moment tensor M can be diagonalized. Therefore, in the principal coordinates, we have

A0 0 M) (A7 0 0
M=10 & 0|=—="1+0 4 0
0 0 1 Y
20 o [o o o

"™ yifo —a of+o —a ol (3.8)
0 0 of [0 0 A

which implies that M can be thought of as an isotropic point source plus two double couples. This decomposition of a
point source is not unique.

We can also write M in the form

V) a0 0
I
M=—= T+/0 4 0
0 0 X
M) , [t 0 0 -1 0 0
I ’ ’
= =3 -1+(41+33) 0 -1 o|+4|0 -1 o, (3.9)
00 0 0 0 1

which implies the decomposition of M into the best double couple and the associated CLVD component.

3.6 Question 6

Integration by parts in three dimensions can be derived based on the product rule for divergence, which is

V-@V)=uV-V+Vu-V. (3.10)

//uV-ﬁdS:‘///uV-VdV+///Vu~VdV. (3.11)
N \% \%

I will use Eq. (3.TT)) to derive the equivalent body force.

This leads to

For the following body force
f(x,7) = -M(z) - Vo(x — &), (3.12)

the representation theorem gives

e [ a // |, S T)Gnp (%, =73, 0)dV ()
- ds(n -
T [oo " //v Mpq(7)Gnp(X.1 = 737, 0)% av(n)

+00 o
- [T //VMpq<T>[%an<x,t—r,n,0> 5(n - &) dv(n)
0

= Mpq (1) * 5= Gup(.1:£.0). (3.13)

&q

From the second row to the third row, I use Eq. (3.11)) with the scalar function u now being the ¢ function. Therefore, Eq.

(3.12) is the equivalent body force to a point source at £ with moment tensor M.



3.7 Question 7

a) In the spherical coordinate, the curl of a vector A is calculated as

| e, reg rsinfe,
VXA=——18, 0 0, . 3.14
rZsing | 0 ¢ 19
A, 1rAg rsinfA,
Therefore, when the displacement is only in the radial direction, we have V X u = 0. For the final static displacement,
the inertial term and the external force term are also zero. Based on the vector wave equation in Eq. (2.5), the final static
displacement satisfies V(V - u) = 0.

b) Since we have

d|1d
(V. =_.__(24:Q 3.15
V-w dr[rzdrru ] (3-15)
its general solution is
B
urzAr+—2. (3.16)
r

For the external solution when r > a, the constraint 4, — 0 for r — oo guarantees that the radial displacement is

proportional to 1/r2.
¢) The stress-strain relation for 7, based on eq. (2.50) in the book, can be written as
Trr = Aerr + egg + €pp) + 2per,. (3.17)

From eq. (2.45) in the book, with 2! = 1, 4> = r and h® = r sin 6 for the spherical coordinate, we have

Ur

Crr = —,
r

. :16u9+u_r 318

9= 00 r’ (3.18)
1 6u¢+ur+cot0

oy = —_—+ — ug.

9 rsing dgo r 0

Therefore, when we only have radial displacement u,-, Eq. (3.17) leads to

ou, 21

Trr = (A4 24) P + Tur. (3.19)

d) The external solution has the form u, = B/r?>. We also know that the walls of the cavity at » = a experience

7, = —O0p. With this condition, we have

-2B B B
—6p=(/l+2,u)—3+2/l—3=—4u—3, (320)
a a a
which gives B = 6p - a’ /4. Therefore, the final outward static displacement at r = a is
Sp -
da = uy(a) = L2, (3.21)
4u
which is equivalent to
19
sp = 4u2. (3.22)
a



3.8 Question 8

a) Following the procedure in Question 7, the internal solution has the form u, = Ar. With Eq. we have

op = -7, = =31 + 2u)A. (3.23)
b) The effects of confinement reduces the static displacement at » = a from Aa to da, which can be expressed as

ur(a) = Aa = —(Aa - da), (3.24)

from which we can determine the constant A. This leads to

31+2
op = £
a

(Aa - 6a). (3.25)
Using Eq. (3.22) from Question 7, we obtain

4uda = 31+ 2u)(Aa — ba)
_A+2u

Aa oa. (3.26)

A+ % i
¢) Because AV = 4na’Aa and 6V = 4na’da, the proportionality between AV and §V is the same as in Eq. (3.26).

Therefore,

Mo(c0) = (/l + % u) AV = (1 +2u) 6V. (3.27)

d) The external solution gives that u, = B/r*> where B is a constant determined by 6p and the source region radius ao.
Therefore, when we evaluate the outward actual static displacement for a new surface at r, the corresponding actual final
(static) volume change is
6V = 4nr*u, = 4nB = na; o (3.28)
7
Hence, 6V is unchanged in value. In other words, it is independent of where the outward actual static displacement is

measured.

10



4 Chapter 4: Elastic Waves from a Point Dislocation Source

4.1 Question 1

When the source time function is S(¢) = 6(¢), we have

3YnYp — On
Gp(%,130,0) = == L—=L1 [H(t - 1p) = H(t — 15)]
4rpr
YnYp ynyp_6np
O6(t —tp) — —————05(t — ts). 4.1
o0l = p) = L (0 1) @.1)

Therefore, the area under the near-field pulse can be calculated as

1 [ 1 (1 1
SNFoc—3/ tdt:—(—z——2), (4.2)
o Jip 2r \pB a

which is proportional to 1/r. It is obvious that for the far-field terms, the area under each pulse is proportional to 1/r.

In the frequency domain, the P-wave term is

P iwr/a a a \2
an(X, w;0,0) = W [%ﬁ’p + (37n7p - 6np) (_J) + (37n7p - 6np) (_H) ] s 4.3)
and similarly, the S-wave term is
s . elwrlp B B\
an(X7 ;0,0) = _W (7n7p - 6np) + (37n7p - 6np) _E + (3')’n')’p - 6np) _m . 4.4)
As w — 0, we have ,
Forla 1 4 (ﬂ) 1 (ﬂ) . (4.5)
a 2\ «a
Therefore, Eqs. (4.3)) and (4.4) can be written as
1 Onp = YnY, 3YnYp — 6n
P . _ 4 P P p 0
an(x,w,0,0) = Tnpr ( 52 - 3 + O0(w"), (4.6)
1 Onp + ¥Ynv, 3Yn¥Yp — On
S . _ p P P p 0
Gp(x,w;0,0) = drpr ( oYE + o2 + O(w"), 4.7)

which leads to

. . T P S | _
Iim Gop(%,:0,0) = lim (GF, + G5, (4.8)

1 6np - YnVp + 5np +YnYp
~ 8npr '

a? ’32
Hence, the distance dependence as w — 0 is indeed like 1/r. Besides, Eq. is also the static solution as t — oo for
the Heaviside source time function S(¢t) = H(z).

Fig. {.T|shows the three component seismograms generated by a vertical point-force with a sharp Gaussian source time
function. The near-field and far-field terms are clearly separated. However, when the source time function has a longer
duration, as shown in Fig. [1.2] all terms are equally important in the near field. This can be related to a seismometer that

is sensitive only to periods comparable to (or much longer than) the S-P time.

4.2 Question 2

For a general point-force S(¢) in the p-th direction at the origin, we have

3 -6 Is
up(x,1) = 2Yn¥p 7 Onp / S(t —1)dr
tp

4 pr3
YnYp YnYp — 6}’1[)
S(t—tp) - ————S(t — ts). 4.9
(= 1) = L S0 1) “9)

11
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Fig. 4.1 Three component seismograms generated by a vertical point-force at receiver x = (2, 1,3) km. The time axis
is normalized by the P-wave travel time tp = r/a@, and the displacement is multiplied by factor 87ur, which also helps
visualize the dependence on 1/r. The source time function is a Gaussian with oo = 0.01 s.

0 it L L L
0 0.5 1 1.5 2 2.5

t=t/tp

Fig. 4.2 Three component seismograms generated by a vertical point-force at receiver x = (2, 1,3) km. The source time
function is a Gaussian with o = 0.1 s.
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When the force is constant, we have S(¢t) = H(t), which leads to

3YnYp =Onp 1,0 2 2 2
(1) = L [ = G)H( — 1p) = (= )H( —15)]
YnYp YnYp — 6”17
H(t—tp)— ————H(t — tg). 4.10
Ty =0 = TS 15) (4.10)
Hence, the static solution at 1 — oo is
u;tatic(x) _ 1 §np — YnYp + énp +YnYp ’ 4.11)
8npr a? B2

which is the same as derived in Section .11

4.3 Question 3

Under the principal coordinates, the moment tensor can be described as M = diag(My,0,~My). Therefore, &/ marks the
tension axis (7'), while &; marks the pressure axis (P).
The tension axis (T) corresponds to maximum outward particle motion, while the pressure axis (P) corresponds to

maximum inward particle motion.

4.4 Question 4

Note that A should be measured at the same radius for two ray paths close to each other. Now consider a point x on
the ray path in a spherically symmetric medium. In the azimuth direction, the elementary area has a side length of
|x| sin A é§¢. For the take-off angle direction, when the rays are going down, the elementary area has a side length of
|x| cos iy 6A, with i, < 90° and A > 0. On the contrary, when the rays are going up, the length is also |x| cos iy dA, with
ix > 90° and 6A < 0. This case is shown in Fig. @ Therefore, the cross-sectional area of the ray tube at X is

SA = |x)? cosiy sin A SA 5. (4.12)

Fig. 4.3 Illustration of the side length in the take-off angle direction.

13



Given that the solid angle 6Q = sinig dig 0¢, the geometrical spreading function is

cos zx sin A 6A
Rr ,/ = 4.13
(&) = 0Q = x| sinig 615 ( )
From the ray parameter, we have
|&] sinig |&| cosig
==° p = ———=3ig = pcotig 6 (4.14)
c(®) cle) O TTETE

Using Eq. (4.14), we have 6p > 0 (assuming i¢ < 90°), and thus we obtain

|€| sinig  |pcosiy cosigsin AJA
R(x.8)c(€) = x| === :

sin? igOp 4.15)
COS i, COS zf sinA HA 12
= x| ¢ | ——— 5~
p
Eq. (4.15) directly implies the reciprocity R(x, &) c(§) = R(&,X) c(x).
4.5 Question 5
From the following far-field P-wave Green’s function
p_ YV ( r )
= olt——), 4.16
Y drpa’r @ (4.16)
we need to generalize it into the form
P
GP™ = COF §[1-TP(x,€)]. 4.17)

Y anp(x) a®) RP(x,£)

Here, we already identify and generalize r/« as the ray travel time 77, 1/r as the geometrical spreading factor 1/RP (x, £),

and 1/p a? as the factor C(€)/+/p(x) a(x), which implies that the constant C(€) = 1/+/p(€) a3(§). The radiation pattern
viy;, similarly, can be generalized by replacing the source-receiver direction unit vectors 4 with the ray direction unit

vector 1(¢) and 1(x). Therefore, we obtain

L;(x)1[;
U i a(x;pzs])(jz(sm"(x, gLl o
Reciprocity states that
Gij(x;8) = Gji(§;%), (4.19)
which, using Eq. (@T8), gives
L(x)1;(&) B 1;(&) [;(x) 4.20)

V) a(x) p(€) 3@ RP(x.€)  Vp(&) al€) p(x) > X) RP(€.%)

Now we prove that

RP(x,€) a(§) = R¥(£,x) a(x) 4.21)

4.6 Question 6

The far-field radiation patterns for P and S waves from a point source of fault slip are

AFP =sin20cos g i, AFS = cos 260 cos ¢ — cos O sin ¢ @. (4.22)

14



The RMS values for these radiation patterns, averaged over the focal sphere, are calculated as

1 2r n 1 2n n
aff = —/ d¢/ do |AFP(6,¢)2sing = —/ cos%ﬁdq&-/ sin® 2 sin 6 d6
4 Jo 0 4 Jo 0

1 .(242) 4

4.23)

353

“\ar " V15

1 2 T
as = —/ d¢/ dO |AFS(6,¢)|? sin @

47T 0 0
1 2 b/g 1 2 T

= —/ cosqudqb-/ cos? 26 sin 6 d6 + —/ sin2¢d¢~/ cos? 0sin 6 df (4.24)
4 0 0 dr 0 0

(42 \f

~ \4rn 15 3] V5’

The energy radiated seismically from a double-couple point source in a homogeneous full-space, as P waves for

example, is

2 T +00
Ep = / / r?sin 6 d6 d¢ / dt pa [up(r,0,¢,1)]* . (4.25)
0 0 0

Note that only far-field P waves behave as ! decay, which is able to cancel out the factor 7> from the spherical surface
area in Eq. (4.25). Therefore, the total radiated energy we will obtain later is far-field result in the limit of r — co.

Through calculation, we have

) s [Mio(r)]” dr B N [Mo(1)]? de
16m2pa 157 pa®
[Mo(t)]2 dr s [Mo(t)]2 dt
1672pp3° B 107 pB°

Ep =4n - (a'f)

(4.26)

E5:47r~(01FS)2-f0

4.27)

These formulae indeed represent the source (i.e., its integrated source time function), but to convert observed Ep or Eg to

the source property, we need to use the radiated energy measured at the far-field.

4.7 Question 7

The point force solution described in the Cartesian coordinates, only showing the far-field components, is

YiYj ( r ) Yivi = 0ij r
ST (04 Ny PR W (04 LI P 428
i A dnpar a 4rpp? ! B (4.28)

In vector form, with 4 = &, we have

_EE-F) F-i@F)

= 4.29
" 4 par 4 pBrr (4.29)

Since in the spherical polar coordinates, there is identity F = (& - F) £+ (0 - F) @ + (¢ - F) ¢, which is simply the projection

of a vector onto the basis vectors, we thus obtain

_t(@-F) +9(0A~F)+¢A>(q3-F)'

= 4.30
4 par 4 pBrr (4.30)
Each component can be written as
1A L 60+ ¢
w=F+Gy=——-LFr-2)+ G199 g (- 1). 4.31)
drpa’ r al  4npB? r B
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4.8 Question 8

Start from the ray equation

— =¢VT. 4.32
i (4.32)

We choose a scalar variable o to define the position along the ray with

do

I = c(x(s)), o(s) = /: c(x(s))ds, (4.33)

which represents the integral of wave speed along the ray path. Therefore, we have

dx dxdo dx
— =——=cVT — = VT. 4.34
s dods 0 do (4.34)

When deriving the differential equation for a ray, we have the following result

d c 1
—VI'==-V|—=]. 4.35
ds 2 (cz) 435
Similarly, we can obtain
dx d 1_(1
—=—VTI=-V|=], 4.36
do?  do 2 (02) (4-36)

which demonstrates that solving for a ray path is equivalent to solving for the motion of a particle moving in a force field
with potential 1/(2¢?).

4.9 Question 9
As the wave speed ¢(z) only depends on depth z, the ray paths are within the xz-plane. From Snell’s law, we know

sini

p= @ = const. (437)

The angle i is the one between the z-direction (downward) and the ray. It also depends on ray distance s (although the

function dependence is not explicitly written out). The ray equation is

d
d—j =sini, d—i = cosi. (4.38)

With ¢(z) = az + b, Eqs (4.37) and (4.38]) lead to

di d
sini = p(az + b), cosi - — = pa- = pa - cosi. (4.39)
ds ds
Therefore, we obtain the following result
1 di
i i = |pa| = const, (4.40)

which indicates that the radius of curvature R is a constant, and the ray path is thus a circular arc with radius R = |pa|~".

To find the center of the circle, we can first solve for the ray turning depth z,,, which is
1
c(zm)=azm+b=—,  m=—-—-=R-—. (4.41)
p

Hence, the center of the circle lies at the depth z = —b/a.

A more general way is to directly apply the definition of the radius of curvature R. Denoting the ray path as z = z(x)
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for the portion with well-defined z(x), we have

[1 + (Z/)Z] %

R=—F—~——. (4.42)
2|
The derivatives can be obtained as
o292 ., d%z 1 di 443)
= — = l’ = = - T .
T LT sin2i dx
From the Snell’s law in Eq. (4.37), we have
. Codi , . dz di  pc'(2)
= , — = = — =7 4.44
sini = pe(z) cost ax P @ dx dx sini (444)
Therefore, the radius of curvature is evaluated as
3
(1+cot?i)> 1
= 3 T (4.45)
lpc’(z)/sin®i]  |pc’(2)
With ¢(z) = az + b, we have a constant R = |pa|™".
For a spherically symmetric medium, Snell’s law and the ray equation now become
ini do d
_rsme const. I sini, & —CoS1, (4.46)
c(r ds ds

where r and 6 are the polar coordinates for the ray plane. Now denoting the ray path as r = r(6) for the portion with

well-defined r(@), we have the following equation for the radius of curvature

3
(2 +13)°
= —° 4.47)
’,,2 + 2r§ - rrgg|
The derivatives can be similarly obtained as
dr d’r dr r i 2 di
= — = —rcoti, =—=-coti- —+——— =rcot’i+ . 4.48
0T g T 0T 4 Yo sz de T T G2 e (449
From the Snell’s law, we have
sini = p_c(r)’ cosi- L _ rpe'lr) ~ pelr). ﬁ d_ _—rpc'(r).— Pc(r). (4.49)
r de r2 do dé rsini
Therefore, the radius of curvature is evaluated as
3 3 2 :
2 2\2 r 2 2 r dl
r+r) = , e+ 2ry —rrgg| = 1-—, 4.50
( 0 sin’ i | o = rrool sin i do (*20)
2
r r
R = — = . 4.51)
di| |pc’(r)l

rsini —rsini - —

do

With ¢(r) = a — br?, we have a constant R = |2pb|~', and thus the ray paths are circular arcs. We can also solve for the
ray turning radius r,,, which satisfies

pelim) 2 T

a
—=0. 4.52
Fm ™ pb b (4.52)

4.10 Question 10

In this problem, the unit tangent along a ray is I, and the travel time gradient is VT =1/c.
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a) Since the curl of a gradient is zero, we have
1
Vx|-|=Vx(VT)=0. (4.53)
c

b) Using the identity V X (W A) = ¢ (V X A) + (Vi) X A, we have

Vxl:Vx(cVT):ch(l) = (E)xlz—clx(v—f) =cle(l). (4.54)
C C C C
¢) We know the differential equation for a ray (eq. 4.44 in the book) is
dx d {1dx 1
I F R B (439
This leads to d (1dx 1dl d (1 1 dl 1 d (1
a(za)ﬁa“a(z):v(z)’ a=cv(z)‘da(z)~ (430

On the other hand, using the triple product expansion (a X b) X ¢ = b(c-a)—a(b - ¢), we have

cvw (2] xt=v (1) -afu-w (2] a5

Finally, note that the derivative along the ray path d/ds can be expanded as

(VxD)xl=

d dx

—=—-V=1-V. 4.58
ds ds ( )
Therefore, we prove that
1
(VxD)x1l= d— (4.59)
ds
d) Based on the following result
\Y 1
V(ne) = < = —¢V (—) (4.60)
c c
Eq. can be modified to
dl 1 1
— =cV|=|—=Jc-V[=][I=[1-V(nc)][l-V(Inc). 4.61)
ds c c
e) Using the forward Euler scheme, we have
d
d_’s‘ =1 S Xl =X + Asl,, (4.62)
dl
Fri [I-V(Inc)]l-V(Inc) - Lt =L + As [(Ln - €m) bn — 8], (4.63)

where g = V (In ¢) and the subscript m denotes variables evaluated at step m.

f) We can further simplify Eq. as
dl \% \%
R (1- —c) L (4.64)
ds c c

Using the orthogonal unit vectors 1 and n, the gradient of the wave speed can be described as Vc = al + fn with a, 8 € R.

Therefore, the change of ray direction becomes

d_ _od+pn, o _pm (4.65)

ds c c c
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If 1is parallel to V¢, we have 8 = 0, dlI/ds = 0 and thus 1 does not change direction along the ray. If 1 is perpendicular to
Ve, we have @ = 0 and S reaches the largest magnitude at this location, which implies that the ray changes direction at

the maximum rate here.

4.11 Question 11

For P-wave generated by a shear dislocation with scalar moment My(t), the far-field and intermediate-field terms are
(from eq. 4.32 in the book)

wPxr) = ——aFP Ly, (; - 5) o boarr Ly (t - 1) . (4.66)
4rpa’ r al  dnpa? r? @
Only focused on the radial component, the radiation patterns A¥” and A’” become (from eq. 4.33 in the book)
AFP . =sin26 cos ¢, AP . § = 45in 26 cos ¢. (4.67)
Now with TF = r/a as the travel time, the P-wave displacement pulse shape is proportional to

uP (x,1) o< Mo (r - TP) + 47“1\/10 (z - TP) = M, (r - TP) + T4—PMO (z - T”) . (4.68)

4.12 Question 12

The rays whose travel times are stationary but not minima correspond to surface-reflected phases. As an example shown
in Fig. consider the true ray path A-Py-B with the surface reflection point Py. Without losing generality, we assume
that the radius of the sphere is R = 1 and A is the North pole with coordinate (6, ¢) = (0,0). Under this coordinate system,
we can set Py = (6,0) and B = (26,0). The distance of the true ray path can be calculated as

- — 6
Lo = APy + PyB = 45sin (E) (4.69)

Now consider another P = (6p,0) which is not the true surface reflection point. The path length can be calculated as

4P P =2 [sin[%2 )+ sin (6 - 2)| = sin (&) cos (202
L(P)_AP+PB_2[sm(2)+sm(0 2)}_4sm(2)cos( 5 ) (4.70)

Therefore, we always have L(P) < Ly as long as P # Py. By taking the derivative, we can also show that

aL 0 0-0
%=2sin(§)sin( 5 P):o at Op = 6. 4.71)

This demonstrates that the true ray path corresponds to a travel time that is stationary, and moreover, is maximal along the
f-direction. On the other hand, along the ¢-direction, the travel time should be minimal.

A

Fig. 4.4 Illustration of the surface-reflected phase in a homogeneous sphere. The true ray path is A-Py-B with Py being
the midpoint of the arc, while P denotes the perturbed surface reflection point.
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4.13 Question 13

Consider a Cartesian coordinate system with x-, y-, and z-directions in the North, East, and Down directions, respectively.

The Cartesian components of moment tensor M are related to the components of fault slip @ and fault normal v as
Mg = pA (iipvy +iigvp) - 4.72)

a) If we have M,, = M, # 0 as the only non-zero components, the shear faulting can have two potential setups.
1. A horizontal fault plane (v = €,) with slip in the North direction (o = i €,).

2. A vertical fault plane following East-West strike direction (v = €,) with slip in the vertical direction (0 = i €;).
b) As already shown in a), there are two scenarios corresponding to the same moment tensor.

¢) If we have M, = M, # 0 and M,, = M, # 0 as the only non-zero components, we can first consider a horizontal

fault plane (v = €,) and then sum up the fault slips. The total fault slip can be obtained as

sz/\ MyZA
&, + —=8é,,
A A

=1

XZ

. . . M, vz
in the direction ¢ = arctan 7| (4.73)
Note that the direction ¢ is with respect to the x-axis, pointing toward the y-axis. Therefore, this moment tensor can have
two potential setups.

1. A horizontal fault plane (v = €;) with slip in the ¢ direction.

2. A vertical fault plane whose strike is orthogonal to the ¢ direction, with slip in the vertical direction (0 = i €;).

d) Based on the Hooke’s Law for an isotropic solid elastic medium, we have

T
€zx = 72-2_;, €zy = zi; 4.74)

At the traction-free surface of the Earth, there are no shear strains e, and e,,,.

4.14 Question 14

For a shear dislocation of arbitrary orientation, its moment tensor M can be decomposed into four elementary moment
tensors (Box 4.4 in the book)

M = MY cos 5 cos A + MP sin 5 cos A — M cos 26 sin A + M™ sin 26 sin A. 4.75)

The elementary matrices M and M® are given as

—sin2¢, cos2¢s O —sin? ¢ % sin2¢, O
M@ (¢s) = Mo | cos2¢; sin2¢; O], Y (os) = My % sin2¢; — cos? ¢s Of. (4.76)
0 0 0 0 0 1
For this problem, we denote
MY =M (g), MY =M (o), with ¢ =g, + 7. @.77)

Since we have L sino | sino
+ sin —sin
sin’ 24) =0 ¢S, cos? oY = = = P

> @ = PR sin 20 = cos 2¢s, (4.78)
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when the strike of the M® dislocation is 7 /4 greater than that of the M@ dislocation, we have

X 3 0 0
M =M@+ M0 3 0. (4.79)
00 -1

Note that M) represents a vertical strike-slip fault, while M) represents a thrust fault dipping at 45° with pure up-dip
slip, but having a strike angle that is 45° greater.

We now focus on the radiation pattern of the far-field SH waves. Note that the second term on the right-hand side of
Eq. represents a CLVD source. For an arbitrary moment tensor, the far-field S wave is (eq. 4.29 in the book)

YnYp — O 1. r
ul’s =—(%)n;z\4pq (:—E). (4.80)

For a CLVD source, the displacement becomes

1 1
upS o ~5 YnY1 = 6n1) y1 — 3 (YnY2 = 0n2) ¥2 + (Yn¥3 — 6n3) 73, (4.81)

where 4 is the same as the radial direction f in the spherical coordinate. The SH direction then corresponds to ¢, which

has ¢3 = 0 and is orthogonal to 4, stated as below

~

¢ = (—sin ¢,cos ¢,0), 4P =Ynbn = 7161 + 202 = 0. (4.82)
Therefore, we can show that
N 1 1
WS- b= w59, o =2yadn (vE+ 73 = 203) + 5 0161 + 7202 = 2730) = O, (4.83)

which indicates that a CLVD source does not contribute to far-field SH waves. Hence, the two elementary moment tensors
M@ /2 and M™ have the same radiation pattern, and thus generate same SH waves in a spherically symmetric Earth.
However, if the sources are in an isotropic but laterally inhomogeneous Earth, the heterogeneity can couple the P-SV

and SH systems together, so a CLVD source can also contribute to SH waves and the above conclusion will be changed.
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5 Chapter 5: Plane Waves in Homogeneous Media and their Reflection and

Transmission at a Plane Boundary

5.1 Question 1

Start from the inhomogeneous P-wave and SV-wave given in eqns (5.52) and (5.53) in the book

P (ap, 0, iyja?p? - 1) exp [—w4/p? - %z) exp [iw(px —1)], 3.1
S (i\/,szz -1,0, —,Bp) exp (—a)1 /pz - %z) exp [iw(px — 1)], with é < % <p. (5.2)

For a rigid surface, we have u, = u, = 0 at z = 0. These two conditions give

apP +iyB2p2-18 =0,

(5.3)
ixJa?p?—1P-BpS=0.
The determinant of coefficients should vanish, which leads to
e Jo2p - B - 120, PP+ =L (5.4)

However, when a~! < 87! < p we always have a?p” + >p* > 2. This implies that Eq. (5.4) does not have a solution,

and there can be no corresponding surface wave of tractions when the surface is rigid.

5.2 Question 2

At the boundary between two homogeneous half-spaces, the interface SH-wave is given as

Sexp ((u‘ /pz - ’%z) exp [iw(px —1)], (5.5)
1

Sexp |-w, [p? - iz exp [iw(px —1)], with p > max {i, i} . (5.6)
B3 B B2

The continuity of displacement u,, and shear traction 7, at z = 0 gives

1 . 1 . (5.7
2——25+ p2——2S=O.
1 B

There is no appropriate p that can make the determinant of coefficients. Hence, there is no interface SH-wave at the

boundary between two homogeneous half-spaces.

5.3 Question 3

For a solid half-space z > 0, the P-SV scattering matrix can be obtained from eq. (5.34) in the book, by setting all
amplitudes in medium 1 to zero and choosing the appropriate equations for boundary conditions. We then rearrange them

into a convenient form to obtain the scattering matrix, as shown below

P P 4 PP SP
M| |=N|_|. MIN=[ " . (5.8)
§ S PS S§
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a) When we set u, = 0 and 7,, = 0 on z = 0, we obtain

cosi(P—P)—sinj(S‘—S')zO,

o o (5.9)
2ﬁpcosi(P—P) +(1-2p8%p%) (S— ) =0.
In this case, we have
| —sinj pp $Pl [t o
M:N: COS1 Sln2]2 i M—]N: o | = . (510)
2Bpcosi 1-2Bp PS SS 0 1
b) When we set u, = 0 and 7, = 0 on z = 0, we obtain
sini(f’+15)+cosj(5' S'):O,
o o (5.11)
a(1 - 282p%) (P + P) —28%pcos j (S + S) - 0.
In this case, we have
ini ‘ PP SP -1 0
M=-N=| M O MIN= L = . (5.12)
a(l =2B°p~) -2B°pcosj PS SS 0 -1

Therefore, by adding the reflections derived from the above two sets of boundary conditions, all downward reflections are

eliminated. This trick can be useful in numerical methods to eliminate unwanted reflections from grid boundaries.

5.4 Question 4

a) The inhomogeneous P-wave and S-wave are again shown below

N 1
P (ap, 0, i4Ja2p? - 1) exp (—ww [p? - ;z) exp [iw(px - 1)], (5.13)
S (i\/ﬁzpz -1,0, —,Bp) exp (—w, fpz - %z) exp [iw(px — 1)), with é < % <p. (5.14)

Taking the real part of the expression gives

up (a'p cos [w(px —1)], 0, —y/a?p? — 1 sin [w(px — t)]) , (5.15)
ugy oc (‘/,821)2 — Isin[w(px —1)], 0, Bp cos [w(px — t)]) . (5.16)

The plane waves propagate in the +x-direction and note that +z-direction points downward. To determine the particle
motion, we can set x = 0 and consider the time ¢ = 0 to ¢ = 0*. In the xz-plane, we have the following analysis:

e P-wave goes from (ap, 0) at r = 0 to (ep—, 0+) at t = 0%, corresponding to a prograde motion.

e SV-wave goes from (0, Bp) at ¢ = 0 to (0—, Bp—) at t = 0*, corresponding to a prograde motion.

b) & ¢) The free surface boundary conditions constrain the ratio between P and S. From eq. (5.54) in the book, we have

5 2pByatp? —1 P
| ————————— .

T o

(5.17)
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Adding Eqs (5.13) and (5.14) together with this amplitude ratio, at the free surface z = 0, the real part gives

2,2 _ 2,2
Uy o (CVP - 2pa’p ~ INBp 1)cos [w(px —1)] = A, cos [w(px —1)], (5.18)
282p -1
2.2 53
ul oc — ( a?p?-1- %) sin [w(px — )] = A, sin[w(px - 1)]. (5.19)

We need to determine the signs of A, and A,. From the Rayleigh function (eq. 5.56 in the book), we can obtain

Ja2p? - 1B — 1 = 4p‘2”ﬁ3 (26%° - 1)2. (5.20)

The amplitudes Ay and A, can be simplified to

Ay =— >0, A, = ——F—
T 2pp? C2ppr -1

> 0. (5.21)
This implies that the particle motion for the free surface is retrograde elliptical.

d) The exponential decay for the P-wave amplitude is faster. At sufficient depth, the sum of the two components will be

dominated by SV-wave, which itself is prograde elliptical.

Note The above result is consistent with the displacement vector given in the book. The complex displacement field at

z = 0 can be derived as

2.2
iR =8 (—% : \Z/% + B2 - 1) exp [iw(px — 1), (5.22)

(28%p% -1
k=S 2Pp -1
2Bp

N

- ,Bp) exp [iw(px —1)] = % exp [iw(px —1)]. (5.23)

Again, using Eq. (5.20) to substitute y/a?p? — 1, we can show that
& _ i8SV -1 iy _ 2ippVpPp* -1

iy = _W exp [iw(px — 1)], E T (5.24)

Note that p = cl;l for Rayleigh wave. For the expressions given in the book, we can similarly calculate

_2i 11 ( 21 )_1 _2ipVp2 - B2 2ippBRpR -1

R %_ﬁz 22 -2 2ppr—1

1

'Sll
N |

6122 32

(5.25)

Therefore, we can also write out the complex displacement field using the vector given in the book.

5.5 Question 5

We only need to compare the signs of the Rayleigh wave amplitudes, as given in Eqs (5.23) and (5.24), with those for
the pure SV-wave which dominates at sufficient depth, as given in Eq. (5.14). It is the horizontal (and not the vertical)

component of the Rayleigh wave that goes through zero as depth increases.

Im{A,} Re {A;}
SVBp?E -1 =S

Rayleigh —’é—’; <0 =5 0
282p2 - 1 2Bp

SV-wave S\B 2 -1>0 -SBp<0
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5.6 Question 6

For a P-wave incident from below, the total displacement at the free surface z = 0 is

up =P (sini + PPsini + PScos j, 0, —cosi + PPcosi — PS sinj) exp [iw(px — 1)]. (5.26)
Similarly, for an SV-wave incident from below, we have

ugy = S (cosj +SPsini + SScosj, 0, sinj + SPcosi — S sinj) exp [iw(px —1)]. (5.27)
Denote the following symbols

| . )
m=— 207 se=2p—t g =2p—) (5.28)
(04

(s =M+ Sesp ‘s N s
PP =— PS = 5 , SP=—— , S§§ = ——. (5.29)
m= + sq58 B m* + 5,58 a m* + So58 m* + Sa858
As a result, using the definition of p, we have
s s . 1 aSaSp
sini + PPsini + PScosj = 5 C—
m-+sqSg  Bp
—cosi + PPcosi—PS’sinj = zl . %,
m=+sq8 B°p
. RN . BN . g
cosj+ SPsini + SScosj= —— - —,
J J m? +sqs5  Bp
e ED e G e 1 SaSp
sinj + SPcosi — S8§sinj = ———— - . (5.30)
m=+sq58  PBp
The total displacement at the free surface becomes
(| 4apcosi cosj’ ’ —2a cosi i 3 sz exp liw(px — 1)]
g« B B a \p?
up = 5 , (5.31)
1 COsi CoS j
— =207 +4pP——L
(,82 P ) P Tp
|2 i1 4 ] j
§ EC(Z] (E‘ pz), ’choswow expliw(px - 1)]
a
usy = X 5 . . . (5.32)
COS I COS j
— —2p*| +4pP——L
(/32 g ) P B
For an SH-wave incident from below, as $S = 1 at the free surface, the displacement is simply doubled.
5.7 Question 7
For the incident SV-wave, using cos 2j = 1 — 28°p?, we have
. 2 . 2 . . 4 A . .
R() = S() ——o0STCN ) - () PP OSSN (533)
acos?2j +4p?B3 cosicos j @ cos?2j + 4p?B3 cosicos j
The minus sign in Z(¢) is because Z(¢) is measured as positive upward. Also using sin j = Bp, we can see that
; cos2j . 1-28%p?
S(t) = - - R(t) —sinj - Z(t) = ————- R(t) — Bp - Z(1). (5.34)
2cos j 241 = g2p?
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Similarly, for the incident P-wave we have

) 4 L ) ) 082
R(t) = P(r) PAPOOSTEN] - )= Py T ] (5.35)
@ cos?2j + 4p?B3 cosicos j @ cos?2j +4p?B3 cosicos j
The incident waveform can be estimated as
. 27 —2B2p2 2
By =% 70+ é sinj - R(t) = ——BP 70+ B2 Ry, (5.36)
2cosi 2‘/1—a2p2 a

When p > 1/a, we have y/1 — a2p? — iyJa?p? — 1, and this leads to a Hilbert transform of Z(z).

5.8 Question 8

If the two half-spaces under consideration have similar properties, correct to first order in the jumps Ap, Aa, AB, the
reflection coefficient PP can be approximated as (eq. 5.46 in the book)

22081 Aa

., Ap
PP = (1—4“)——4 2a
Fp o Fp B 2cos?i a

(5.37)

DI —

Note that p = @' sini also depends on the incident angle i. At small angle we have cos™2i ~ 1+sin’i, and the expression

is simplified to

.1 (A Aa 1A 2 (A A
PP ~ 2p + — | + Bsin?i, with B = e ﬁ— 2P +2— 'B (5.38)
2\ p a 2 «a a2 P B
This formula is related to the amplitude variation with offset analysis (AVO).
5.9 Question 9
Consider a general plane P-wave propagating in k direction (longitudinal), where k is the wavenumber
up = Apkexp[i (k- x — wr)]. (5.39)

Note that the P-wave particle motion is in the propagating direction. The compressional P-wave corresponds to Ap > 0,

and the first motion is in k direction (outward). Vice versa, the first motion of the dilatational P wave is inward.

5.10 Question 10

With the plane wave factor exp [iw(px — t)], we can recognize

— & —iw, x < iwp.
X

ot

For P-SV waves, we have the equations of motion

ot T
- pw2ux = iWPTey + ——=, —pu)2uZ = iWpTy + —=. (5.40)

0z 0z

The constitutive relations become

0 0 Ouy
Tax = lwp(A + 2)uy + /l%, Tz = iwpluy + (A + Z,u)%, Ty = U—— 7z +iwpuu;. (5.41)
z z

We have fi(z) ~ fi4(z) corresponds to uy, u;, T,x and 7., respectively. From the constitutive relations (eq. [5.41)), we obtain

af
dz

. i df iwpAd fa
—_ B G2 . 5.42
iwpht ] FE L Sy (542)
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From the equations of motion (eq. [5.40), we can obtain

dfs 2 22 . df 4w p* (A + ) ) iwpAd
—_—=- + A+2 - A—=|— - - ,
&z pw” fi + 0 p( W fi —iwp i ey pw*| fi Py £
d .
d—f4 = —pw’fr —iwpfi. (5:43)
z
The corresponding ODE system is written in the form of
~ . l [ ~
i 0 —iwp ; 0 R
. —iwpAd 0 0 1 B
d Uz Uy df
= R P A+ 2u : —d(Z) = Af(2). (5.44)
z —i z
oo O e R 0o Zerdily
A+2u A+2u
Tzz 0 —pw?  —iwp 0 Tzz

Consider eq. (5.63) in the book, and we can show that when A is constant, it is the solution of the ODE system

df
f=v" exXp [/la (z = Zeer)] & =A% exXp [/10 (2= zeef)] = Av” exXp [/10 (z = zrer)] = Af, (5.45)

where A¢ and v? are the eigenvalue and eigenvector of A. However, when the properties p, 4, u also vary with z, we have

L(Z) = A(2)f(2). (5.46)
dz

Now 1%(z) and v¥(z) also depends on z, and thus f’(z) becomes more complicated and does not equal to A(z) f(z). In fact,

Eq. (5.46) does not have a close-form solution.

Note The solution of Eq. (5.44) can be expressed in the form of a matrix exponential

+00 Xk X n
()= N0 h, where ¥ = ) X = tim (1 ) ;) . (5.47)
k=0 '

Compare with eq. (5.64) in the book, we can identify that
f(z)=Fw, with F=EeA®2), w=E'f, A=EAE", (5.48)

where the last expression represents the diagonalization of matrix A. The columns of E are the eigenvectors.

5.11 Question 11

For a P-wave potential ¢(x, z,¢), the displacement w = (i, iy, 1) and traction T = (7., 7y, T;;) are calculated as

2 2
w= (2022 1o (002l 0 av2e+ 2,22 (5.49)
x 0x0z 972

For an SV-wave potential y/(x, z,7), the displacement and traction are calculated as

o o o’y 0%y o’y
=|-—,0, —], Tsy = (pg— - 1—,0,2 . 5.50
usv ( az ax) v (“ ax2 Moz Hoxaz ©-20)
For a down-going P-wave ¢ = Aexp [iw(px + £z — 1)], we have
. . 2 w? 242
Uy = iwpé, Uy = IWEP,  Tox = 22U pEP, Tz = —/1¥¢ —2pwEP (5.51)
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The first eigenvector v' is related to this down-going P-wave, which is
| _ Tl . 2 2 2 2 \T . 2 ¢ - 2 2\]7
v = — |iwp, iwé, 2w pB pé, —w p (1 -2B°p )] = [ap, aé, 2iwpaBpé, iwpa (1 -2B°p )] . (5.52)
w
For a down-going SV-wave ¢ = Bexp [iw(px + nz — t)], we have
i . . T . . T
v = g [—lwn, iwp, w’p (1 - 2ﬁ2p2), —2w2p/321777] = [ﬁn, -Bp, iwpp (1 - Zﬁzpz), —lepﬁ3p77] . (553)
For an up-going P-wave ¢ = C exp [iw(px — £z — t)], we simply substitute & — —¢ and obtain

v = [ap, —aé, “2iwpaBipé, ivpa (1 - 2ﬁ2p2)]T. (5.54)

For an up-going SV-wave ¢ = D exp [iw(px — 1z — t)], we simply substitute 7 — —n and obtain (by reversing the sign to

ensure that the first element is positive)

vi= [ﬁn, Bp. —iwpp (1 - 2ﬂ2p2), —2iwp,83pn]T- (5.55)

These wave potentials are equivalent to the wave system f = Fw with

_[iwA iwB iwC iwD T (5.:56)
@ B a B
For example, the first coefficient for the down-going P-wave is recognized by comparing Eqs (5.51) and (5.52).
5.12 Question 12
The attenuation of amplitude can be expressed as
wt
A(t) = Apex [— ] (5.57)
P 20()

Note that for both w > 0 and w < 0, Eq. (5.57) should give an exponential decay of the amplitude. Hence, Q(w) should
be an odd function with Q(—w) = —Q(w). The pulse shape of the attenuated wave p(x, 1) is given by eq. (5.72) in the book

p(x,1) = % [:o exp [—%] exp [ia) (% - t)] dw. (5.58)

If there is no dispersion (constant c), at a specific distance x, the Fourier transform of p(t — x/c) is

R X wx R N
pw)=F {p (t - —)} =exp |- , p(w) = p(-w), (5.59)
c 2c0(w)
which is an even function of w. Therefore, the attenuated impulse is always symmetric about 1 = x/c.
5.13 Question 13
The Kramers-Kronig relation implies that the real and imaginary parts of the complex wavenumber K should satisfy
w w
K=——+i , —
cw) T )

in order to ensure causality (i.e., there is no signal when ¢t < x/cs). The attenuation factor Q(w) is then, by definition,

= Cﬁ +H {a(w)}, (5.60)

related to @(w) and c(w) as
w

A = 30w

(5.61)
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a) The imaginary wavenumber is given as (for w > 0)

QoW

a(w) =

H{o(w) =2 ¢ 1( ! ) (5.62)

—_— n
1+ @w?’ 7 14+ amw? arw?

With a,w? < 1 for the seismic band, we can obtain

1 1 1 1 1 1
11 a zln( 2)z_+@m( ) (5.63)

cw) o T 1l4+aw 0w Co T rw?

The attenuation factor Q(w) is approximately constant over the seismic frequencies

1 1 1
~ +—In|—5 | ——. 5.64
Q) 2c0y 27 n (ang) 2Ce0 (5.64)
The phase velocity ratio can thus be approximated as
o0 1 0 1 1
W) gy 0y | - Ex0y, ~1+ —1n |2 (5.65)
c(wo) Vs arw? b arw? nQ w>
b) The imaginary wavenumber is given as (for w > 0)
2_ 2
aow wh —w
a(w) = ayw [H(w — w;) — H(w — wh)], H{a(w)} = —In ( > 2) . (5.66)
m w* - w;
With w; < w < wy, for the seismic band, we can obtain
2 2
1 1 Wy —w 1 2
SV z—+ﬂ1n(ﬂ). (5.67)
cw) co W w2 — wlz Coo T w
The attenuation factor Q(w) is approximately constant over the seismic frequencies
1 1 1
O(w) ~ +—1In (ﬂ) = , for w; < w < wp. (5.68)
200y T w 2Co0
The phase velocity ratio can thus be approximated as
2Cc0 2o 1
W) g4 2600 f@n)| |y - 2600 fon)) oy Lo @) (5.69)
c(wy) b w> n w1 Q0 wy
5.14 Question 14
The imaginary wavenumber is given as (with s slightly less than one)
a(w) = aplw®, H {M} = ayH {sgnw‘ Ia)ls_l} = p|w|*~! tan % (5.70)
w
The modified relation between c¢(w) and a(w), appropriate for this problem, is
1 1 1
LIS g LA CO) G S C) o8 (5.71)
c(w)  coo w Coo |w| 2

The absolute dispersion (with respect to c.,) may be large for s slightly less than one, since the term tan (s7/2) dominates
over ¢3'. On the other hand, ag|w|*~! is effectively a constant, which implies that the dependency of ¢~!(w) on w is very

weak. Hence, the relative dispersion over the seismic frequency range might be small and hard to detect.
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5.15 Question 15

The phase velocity can be approximated from eq. (5.102) in the book as

2(1+Q72)
v1 +sec2yQ—2

1

) sec? y
2 )(1

_ [Ren
p 1+ P
R

~ ﬂ(lq.
P

=~

The correction of order O~

2 -1/2
Reu | \/5(1 + %QZ) : [1 1Y YQZ}
fRe,u[ _ sec Y)Q ] (5.72)

! on velocity is related to the phase velocity dispersion, i.e., ¢ as a function of w. However, Eq.

(5.72) describes the variation of ¢ related to angle y between P and A for two-dimensional plane waves.

5.16 Question 16

Based on the complex elastic moduli, the attenuation factors Q for S-wave and P-wave are defined as

_ Im {u} _ Im{x +4u/3}
1 1
- =_ ) 5.73
s Re {u}’ O Re {x +4u/3} (5-73)
The wave speeds are defined as
R R 4u/3
B= Lﬂ}’ = L,u/}. (5.74)
P P
When the bulk modulus « is purely real, the ratio of Q is calculated as
@_Re{1<+4,u/3} Im {u} _ﬁ (5.75)
Os Re {u} Im{4p/3}  4p% '
More generally, we can obtain
p 432 41 p 24\ 1
Qe _(j _ 4B\ ([, dmipd) Qo _(o”  4)Im{u} (5.76)
Op 3a? 3Im {«} Os B2 3] Im{x}
This leads to
Qu/Qp _ 4B Qu/0Os Qc . _ 4P (O
—_— = —-1l=—=-1]. (5.77)
1-4p2/3a2 32 1 —4p2/3a? Op 322 \ Qs
Hence, we obtain the following result
1 1 4p? 1
1 1 /5'2 ( _) , (5.78)
O O« 302\0s O
5.17 Question 17
Consider a box function f(¢) that is unity for T < ¢t < 2T. Its Hilbert transform is
17 d 1 |27 -t
H{f()} = ~ / T o2 ln‘ . (5.79)
nJr Tv—-t @m T-t

When |t — T| < T, we have |2T —t| ~ T, and the box function f(¢) is effectively a Heaviside function H(t — T'). This

eventually leads to

HA{H(t-T)} ~ —%m

5.18 Question 18

t-T
—', for|t -T| < T.

(5.80)

For an attenuating plane wave at frequency w, the stress-strain relation is given by eq. (5.84) in the book

Mye(t) = o(t)

1+ / " d(1)e' T d‘r] :
0

(5.81)
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One example of the creep function ¢(¢) for rocks is described by the logarithmic law

aq
1+ at

¢(1)=qIn(l+an)H(t),  ¢(1) = H().

(5.82)

in which the fundamental frequency a may be as high as the vibration frequency of a vacancy in the crystal lattice (i.e., of

the order of 10 GHz), and the parameter ¢ is related to the attenuation factor as g ~ 2/(w Q). For seismic frequencies, we

have w < a and the Fourier transform of ¢(z) is evaluated as (eq. 5.87 in the book)

iwt .
e*tw/a.

dr ~ —¢q )/+1n(g)—Z
a 2

7160} = aq /0 ¢

1+ar

As a result, we obtain
My &(t) w in| _.
—1—q|y+1 (—)__ iwla,
o(t) a|y+m a 2 ] ¢

With g ~ 07! < 1 and w < a, the real and imaginary parts are approximated as

Re { M50} 1 g [y (%) cos () + S om (2) < 1.

o(1) a a
m{A{;}Ttiy)} =q [y+ln (%)] sin(%) + %cos (%) ~ %

Therefore, the phase difference between stress and strain is

¢ = Arg{Mo_UTi;t)} = arctan (%) & é,

(5.83)

(5.84)

(5.85)

(5.86)

which amounts to 1/(wQ) seconds. The stress leads the strain. Fig. shows the hysteresis loop of the stress-strain curve

(exaggerated for visualization). One definition of Q is based on the energy loss over one cycle, which is

AE

_1___
o= 2nE’

Because the area is proportional to the squared amplitude, Eq. can be evaluated as

AE A=A 1-e2

2nE 2 Ag 21 o

0.6 1
0.4 - ]
0.2+ 1

Stress
o

0.2+ ]
0.4+ :
0.6 ]
0.8+ ]

-1 I I I
-1 -0.5 0 0.5 1

Strain

Fig. 5.1 Stress-strain hysteresis loop. The attenuation is exaggerated for visualization.
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6 Chapter 6: Reflection and Refraction of Spherical Waves; Lamb’s Problem

6.1 Question 1

Eq. (6.93) in the book is the solution for two half-spaces in welded contact along z = 0 with a point source of SH-wave
acting at zo < 0 in the upper medium. When head waves can occur, the contribution from the Cagniard path starts at the

branch cut p(7,) = B, I, with #, being the head wave arrival time. The approximation |pr| > t — ¢’ is thus equivalent to
r
min |pr| > max (r — t'), rp(ty) = ﬂ_ >t —1y. (6.1)
2

When 3, < B, the contribution from the Cagniard path starts at the departure point p(ty) corresponding to the reflection,

which is given as

fo = &’ p(l‘o) = L’ R() = Vr2 + (Z + ZO)Z- (62)
B1 RoBi

The approximation |pr| > t — t’ is thus equivalent to
in |pr| > max (t — ') (t0) = = > t—ty =1 - 20 (6.3)
min |pr| > max (¢t — t), rp(ty) = —— —tg=1t— —. )
RoBi B
Now we compare the convolution solution with the wavefront approximation. In the wavefront approximation, e.g.,
eq. (6.26) in the book, at distances near critical with L — 0, the head wave amplitude ~'/2L=3/2 blows up. Meanwhile,
the approximation of the wide-angle reflection wave (eq. 6.21 in the book) also fails. On the contrary, for the convolution
solution (eq. 6.96 in the book), the singularity in (¢) is integrable near the reflection time (1//t2 — Ré / ,8%), and there is

no issue with applying it near the critical distance.

6.2 Question 2

Eq. (6.42) in the book states the equation of motion for an SH-wave

. 2 0oyx 00y,
v = A8(x)6(2)6(t) + uV=v = A5(x)6(z)6(t) + 3 + 3 . (6.4)
X Z
With the double transform (Fourier transform in x, Laplace transform in 7), we have
a 2 .
_O—yz(kx’ 2, S) = _A 6(Z) + ps V(kx’ 2, S) - lkxo-yx(kx» 2, S). (65)

0z

Integrating Eq. (6.5) from z = 07 to z = 0" gives the magnitude of the step A in the stress component o, which is
related to the discontinuity in dv/dz.

6.3 Question 3

We start with the transmitted field given by eq. (6.14) in the book
trans : —iwt a Cp . . .
P = jwe g—]o(wpr) exp (—iwé| 79 + iwér7) dp, inz>0, (6.6)
0 1

in which the vertical slowness is defined as

Gl =AJoi2-p  H=qJos2-p2  withImé, Imé > 0. (6.7)

The amplitude C(p) is determined from the boundary conditions as (eq. 6.15 in the book)

2p2€1

_— 6.8
p1é&2 + P26 65

Clp) =
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First, we rewrite Eq. using the Hankel function and the fact that C(p) is even in p, which leads to

ptrans _ iw —iwt e CPH(I) . . d . 0 6.9
=5 i 6_1 o (wpr)exp (—iwéiz0 + iwéz) dp, in z > 0. (6.9)

Second, when r > A we have wpr > 1, and the asymptotic expansion of the Hankel function is

/ 2 ' 1
H(()l)((l)pr) — el(wpr—n/4) [1 _ ! + 0( > 2):| . (610)
Twpr 8wpr w-p°r

Keep the first term in the expansion, and note that the source location zg < 0. We finally obtain

rans W _i(wt-nt e C(p) P .
Pt 21,2—]”6 (wt /4)/ T\/_exp[lw(pr+§1|z()|+§2z)]dp. (6.11)

00

The saddle-point analysis is carried out as

, , (. plzol  pz ” [ Izl Z
f(p) =i(pr+ &zl + &22), f(P)=l(r————), f(P)=—l(ﬁ+ 53| (6.12)
&1 & aré] @&
Therefore, the saddle point p = p; satisfies
py = Sni_sindy o plaol  PE i+ ztani, (6.13)
(4] (0%} fl 62

The saddle occurs for the ray parameter p which gives the transmitted ray between the source and the receiver, as illustrated

in Fig. [6.1]

|zol p

interface
Fig. 6.1 Illustration of the transmitted ray, and the condition satisfied in Eq. (6.13).

6.4 Question 4

The Rayleigh function R(p) is defined as

R(p) = 4p*én + (ﬂ_z - 21’2)2’ with & = \Ja2 —p?,  n=/B72-p>. (6.14)

In one of the nonphysical Riemann sheet {Re & < 0;Ren > 0}, for a real ray parameter p within the range 0 < p < ™!,

E=—\a2-p%  Gi=B2-p (6.15)

Based on Snell’s law, the incidence angles for P- and S-waves satisfy

now we have

f— 52—7’ 77:

sini  sinj cosi cos j (6.16)
B B
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Fig. 6.2 (Left) Riemann sheets of 7 = 4/5-2 — p2. Red surface corresponds to Re > 0, which is discontinuous across
the branch cuts. (Middle) Rayleigh poles on the physical Riemann sheet {Re ¢ > 0; Ren > 0}. Branch points are denoted
by X, and poles by o at p = +1/cg. (Right) Rayleigh poles on the nonphysical Riemann sheet {Re¢ < 0;Ren > 0}. The

poles are near p = +1/a in this case with v = 0.25 (i.e., Poisson solid).

Therefore, on this nonphysical Riemann sheet (—+), the Rayleigh function becomes

2 CoSi cos jJ
- 4p2——]

5 with 0 < p < a” L. (6.17)

R(p) = (572 - 2?)
This is exactly the numerator of PP and SS (see eqs 5.28 & 5.32 in the book). Therefore, the zero crossings of PP and S
occur precisely at the zero of Rayleigh function on the nonphysical Riemann sheet {Re ¢ < 0;Ren > 0}. For figure 5.6
in the book, the coefficients are plotted for @ = 5 km/s and 8 = 3 km/s, corresponding to v =~ 0.23 < 0.263 and thus, the
P-pole is on the real p-axis for this case.
To visualize the Riemann sheets and the Rayleigh poles, Fig. plots the complex function n = \/,6"27—1)2 and the
inverse Rayleigh function 1/R(p). The Poisson’s ratio is chosen as v = 0.25. Now we see the branch cuts separating the
{Ren > 0} sheet from the {Re n < 0} sheet. Furthermore, we see the Rayleigh poles in both the physical and nonphysical

Riemann sheets and, more importantly, the leaking mode from the P-pole into the physical Riemann sheet.

6.5 Question 5: 2D Lamb’s Problem (First kind)

1. Solution to the homogeneous wave equations for potentials
Because the source is at the surface z = 0, we can treat it as the boundary condition and solve the homogeneous wave

equations. The displacement u is related to the scalar potentials ¢ and y as

a9 oy AP

=Vop+Vx0,¢,0)=|—-—,0, — + . 6.18
" ¢ © 4. 0) ox 0z dz Ox ( )
Since the problem is y-invariant, we consider ¢(x, z,¢) and ¥(x, z,¢). The potentials satisfy
$=a’V2p, i =pVy. (6.19)
Taking the Fourier transform in x and the Laplace transform in ¢, we have
8? 52 92 s
6_z2¢(kx’z’ 5) = (k)zc + ?) Pk, 2, 5), a_zz‘/’(kx’z’s) = (k;zc + E) Y (kx, 2, 9). (6.20)

In the halfspace z > 0, we require the solutions to be bounded as z — oo. The homogeneous solutions are given as

P(kxz,5) = Ae™%%,  Y(ky,z,8) = Be™, (6.21)
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in which the coefficients A and B are to be determined by the boundary conditions, and we define

ky = isp, & =4Ja?-p? n=+/B2%-p? with Re& >0, Ren > 0. (6.22)

Note When p is slightly above the branch cut (e.g., in the case z = 0), the above definition gives \zo — z = —i\z — 20

for real variable z > zo. This should be taken care of when coding up the expressions.

2. Boundary conditions at z = 0

The traction components are calculated as

9’9 Py 0%y 2 ¢, Oy
=2 +ul——-—1, =AVp+2u— +2 . 6.23
Tre = 2U5 a1 (aZx PEm Tzz ¢+2u 522 M orez (6.23)
At the surface, we have the boundary conditions
Txz(x,8) = 0, Tz (x, 1) = =1 6(x) 6(¢), at 7z =0. (6.24)
In the transformed domain, these become
Txz(kx,5) = 0, Too(ky,8) = =1, at z =0. (6.25)
From Egs (6.21)) and (6.25)), we obtain the linear system for the coefficients
~2pé 7 -p||A 0
- ) (6.26)
@’ + (@ =2p%) p* 2p%p | (B |-1/ps?
The determinants are obtained as
0 n* - p? 167 - p?
n-—p°) 21p¢
ID| = -B’R(p),  |Dal = =——a - IDsl=—5 (6.27)
~1/ps* 2pnp
where we see the Rayleigh function R(p) shows up. The coefficients are solved as
D I n*-p? D I 2
A Pal _ 2277 P g 1Psl_ 22p§_ (6.28)
ID| pB*s*> R(p) ID| pB*s* R(p)
3. Exact solution of displacement fields
In the transformed domain, the displacement components at arbitrary depth z become
I po*=p*) _, I 2pén _
k .7 — P + S — s&z _ nlz, 6.29
e BT L TR T RO (622
I &P -p) _ [ 2p% _
kyoz,s) = ub +u = R T ——= e SE, 6.30
el 2 S S L TR pBs RO) (©30
The inverse Fourier transform of uE, as an example, is obtained as
1 +00 p (nz _ p2) )
; = o3&z g, 6.31
Ll M e " (@30
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With k, = isp, we have

+ico _ 2 2
P -wp (77 _P) —-s(px+&z)
s &y = T N ) d
a(629) 2npp? Loo Rp) P
I ico p (),]2 _ p2) ~
= Im / S AL (6.32)
npp? { 0 R(p)

The final step is similar to eq. (6.48) in the book. To demonstrate it, denote

2_ 2
p_(nm )_,, ) 502169 () vi0().  with p=ip. peE. (6.33)
p
‘We can show that
P57 +27) PP+ 2F)

E p) =
” —4p2én + (B2 + 22)°

and thus, E(p) is even and O(p) is odd for p, which leads to Eq. (6.32). Now define t = px + £z, and the path C, given by
p = p(t) where 1 is real and positive, is the Cagniard path. Solving for p as a function of ¢ gives (for x > 0)

€547 sin (spx), op) = €747 cos (spx), (6.34)

~4en + (B2 +2%)°

3
[

N
Q|w
[N S
[
Sy

=

for0<t < —,

2
p= R — a (6.35)
Xt +izq[t? — — R
5 @ fortr > —
R @

where R = Vx2 + 72 is the distance function. It can be shown that the integral 1i up the positive imaginary p-axis can

instead be taken over the Cagniard path C on which ¢ increases from zero to infinity, which leads to

p _ 1 “p(r-r’) _dp
u(x,z,5) = P Im {‘/0 R0 iy dep. (6.36)

The exact solution in the time domain becomes

1 p(*-p?) dp
P
,2, 1) = I — 6.37
(62 0) npp? m{ R(p) dr (€37
p=p(t)
The derivative is given as
& R
for0<t< —,
R2 a
d Pl
p a
. ] (6.38)
R
ds L for t > —,
R (07
2=
2

in which an integrable singularity is present at the ray arrival time of direct P waves, t = R/«a. For other components u];,

u3 and ug, the procedure is the same. The exact solution of displacement fields is summarized below.

e P-wave components

)
p(n*-p?) dp} 6.39)

P _ I -
)= g Im{ R(p)

P _ £’ -p°) dp

p=p(t) p=p(t)
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The complex ray parameter p = p(t) is given as (we can set p = 0 for 7 < z/a)

R2
_ 2 _»
Xt — 2z o2 t z R
for — <t < —,
p= R? a a
R2
xt+iza[t2 — —
a R
5 fort > —,
R a

e S-wave components

uS(x,2,1) = —

! 2pén dp
o " {R—@)a}

p=p(1)

The complex ray parameter p = p(t) is given as

R2
Xt —z —2—t2
B Z R
7 forEStSE,
p 2
xt+iz 12——2
B R
5 for t > —,
R B

4. Numerical illustration

uS(x,z,1) =

dt=

1
5 Im {
npp

2p*¢ dp
Ao

R
forO0 <t < —,

a

R
fort > —.
a

p=p(t)

R
forO0<t< —,
B

R
fort > —.
B

(6.40)

(6.41)

(6.42)

Figs and show the displacement fields at (x, z) = (5km,0%) and (5 km, 1 km), respectively, with shear wave speed
B =1.73 km/s and Poisson’s ratio v = 0.2. We can identify the P and S arrivals, as well as the head wave for z > 0. The

head wave corresponds to p = a~!, and the arrival time can be calculated as

X
th =—+ Z\[ﬂ_2 —a 2.
a

ux
0.6 P Yy
]
04r ' Xx=5km,z=0km
1
0.2 !
]
0 ]
| I
-0.2 1 1
1 L . .
0.5 1 1.5 2 25 3
ta/R
uz
10+F Pl Y !
1 1
1 1
5 | 1
I 1
0 1y
! |
-5 I |
I \
10} ! !
1 . s s
0.5 1 1.5 2 2.5 3

ta/R

0.6

0.4+

0.2+

o

0.2

ux

(6.43)
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Fig. 6.3 Displacement fields at (5km,0"). Numerically, the depth is set to 107® km. The time axis is normalized by

P-arrival time #p = R/a. The displacement is normalized by I/wu. The thick gray line is 20 X the original amplitude to

visualize this part of the seismogram. The contributions from u

P
X

S
s MX,

uf and uS are shown in the right panels.
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Fig. 6.4 Same as Fig. but for displacement fields at (5 km, 1 km). The head wave becomes a separate pulse.
At the surface, we have f;, = fp and thus the S components u§ and ug also contribute to the P arrival. After the S arrival,

the Rayleigh wave shows up in both components. As ¢t — oo, both P and S components are divergent, but they cancel out
each other due to their similar behavior (as discussed later in Problem 6.8).

e Convolution with Gaussian pulse

Fig. [6.5] shows the synthetic seismograms by convolution of the previous results with a Gaussian pulse (¢) defined as

2
w(t) = \/;T exp [— (7%) } (6.44)

where y = 1.628 is the decay rate and 7 is the half duration of the Gaussian pulse. The first motions can be better identified
from the synthetic seismograms.
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Fig. 6.5 Synthetic seismograms by convolution of signals in Figs. and with a Gaussian pulse. The central
frequency of the Gaussian pulse is f. = 20/tp. Note the difference in the ranges of vertical axes. The thick gray line is

60 x the original amplitude of u, to visualize this part of the seismogram.
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Fig. 6.6 Particle motion plots at different depths z = 0.01 km, 0.04 km and 0.1 km. Increasing time is indicated by the
rainbow color order. The particle motion transitions from retrograde elliptical to prograde elliptical as the depth increases.

e Rayleigh wave particle motion

Based on the synthetic seismograms, we can further analyze the Rayleigh wave particle motion. Fig. [6.6] shows the
Rayleigh pulse particle motion at different receiver depths. The time window 0.95fr < t < 1.05 R is selected for plots.
The central frequency of the Gaussian pulse is f. = 20/tp, which corresponds to a Rayleigh wavelength of Ag = 0.14 km

with cg = 1.576 km/s. The transition from retrograde to prograde motion occurs around z ~ 0.36 Ag.

e Rayleigh poles and leaking mode

Fig. shows the influence of Poisson’s ratio v on the synthetic seismograms. When v < 0.263, the P-pole on the
nonphysical Riemann sheet {Re & < 0;Ren > 0} is on the real p-axis and close to p = 1/« (Fig. , which contributes
to the head wave arrival. On the other hand, when v > 0.263, the P-pole is in the fourth quadrant of the nonphysical (—+)
sheet with 1/a < Re p < 1/8. This leads to the P-pulse after the head wave.

5. Exact solution of surface displacement fields

A special case occurs when the receiver is on the surface z = 0. The Cagniard path then becomes the real p-axis

t d 1
p=. d—’t’ =~ fore>0. (6.45)
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035 ; ‘ ‘ ‘ ‘ -0.4
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Fig. 6.7 Influence of Poisson’s ratio v on synthetic seismograms. The portion between P-wave and S-wave arrivals is
zoomed in. The receiver is at (5 km,0). Two example values of Poisson’s ratio v = 0.1 and v = 0.45 are chosen. Note that
P-pulse appears when v > 0.263.
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Eq. (6.45) is appropriate except when dealing with the Rayleigh pole. In the distribution sense, we can show thal{]_-]

. r x2 (. z o, X2
limp=—+iy/t? - = |lim —— | = — +im/1? - = 6(x)
z—0 X a? \z-0 x2 + 22 X a?

=L vinto =L +ins (f) . (6.46)
X X t

Note that the wave speed taking a or g8 gives the same result. We only need to be careful about the following expression

Im 4 — (= 7RO (f - CR) = —mR 6 (t —1R), (6.47)
p-cq !

which arises after expanding the Rayleigh function around the pole p = cl;l. Other than this, we can just use Eq. ||
for derivation. When ¢ < tp, everything is real and there is no displacement as expected. We thus need to discuss the
following two cases.

e Ip<t<Ig
Within this time interval, we have

__i 2 _ 42 _l 2 _ 42 _i 2 _ 22_ 22 [0 2 [2 2
&= x,/t tps ’7—x1/’s 12, R(p)—x4 (ts 2t) 4it* \[t tP,/tS 2. (6.48)

Now denote the following quantities

2
At) = (t§ - 21‘2) >0, B(t)=4r\i-2\12-12 >0,

B(1) b
— /A2 2 = =
D(t) = VA2(1) + B2(1) > 0, 6(r) = arctan [A (t)] e [0, 2] . (6.49)
The surface displacement fields can then be expressed as
1 sin 6(t) 1 cos 6(t)
P _ 2 _ 92 P - _ [o_2(2_rp2
u,(x,0,7) = o t (zs 2t ) DG u, (x,0,1) ~ -t (ts 2t ) DO (6.50)

1 cos 6(¢) 1 cos 6(t)

S / 2 [2 S 2 2

0,1) = — 2t4[12 — 124 [t2 — 12 , 0,1) = —— 217412 — ¢ . 51
ux(x:0,0) U PN'S D(1) uz (%,0,1) U ! P D) ©.51)

e[ >1s

Within this time interval, we have

_ i 2 _ i 2 _ 1 2 2 2 2 2 2
_g_—;,/ﬂ—tp, n=-cP-id  Rp)== [(ts—Zt) — a4t -2 - 2| (6.52)
Now we can denote )
R(t) = (tg - 2t2) —42 2 -2\ P -2, with R() =0, (6.53)

where g = x/cr is the Rayleigh arrival time. Its derivative can be computed as

Ri() = —————— |

- (,; § 2%)2 1 (t§ - 4t§) + 818 (t§ - tg)] . (6.54)

For the horizontal displacement, we need to expand the Rayleigh function around p = cﬁl and apply the following result

I {—p } . p G 5(t - 1) (6.55)
m = Im = - —IR). .
R(p) R'(Cil) (P _ Cﬁl) R'(Z‘R) R

lEringen, A. C. and Suhubi, S. S., 1975, Elastodynamics, Academic Press, Vol. I, eq. 7.15.3
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The surface displacement fields can then be expressed as

P(x,0,0) = 12t RS (t — 1R) P(x,0,1) = I [e—s (t2 2t2) ! (6.56)
ux X, Y, - ﬂ'l,[ RI([R) TR R)> uz X, U, - ﬂl[ P S R(t)' .
I 2mt 1 1
S R 2 2 [2_ 2 S 2 2
,0,1) = —— At ,/t —t56(t—1tR), ,0,8) = —— 215412 — 12 —. 6.57
ux(-x ) U R’([R) R PV'R S ( R) MZ(.X ) T P R([) ( )
We can further obtain
1wt} (263 - 13) I, 1
(x,0,) = ——=—— 2" 65(t-1R), J0,0) = —— 1312 — 2 —. 6.58
ux(x,0,1) o 2R (t =) uz(x,0,1) s P RO (6.58)

Around f = fg, the vertical displacement can be approximated as

1 1 1 1
L0,1) % —— 12,12 =12 . 6.59
(3, 0.1) mu S Pl R(R)  1—1x (6-59)

Therefore, the horizontal component of the Rayleigh wave has the same shape as the input pulse, while the vertical

component is the Hilbert transform of the input pulse.

6.6 Question 6

In general, the SV-displacement is represented by uSY = V x V x (0, 0, ). If the field is independent of the y-coordinate,

we have ¢ = ¢/(x,z,t) and then

I KN T P
wa_(ay, ax,o)_(o, ax,o). (6.60)

Now we can define a new scalar function ¢y = —9¢/dx, and then the SV-displacement becomes u3Y = V x (0, J, 0).

6.7 Question 7

The new path gives the same result as I in Fig. 6.9 in the book. Note that F’ and D are on the sheet {Im &; > 0;Im &, > 0},
while E is on the sheet {Im¢&; > 0;Im &, < 0}. For the closed path F/ — D — E — F’, the integrand is analytic within
the path, and thus, the net contribution is zero. Fig. [6.8] visualizes the analytic nature of ¢ on different Riemann sheets

across the branch cut.

1.5
11
-2 10.5
-1 0 Ej
(')
0 - r
é 2 0.5
1 -
2 1.5
Imp -2

1 2

Fig. 6.8 Riemann sheets of & = \/a~2 — p2. The z-axis indicates Re & and the color for Im £. The z-axis is flipped to see
Imé¢ > 0 in the first quadrant where F’ and D are located. The magenta line shows a portion of the integration path in
Figure 6.9 in the book.
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6.8 Question 8

Eq. (6.70) in the book gives

6.61)

uss(x,z,t) =

_ 2
@Im{%zé‘n - (87 -2p°) d_p}
5 .

When ¢ is large, we have the following expressions

1 / R? d j R
p(t) = —|tsinf +i t2——20059 , _p:L’ > =2, (6.62)
Ro B dr 2 - R(z)/ﬁZ B

where 6 denotes the incidence angle. As ¢ — oo, we have

R} R} R}
2 ~ _ — _ : —
t? — Iz ~t|1 i t(l-g), with ¢ = VTR (6.63)

Therefore, from Eq. (6.62)) we have

ite~i0 ) d i
P (). LB, i
On the Riemann sheet {Re ¢ > 0;Ren > 0}, we have
1 1 te?® Ry (e cosé
= 2 aipllo — | & + 2= , 6.65
¢ e P 1p( 2a2p2) Ry 2t (CV2 B? ) (069
1 1 te™  iRysin@
nN=4|=-pP*~-ip|l- ~ T s w. (6.66)
iz 2827 T Ry | 2up?

Therefore, the numerator and denominator in Eq. (6.61) can be approximated as

N(p) = -8p* + 0(?).  R(p) =29 (é - [%) +0(1), 6.67)

Note that the denominator is just the Rayleigh function R(p). Finally, we obtain

2My A +2 —it2e™30
uss(x,2,1) = — #Im{ i

o1 2, 6.68
P Ix +()}o<t (6.68)

which shows that ugg diverges to infinity as t — oo.
Similarly, we can write down the motion ugp in the transformed domain as (for a step function My(t) = MyH(t))
My ap .

usp(ky,2,8) = —mESP exp [—s (£z + nh)]. (6.69)

Although SP is odd in p, the factor p SP is still even. The inverse k,-transform can be written as (recall that k, = isp)

usp(x,z,8) = _ZMTOQ Im {/wo IZS'P(p) exp [—s(px + &z + nh)]} . (6.70)
up o

Define a Cagniard path by t = px + £z + nh, and for large t we also have
-i0

ite dp ie”i?
Ry

dr Ry

plt) = +0(™), +0(t7). (6.71)
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The exact solution of usp in the time domain is

Mo 4p* (2p*-B7)  dp
MSP()C, Z,t) = ?Im 5 > 2 E . (6.72)
Ko 4p*én + (B2 - 2p?) p=p(t)

Now the numerator is approximated as N(p) = 8p* + O(p?), which has the exact opposite dominant term compared with

the SS-wave. Therefore, the divergent behavior of ugs is canceled out by the similar behavior arising from ugp.
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7 Chapter 7: Surface Waves in a Vertically Heterogeneous Media

7.1 Question 1

a) For the body wave between A and B, the ray path length and the phase shift related to the travel time are

2H v = wl 2Ha)
cos ji’ T B

[ = Sec ji. (7.1)
The SH reflection coefficient at the free surface is 1, and no phase shift is induced. However, the supercritical reflection
at the layer interface results in a phase shift when 5; < 8,. When supercritical reflection occurs, we have

sinj; sinj, 1 1 cos j 1

_ _ _Lo1 S 72
PR TR R R N\ TR 72

in which c(w) is the phase velocity of the corresponding surface wave. Now, we can evaluate the following terms as

. 1 1 1 1
p1B1cos j1 = E 7 02208 jo =iy ,3 (7.3)
1 2

The reflection coefficient gives

M2

(9}
Nl'_‘
|
)=

p1B1 €08 j1 — p2B2 COS jp

SS = - =, arg SS = —2 arctan (7.4)
P11 €08 j1 + p22 COS o w5 =L
B
Note that |SS| = 1 for supercritical reflection. The total phase shift thus becomes
1 1
Mo\ 2~
2H. < B
Y= it sec ji — 2 arctan _ 2 . (7.5)
B 11
Miz\[72 ~ 2
G
b) The requirement for constructive interference is
X
v=2212%n kez (7.6)

c

where X = 2H tan j; is the horizontal distance. Eq. is equivalent to

1 1

e 7B H Hw /1 1

arctanl ! =ﬂ—wseC]1——tanJ1+kﬂ—wH E——+k7r k eZ, (7.7)
’___ 1 C

which gives the same dispersion relation as eq. (7.6) in the book

11
polio,
1 1 B
tan |wH, |— - —| = ¥2 2 (7.8)
2 2
g Al w1 1
=~
B <

¢) If Bi < B, each bottom reflection at the interface will lead to a decrease in amplitude since SS < 1, which does
not sustain the horizontal propagation. Furthermore, energy transmission into the bottom halfspace can not guarantee an

exponential amplitude decay as z — oo for a surface wave.
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7.2 Question 2

SH system Since the vector w = [S, S ]T consisting of displacement amplitudes is constant, from eqs (7.49) and (7.50)
in the book, we can identify the propagator matrix

I(2) =F@)w =F) F '(20)1(z0).  P(z.20) = F(2) F' (20)- (7.9)

From the expressions of F(z) and F~'(z)

_eVZ
, (7.10)
we can obtain the same expression of the propagator matrix as in eq. (7.43) in the book

P(z,20) = F(2) F'(z0) = (7.11)

coshv(z—z0)  (vu)~'sinhv(z — z9)
vusinh v(z — zo) cosh v(z — z0) .

P-SV system From the expressions of F(z) and F~!(z) given in eqs (7.55) and (7.56) in the book, we can similarly
calculate the propagator matrix for Rayleigh waves. The result should be the same as in eq. (7.45) in the book.

7.3 Question 3

Now denote the general displacement-stress vector as f(z). Based on Question 7.2, the propagator in a specific layer can
be identified as
f(z1) = P(z1,21-1) £(z1-1)s P(z1,21-1) = Fi(z2) F; ' (z1-1). (7.12)

Hence, the propagator from zg to zj is

k
P(zi.20) = | | Paizio) = | | File) B (zion)

k
i1

i=1 i
= [Fi(z) F' (zk-n)] [Frot(zr-n) Fily (zx2)] - [Fi(z) Fy ' (z0)] - (7.13)
7.4 Question 4

An intuitive picture of the propagator matrix method is that each of the columns of F is separately a basic solution of
0f |0z = Af, and that w is a vector of constants that give the weight of each basic solution present in the sum Fw. For the

first column of F, the corresponding wave in the sum Fw is

Pe7?

w

f [ozk, ay, “2auky, —au (k> + vz)]T . (7.14)

When k > w/a, the vertical wavenumber y = Vk% — w?/a? is real, which results in an inhomogeneous P-wave with
displacement fields given as

Per:

u=Re { f el’(kx—w’)} - ak cos (kx — wi), (7.15)

w = Re {ifz ei(kx’“”>} = _Pe

ay sin (kx — wt). (7.16)

Therefore, the displacement amplitude at each time ¢ is calculated as

N 2k2
lu| = Vu? +w? = Pe‘"yz\/a—2 — sin? (kx — wt). (7.17)
w
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7.5 Question 5

The transformation r — r, ¢ — ¢ + m, z — h, h — z switches the source and receiver locations. For the Love wave
Green’s function given by eq. (7.146) in the book, the term [;(z) /; () is symmetric to the source and receiver depths. The

geometrical spreading and phase terms depend on distance r, which is unchanged. The radiation pattern is analyzed as

sin® ¢ —singcos¢ 0
AL(¢) = [-singcos ¢ cos® ¢ 0|, Al (¢ + 1) = [A]‘(gb)]T ) (7.18)
0 0 0

For the Rayleigh wave Green’s function given by eq. (7.147), the radial function term and the radiation pattern are coupled

together, which is shown as

ri(@)ri(h)cos’ ¢ ri(z)ri(h)cos¢sing  —iri(z) ra(h)cos ¢
AR(z,h,¢) = |r1(z) r1(h) sin ¢ cos ¢ r1(z) ri(h)sin® ¢ —ir|(z) rp(h)sing | . (7.19)
iry(z) r1(h) cos ¢ iry(z) ri(h)sin ¢ r2(2) r2(h)

This matrix can be shown to satisfy
-
A¥(hz,¢ +7) = [AX(z h9)] (7.20)

Based on the above matrix properties, we verify that the reciprocity
Gup(0,0,h;x,y, 2, w) = Gpn(x,y,2; 0,0, h; w) (7.21)
is satisfied for surface wave components.
7.6 Question 6
Given a fixed wavenumber k, we consider a perturbation
L+l =L (p+6p, u+du, k, w+déw). (7.22)

Applying eq. (7.69) in the book, which states w*I; = k*I, + I3, to the new eigenfunction gives

2

(o) (o) [oe] d
(w+ 6a))2/ (p+6p)(ly +601)* dz = k2/ (u+6p) (L +6h)* dz + / (i + ) [d— (L +6l)| dz.  (7.23)
0 0 0 z
To first order, the perturbations satisfy
2 [T 2 TSN 2
w / (5p11 +2p11511) dz+2w6a)/ pl2dz =k / (6#11 +2u11511) dz
0 0 0
2
0 dl / < dl dél
+ oul—1] dz+ 2u— ——dz. 7.24
,/0 H ( dz ) 0 H dz dz ( )
From Hamilton’s principle, the stationary condition gives
W*S1y - k*61, — 613 = 0, (7.25)
which is eq. (7.67) in the book. This is equivalent to
® © < dl dsl
w2/ o Lol dz—kZ/ uhoh dz—/ p——Ltdz=0. (7.26)
0 0 0 dZ dZ
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Subtracting Eq. from gives

wZ/ 6pllzdz+2w6w/ pllzdz=k2/ 5yllzdz+/ o =) dz (7.27)
0 0 0 0 dz

Therefore, the phase velocity perturbation at fixed wavenumber is derived as

(7.28)

c

(6c) sw o [KP2+(dl/de)| dudz - [} w12 6pdz
Kk @ 2w? fooopll2 dz .

7.7 Question 7

For the Rayleigh wave system in a halfspace, the infinity condition requires P = § = 0. Using the free surface condition

at z = 0, we have

=0 2auk K2 +v?)| | P
r@=0|__ anuky Bu(k>+ i) 1P| o (729)
r4(z =0) ap (k* +v?) 2Bukv S
The existence of a nontrivial solution requires the determinant to be zero, which is
2auk k* +v2
qat[| 2Ry BRI et Ry = 0 (7.30)
ap (k* +v?) 2Buky
where the Rayleigh function R(p) here is expressed as
2
R(p) = (5—2 - 2p2) - 4p2\/p2 - a—Z\/p2 g2 k=%owp k>9S5 E (7.31)
c B«

The requirement on k guarantees that y and v are positive real for surface waves. Solving for R(p) = 0 gives the

relationship between the amplitudes P and S. For a Poisson solid with Poisson’s ratio 0.25, we have

2aky

— 7 _p=-25425P. 7.32
B+ ) (7.32)

pl=cr=09194p  S=-

We can also evaluate the vertical wavenumbers as

C]% v 6‘122
- = 1- —2 = 08475, % = 1- ﬁ = 03933 (733)
@

The displacement eigenfunction is given as

Y
k

P -z Sv -vz Sv
Fo= ek + 2By 4 Riiid e, (7.34)
w w Pak
P -z S -vz S
=y + Bk« Lo+ 3B e, (7.35)
w w k Pa

Numerically, we obtain the following eigenfunctions

r = 6_0'8475 kz _ 0.5774 6_0'3933 kz’ (7.36)
ry = 0.8475 ¢ 0-8473k2 _ 1 4679 ¢70-3933kz (7.37)
The energy integral I; becomes
l (o]
I = 5/0 P (r12 + r22) dz = 0.6204 g. (7.38)

Finally, from eq. (7.150) in the book, the explicit formula for Rayleigh waves due to a point source with arbitrary moment
tensor located at depth % can be obtained. Note that for the halfspace, there is only one mode with a non-dispersive phase

velocity ¢ = cr. The eigenfunction and an example amplitude spectrum are shown in Fig.
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Fig. 7.1 (Left) Eigenfunctions ri(z) and r»(z) for Rayleigh waves, corresponding to Eqs and - (Right)
Amplitude spectra of Rayleigh waves (vertical displacement) at » = 2000 km for an underground explosion with unit
seismic moment of 1 dyne-cm. Each curve represents a source depth from [0, 5, 15,33, 55,75,95] km. The halfspace has a
density of 3 g/cm?, an S-wave speed of 3 km/s, and a Poisson’s ratio of 0.25.

7.8 Question 8

Taylor expansion of |F(w)| and ¢(w) around w = w; gives

d|F(wi)] (wl)l

|F(w) = [F(w)] + (w-wi),  pw)=dw)+1gi (w—wi), (7.39)

in which the group delay time is defined as #,; = d¢(w;)/dw. Therefore, the waveform of a dispersed wave train can be

evaluated as
Fly =1 / |F(w)] cos [ — $(w)] dw

wi+Aw; [2
F [ [|F< o1+ AL, wi)] 08 [t = 1g0) ~ 9lwr) + witgs] do

i—Aw; [2
F wi+Aw; |2 1 d|F(w; wi+Aw; [2
Z | (w ) / cos (Aw + @) do + Z M (@ - w;)cos (Aw + ¢)dw,  (7.40)
Awi/z 0.) wi—Awi /2
in which we denote
A=t—tg, ¢ = witg — $(wi), Aw; + ¢ = wilt = 1pi) (7.41)

with the phase delay time defined as 7,,; = ¢(w;)/w;. Based on the following integration results

wi+Aw; [2 2 AAw;
/ cos (Aw + ¢)dw = — cos (Aw; + @) sin ( i ),
» A 2

i—Aw; [2
2 . (AAw; A AAw;
Zgin =) - )
2 S > w; COS > ,

a)i+Aa),~/2 i A -+
/ (w—w,-)cos(Aw+¢p)dw=—M

wi —AU)[ /2 A

we can obtain the expected expression

sin M(l‘—ti)
f(t)~Z [F(w)lcos [wi (1 = 151)] A[wz d

i Tl (t_tgi)

a1 F(wn) sin [ (1 = 1)] [0 2% (= )| [Aw,-
_ — COS

— |t =ty . (7.42)
dw t—tgi %(t_tgi) 2 ( &)]
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7.9 Question 9

Within the period band under analysis, the surface wave has a constant group velocity of U = 4.4 km/s. Furthermore,
the wave shape changes with the travel distance, but comes back to the same shape every L = 8800 km. Based on the

definitions of phase and group velocities, we can obtain the following relationship
U = c(k) + kc'(k) (7.43)

where c(k) is the phase velocity. Since the phase velocity increases with period, we have ¢’(k) < 0 and thus U < c(k).

Now, we can translate the property of the wave shape into the expression below
d(x, te(x)) — ¢(x + L, tg(x + L)) = 2nm, nez, (7.44)

in which the phase function is ¢(x,7) = kx — wt. The interpretation is that after traveling distance L, the phase of each

frequency content around the group arrival time 7, remains the same. Eq. (7.44) further gives

L L L
C kL =2nm, = T, (7.45)
U U ¢T)
where T denotes period. Since the distance L is the minimal one to recover the wave shape, we have n = 1 and thus, the

phase velocity is obtained as
UL 8800

L—UT  2000—T

An numerical example is shown in Fig. [T.2] The dispersive wave trains are calculated from Eq. (7.42) based on the

c(T) =

km/s. (7.46)

dispersion relationship given in Eq. (7.46). A band spectrum |F(w)| is used, in which the flat spectrum covering the
period range 40 s — 200 s with tapering to corner periods 20 s and 300 s. The surface wave pulse is very impulsive due to

the constant group velocity U = 4.4 km/s.
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Fig. 7.2 Wave trains calculated from the dispersion relationship in Eq. (7.46). Note that the wave shape comes back to
the same one from 8000 km distance to 16800 km.

49



7.10 Question 10
Based on eqgs (7.69) and (7.70) in the book

I
2 =kh+ L, U=—>, (7.47)
CI]

we can evaluate

> 0. (7.48)

I3 I L (1 1
=7 _ Iz
2 c\U ¢

B oy 2 —— -, c—U =
w? ! )

Therefore, the phase velocity of a Love wave mode exceeds the group velocity.

7.11 Question 11

The decay of amplitude with depth is governed by the vertical wavenumbers y and v. As an example, given a dispersion

relationship ¢, (w), we have

Yu(w) = wAfcy? — a2, (7.49)

Because ¢,(w) < cpi1(w), we have y,(w) > y,+1(w). This indicates that for a fixed frequency w, the rate of decay of
amplitude with depth is greater for the fundamental mode than for the higher modes. Similarly, for a fixed wavenumber

k, we have ¢, (k) < c,+1(k) and the following expression

Yu(k) = k1 = (ca/)? (7.50)

indicates y,,(k) > y,+1(k), which also shows that the fundamental mode decays faster with depth.

7.12 Question 12

a) For a very shallow source, compared to the seismic wavelength, the eigenfunctions can be approximated as follows

dl1

dzh

b(h) =

d d
=0, r3(h) = (dizl - krz) =0, dLZZ
d h > |h

2
_ (iﬁ _ 1) kri(h). (7.51)

Based on Eqs (7.148) to (7.151) in the book and using the symmetry of the moment tensor, the surface wave displacement
fields are simplified to

ot h(z) . T\ 4
(% w) = 8cUI ﬂk,,r xp [l (k,,r * Z)]¢
[lk 1i(h) (M sin ¢ cos ¢ — My, cos 2¢ — My, sin ¢ cos ¢) |, (7.52)
1 2
uR(x,w) = Zn: SeUT, / T exp [i (knr - %)] [r1(z) & +ir(z)Z]
2;32
knri(h) ( x COS> & + 2M,y sin ¢ cos ¢ + M,y sin ¢) + kyri(h) 1) M. |, (7.53)

Therefore, by defining the radiation pattern coefficients

1 232 1
U = 3 (Myx + Myy) - (1 - %) M., U, = 3 (Myx — My,y), Us = Myy, (7.54)
and the Green’s vector
L ik ll(h) [ n ] N
G (x; hw) = scul \ ks exp 1(k,,r+ 4) l1(z) ¢,
k,ri(h
GR(x; hw) = 8;(1]([1) T exp [i (knr - ;_r)] [r(z)t +ir(z)Z], (7.55)
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the surface wave displacement fields become
u(x,w) = G (Us sin 2¢ — U3 cos 2¢), u’(x,w) = GR (U} + Us cos 2¢ + Us sin 2¢) . (7.56)
b) For a shallow vertical dip-slip fault with 6 = 90° and A = 90°, from Box 4.4 in the book we have
Myx =My = Myy = M, =0, My, = —M,, = sin gs. (7.57)

Therefore, long-period surface waves are not excited as Uy = U, = Uz = 0. The implication is that My, and My,

components cannot be estimated from surface waves alone if the source is very shallow.

¢) Now consider an explosion with isotropic moment M; and an associated tectonic release with parameters My, ¢s, 0
and 4. We have

My, = My — §Ssin2¢g — 2DS sin’ ¢, M,y = SScos 2¢s + DS sin 2¢s,
M,y = M; + SSsin2¢s — 2DS cos® ¢s, M., = My +2DS. (7.58)

The radiation pattern coefficients thus become

2 2 4 2
U, = %MI - (3 - ﬁz) DS, Uy = DS cos2¢s — SS sin2¢g, Us = §Scos2¢s + DS sin 2¢g, (7.59)
a a

where S is the strength of the strike-slip component and DS is the dip-slip component, defined as
1
SS = Mysindcos A, DS = EMO sin 26 sin A. (7.60)
The surface wave excitation now becomes

u" = GF[DSsin2 (¢ — ¢s) — SScos2 (¢ — és)],

2 2
2y, s

uR =GR 3
@

)DS+DSC0$2(¢—¢S)+SSsin2(¢—¢5) . (7.61)

d) If the tectonic release is associated with thrusting, we have 4 > 0 and thus DS > 0 being positive. Given a specific

estimate of Uy, if DS increases, the result M; also increases.

e) IfSS =0, the Rayleigh wave radiation pattern becomes

2 2 4 2 2 2 4 2 2 2 4 2
%M, - (4— %)DS <Ug= %M, - (3— %)DS+DScos2(¢—¢S) < =My - (2— %)Ds. (7.62)
a a a a [0 [0

For Rayleigh wave to have reverse polarity at some azimuths, we require

Zﬁz 452 1 2
—M; - |4- —|DS <0, DS > -———=M,. 7.63
a? ! ( a? < g 2a%-p? ! (7.63)
For Rayleigh wave to have reverse polarity at all azimuths, we require
2 2 4 2 2
ﬁzM, -[2- ﬁz DS < 0, DS > Z'B—M,. (7.64)
a a a?-2p2

f) This problem explores the non-uniqueness of the solution (My, DS, SS, ¢s) for a shallow source given the observed
long-period Rayleigh and Love waves. Consider the following five sets of solutions. We will prove that they are all

equivalent to the first one. For notation simplicity, denote ¥ = 2 (¢ — ¢s) and 6 = arctan (DS/SS).
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M; DS SS bs

M;l) 0 SsM = VDS2 + 552 ¢g1) = ¢g — %arctan (DS/SS)

M | DSO = VDs? + 557 0 62 = g5 + Larctan (SS/DS) = ¢ + 45°
MY 0 _ss™ o)+ 90°

MY -Ds™ 0 ¢%) +90°

Table 7.1 Equivalent sets of solutions that satisfy the same radiation pattern for a very shallow source.

Second solution For Love wave, we can show that it is the same
Up = -SSW cos (¥ + 6) = VDS? + SS2 (sin ¥ sin @ — cos ¥ cos ) = DS sin ¥ — SS cos V. (7.65)

The Rayleigh wave pattern solves for the isotropic moment M;l), which is

2 2 2 2 4 2
Ug = ﬁleﬂ) +8SW gin (¥ + 0) = ﬁzM, - (3 - ﬁz) DS + DS cos ¥ + SSsin P,
a a a
3 2
MY = M, - (2= -2| Ds. (7.66)
22
Third solution For Love wave, we can similarly show
UL = DSV sin (‘I’ 40— g) = /DS + S52 (cos W cos 6 — sin ¥ sin 6) = DS sin ¥ — SS cos P. (1.67)
The isotropic moment M}z) is solved as
3 2
MP =M+ (22 2 ( Dsz+ss2—Ds).
22

Fourth solution When the strike angle is increased by 90°, the argument of the cosine function becomes ¥ + 6 — 7,
which leads to an extra minus sign that is accounted for by the amplitude —SS™"). Therefore, this set of solution also

satisfies the same Love and Rayleigh radiation patterns.

Fifth solution Similar analysis applies, but because DS goes into the coefficient Uj, the estimation of M; should be

modified. The final result becomes

2
Mf) =M, - (3i - 2) (\/DSz +552 + DS) . (7.68)

22
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8 Chapter 8: Free Oscillations of the Earth

8.1 Question 1

From eq. (8.34) in the book, the torsional oscillations of a homogeneous elastic solid sphere satisfy

aw w7
=—+ -, (8.1)
dr u
dr ud =11 +2
ar [( )(+) ]W (8.2)
dr
This 1st-order ODE system is equivalent to the following second-order ODE
d (,dW) dw 1 [ ,dT
dr(r dr)_rdr +W+#(r dr+2rT) (8.3)
From Eq. (8.2) we can obtain
,dT w’r?
r? . +2rT = |- +2) - ﬂ W —rT. (8.4)
Eventually, we have
1d{(,dw w> I(l+1)
——[rF— — - W =0. 8.5
r2dr (r dr)+ 2 r2 ®-5)

Although Eq. (8.3)) looks the same as the governing equation for free oscillations of a homogeneous liquid sphere, except
for a different wave speed, the free surface condition should be applied to traction 7. Furthermore, the angular degree
starts from / = 1 for toroidal modes because Cog = 0. The solution of W(r) is the spherical Bessel function, and the

traction 7'(r) can be obtained as

[wr ud(rw) M wr wr wr
wos (%), 1= #5G « a-i (5) - i (%) 6)
For [ = 1, we have
T\(r) < jp (%) = (%—%) sinx—%cosx, with x = % (8.7)

To satisfy T1(rg) = 0 at the free surface, the eigenfrequencies should be

n@ 70 3x,
tan x, =

Xn = = N
n ﬁ ’ 3_x%

n=1273---. (8.8)

The first root with n = 0 is yw, = 0 which corresponds to the rigid-body rotation, as (W, (r) = ji1(0) = 1 is a non-trivial
solution. With ry = 6000 km and 8 = 5 km/s, the periods can be evaluated as

2 2w
T, = ——— ~ 21.8 min, T, = ——— ~ 13.8 min. 8.9
17 576 (8/r0) M 25 = 5708/r0) i 89)
For [ = 2, we have
5 12 12
Tr(r) o< jo(x) — xj3(x) = (— - —3) sin x — (1 - —) COS X. (8.10)
x X x2

The first root with n = 0 is still x = 0, but for / > 2, we have j;(0) = 0 corresponding to a trivial solution of W(r). Hence,

we start with the non-zero roots and obtain

2 2w
T, = ——— ~ 50.3 min, T, = —— ~ 17.6 min. 8.11
%27 5750 (8/r0) T 2 = 290 B ) mmn @10
Similarly, for / = 3 we obtain
2 2
T,= —————— ~ 32.5 min, T,= ——— ~ 14.9 min. 8.12
%3 = 386 (B/r0) T s T 84 (B i (8.12)
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Fig. 8.1 Radial eigenfunction W(r) and 7'(r) for mode ,T,, as well as the radial derivative dW/dr and the quantity W /r.
All amplitudes are normalized by their maximum value.

In summary, the two longest periods are (T, ~ 50.3 min and ,T; ~ 32.5 min. They are not so different from the periods
of these two modes calculated in the PREM model, i.e., ,T,(PREM) ~ 44.0 min and T;(PREM) ~ 28.5 min.

For a single force, the excitation coefficient of the i-th normal mode is
Ei=u -f= W(r)T/" £ (8.13)

A horizontal force contributes to T} - f # 0. Therefore, we only need to study the radial eigenfunction W(r). For a force
couple with moment about a vertical axis, the forces are horizontal and the separation is also in the horizontal direction.
The difference thus lies in an extra horizontal derivative of the eigenfunction, which results in W(r)/r as the excitation
coefficient and it also reaches the maximum at the surface. For ;T, mode in a homogeneous elastic solid sphere, the
displacement eigenfunction (W,(r) = j2(,w,r/p) is plotted in Fig. The horizontal force at the Earth’s surface is the
most favorable for exciting Love mode.

If the horizontal force couple is separated in the vertical direction, then we need the radial derivative dW /dr to evaluate
coefficient excitation, which is also plotted in Fig.

8.2 Question 2

From eq. (7.91) in the book, we have

oc c i oc
= ={==-1]-—, = 2m|—]. 8.14
()l o) o1
According the phase velocity ¢ = w/k, for a fixed angular order /, which is equivalent to a fixed wavenumber k, we have
19 19 )
se =% (—C) - (—“’) . (8.15)
k c )y w ),
Eq. (8.65) in the book states that
Te
(6_w) :/ 2(5_60) 6_p+é(3_w) Bl g (8.16)
w 0 w\dp g P W 9B 1,pﬁ
Similar to Eq. (8.T4) the attenuation factor Qg is defined as
1) 1
Im{—’B} =—-—. (8.17)
B 20p
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Eventually, the temporal Q of a toroidal mode is related to the Qg(r) of body waves at radius r by

— ow reaﬂ ow 5ﬂ r$ﬁ dw ~
=2 =20 o las S1d= 5 '(r)dr. 1
¢ Im(w), /o w(aﬂ)l,plm{ﬁ}d’ /0 w(aﬁ),’pQB(r)dr (8.18)

8.3 Question 3
The argument is wrong in several aspects:
1. The Earth’s daily rotation is not a free oscillation because it is unrelated to the elastic wave equation under study.

2. The trivial toroidal mode T, although denoted as the rigid-body rotation, is different from Earth’s daily rotation.
The toroidal mode T, has a frequency jw, = 0, which means that we can add an arbitrary static rigid-body rotation

to the final displacement field, and it still satisfies the elastic wave equation.

3. The Earth’s daily rotation causes the splitting of normal modes, especially for modes with very long periods. This
effect is similar to the Zeeman effect.

8.4 Question 4

Fig. [8:2] shows the spheroidal mode dispersion computed by MINOS with an isotropic PREM model. The identified
spheroidal modes in seismic data are indicated by larger symbols and listed below.

3OSlO 29sll 30812 3lsl2 28813 27Sl4 28814 25815

22818 25518 22819 23Sl9 25519 23820 23821

The reference phase-velocity lines in Fig. [8.2]correspond to a ray parameter regime

b
C <p< 2, (8.19)
Q- Ap+

where r = b and r = ¢ denote CMB and ICB, respectively. In fact, this range of ray parameter p includes Regime VII and
Regime VIII. To analyze if a mode is associated with PKP but not with PKIKEP, it is better to visualize the eigenfunctions,
as shown in Fig. B3] A PKP mode eigenfunction is expected to have negligible values below ICB. Therefore, we can

conclude that among the selected modes, those from the second row (i.e., with [ > 18) are associated with PKP but not

15

Frequency (mHz)
IS

-
w

5 7 9 1 13 15 17 19
Angular order |

Fig. 8.2 Spheroidal mode dispersion diagram. Red lines are reference phase-velocity lines. The larger blue symbols
indicate modes identified in seismic data, with frequencies around 13 and 14 mHz. The overtone number 7 is annotated
on the plot.
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Fig. 8.3 Radial eigenfunctions of the selected spheroidal modes. Solid and dashed lines correspond to U(r) and V(r)
respectively. Red horizontal lines indicate the depth of CMB and ICB. The second row shows the modes associated with
PKP but not with PKIKP.

PKIKP, with one potential exception ,,S,, which is more likely to be contributed from CMB reflection phases. On the

other hand, modes from the first row (i.e., with / < 15) mostly correspond to PKIKP, with two exceptions ,(S,; and ,¢S

which are dominated by Jgy.

8.5 Question 5

Denote the Earth’s radius as Rg and the station epicentral distance as A. Assume the overtone number n > m and their

arrival time difference is t,, — t,.

1. When they differ by an even number, i.e., n — m = 2N, the polar phase shift results in an (extra) phase advance N«

of Gn compared to Gm. Therefore, the phase velocity satisfies

N - 27TRE

W(ty = tm) — k(x, — x,n) = N, o(T) = m,

(8.20)

where k denotes wavenumber and 7 is the period.

2. When they differ by an odd number, i.e., n — m = 2N — 1, the polar phase shift results in an (extra) phase advance
(N=1/2) 7 of Gn compared to Gm. However, in this case, we must also consider the initial phase difference ¢, —¢,,

originating from the source. Therefore, the phase velocity satisfies

Wty = tm) = k(xp = Xm) + (P — dm) = (N - %) . (8.21)
This results in »
c(T) = (xp = Xm) |tn — tm + %T - (% - %) T} , (8.22)

while the difference in distance depends on if Gm is related to the minor arc RgA or the major arc Rg (27 — A).

The arrival time difference t,, — ,,, “can be uncertain by a multiple of the period T, and the computation of ¢(T') leads to a

discrete set of possible phase velocity curves, one of which must be correct” (Nafe & Brune, 1960).
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Based on eq. (7.149) in the book, the azimuthal dependence of Love wave radiation occurs in the following factor

ALove _ Love ibLove’ (8.23)

with the real and imaginary parts given as (with source depth denoted by h)

d/
a*e = — —L| (M, sing — My, cos ¢),
dz h
plove — kli(h) (Mxx sin ¢ cos ¢ — Myx cos? o+ Mxy sin? ¢ — Myy sin ¢ cos ¢) . (8.24)

For Love waves, we can see that if the moment tensor does not contain My, and My, component in general, then with

¢ — ¢ + « the initial phase does not change. Similarly, for Rayleigh waves, we can obtain

) d
gRavleigh — kri(h) [Mxx cos2 ¢+ My, + My,)singcos ¢ + M, sin’ ¢] + szz M.,
h
. d
pRayleigh _ d_r] (sz cos ¢ + My, sin ¢) —kry(h) (sz cos ¢ + My, sin ¢) . (8.25)
Zln

We can see that the conclusion remains the same, and the initial phase at opposite azimuths will be influenced by M,, and
M, components of the moment tensor.

8.6 Question 6

a) Asshown in Problem 4.13, at the traction-free surface of the Earth, we have e, = e;, = 0. Therefore, we have
i€ox(X8)Mzx + ;€5 (Xs)Mxz + ;€7 (Xs)Mzy + €5, (xs) My, ~ 0 (8.26)

if the source position Xg is taken very close to the surface.

b) A dip-slip earthquake (vertical fault, vertical slip) has a moment tensor consisting of M, and My.. From part a), we

know that if the hypocenter is very shallow, a dip-slip earthquake is very inefficient in exciting normal modes.

¢) From Table 8.1 and Table 8.2 in the book, the shear strain components e_, and e, are related to the radial eigenfunc-

tions as U oav v d
S T w W
e, o VIl +1) —t T Cx X -7 (8.27)
for spheroidal and toroidal modes, respectively. Fig. [8:4]shows the shear strain component for several surface wave modes

with periods on the order of 100 s. Note that the traction-free surface condition is satisfied. For a fixed depth £, if the

0 0 0 0
100 100 100 100
200 200 200 | 200 |
E 300 E 300/ Ea00 E 300
< K= < < [
£ £ £ £ |
400 2400 S400 Sa00!
o o o | o |
500 500 500 | 500
600 600 600 | 600 |
700l — . 700 e N 700 700! ]
0 0.5 1 - 0.5 0 - 0.5 (] 0 0.5 1

Fig. 8.4 Shear strain component evaluated from radial eigenfunctions. The amplitudes are normalized.
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period (equivalently the wavelength) is long enough with A4 > h, the radial eigenfunctions are approximately constant

when z < h. This is true not only for the shear strain component shown in Fig. but also for other strain components.

d) The excitation coefficient for a particular mode i is
i€pg(Xs)Mpyg. (8.28)

For a dip-slip earthquake, as we have shown that e, and e, are essentially zero when /1 < A, the sum of amplitudes in

the P-wave group and the S-wave group should also be close to zero, given that the period is sufficiently long.

e) In general, there are six independent moment tensor components: M., Mg, M4, Mgg, Moy, M. For alarge shallow
earthquake, the dip-slip components M,.9, M,.4 are very inefficient in generating normal modes, and thus, the seismic data
are not sensitive to them (in other words, null space of the inverse problem).

The traction-free surface condition also states e, = 0, which indicates that an earthquake is inefficient in generating
normal modes as well if the moment tensor satisfies

4 4
K+ U K+ U

My = ——Mgg = ———Myy. (8.29)
K—gl,l K-g/l

This is from eq. (10.68) in Dahlen & Tromp (1998). This non-uniqueness in the isotropic components can be eliminated

by considering a pure deviatoric moment tensor with tr(M) = 0.
f) The previous answers are based on the Earth’s free oscillations in an SNREI model, which is Spherically symmetric,

Non-Rotating, Elastic and Isotropic. If the Earth is laterally heterogeneous, then the radial and surface eigenfunctions are
coupled together, making the analysis much more complicated.
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12 Chapter 12: Principles of Seismometry

12.1 Question 1

The response () of the seismometer to an arbitrary ground acceleration #i(t) can be obtained by a convolution with the

acceleration impulse response f(¢), as given by eq. (12.13) in the book:

g’(t)z/;roo i(t —7)f(r)dr. (12.1)
For an inertial seismometer, the response f(¢) satisfies
f(@) =0, for 1 < 0. (12.2)
Therefore, the integral can be evaluated from —co to +oo, and in the frequency domain we have
{(w) = (miw)i(w) - f(w) = i(w) - (-iw) f(o). (12.3)

The derivative operator can be applied to either u(¢) or f(r). From Eq. (12.2)), the initial rest condition also holds for f(r).

Hence, we obtain

L) = [ u(t — T)f(T) dr = ./0 u(t — T)f(T) dr. (12.4)

00

12.2 Question 2

At equilibrium, the mass-spring system satisfies
mg = k(I =), (12.5)

where k is the spring stiffness. The period of small oscillation is
By
T =2my |2 = 2my | —2. (12.6)
k 8

a) At the surface z = 0, the boundary conditions 7., = 0 and 7,, = —Pexp [iw(x/c — t)] give

12.3 Question 3

1
Fw =f = [iiy, ii,, 0, —P]",  with p = —. (12.7)
C
The ray parameter p is determined by matching the horizontal slowness of the moving pressure. The procedure to solve
this problem is first to consider w = [wy, wy, 0, 0] including only downgoing P and SV waves, and then match (Fw); = 0
and (Fw), = —P with z = O substituted into the matrix F. The above two equations finally give the solution of w; and wy.
However, since w is provided for this question, we can directly check if it satisfies the boundary conditions. Choosing

Zret = 0, from eq. (5.69) in the book, at the surface we have

ap Bn ap Bn
aé -Bp —ag Bp
F(z=0)=E = . (12.8)
2iwpafipé  iwpP (1-26°p%)  -2iwpap’pé  —iwpp (1 -28°p%)
iwpa (1-2B7pY)  =2iwpfpn  iwpa (1-28%p%)  —2iwpBpn
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The solution vector w is given as

iP

.
- ! 1 —2p¢ . 12.9
RO ( 2 ) 2O ol (12.9)

The Rayleigh function R(p) and the parameters & and n are given as

1 2 1 1
R(p) = (E_ZPZ) —4192\/132—?\/192—[?, \/;—p, =‘/ﬁ_ : (12.10)

We can evaluate the product Fw as

(Fw); = —IBRL;[)) 225 [(1 —28%p 2) (1 —2ﬁ2p2)] -0, 12.11)
(Fw), = R( ) (i -2 2)2+4p2§77 = —P. (12.12)
The boundary conditions are satisfied as expected.
b) The displacement at arbitrary depth z > 0 can be obtained as
ix(z) = (Fw), = wioﬁZ R_(p) (% - 2p2) elweT — 2§nei“"7z] , Uy = fi e P, (12.13)
ii,(z) = (Fw), = wlpﬁ2 RO ([% - )el‘"“fZ +2ple W"Z] Uy = fiy e CPx0, (12.14)

With p = ¢! and the assumption ¢ < 8 < @, we can expand all terms into powers of c/a and ¢/f3, and only retain the

low-order terms. The following approximations can be made

. 2 . 2
fzi(l_lc_), nzi(1_lc_), R(p)zz(l—i). (12.15)

c 2 a?

With another assumption wzc/28% < 1 (w > 0), the exponential term can be approximated as

eIV gmwI/C (1 + C;—Zg) , IO gmwR/C (1 + %) . (12.16)
a
After some algebra, we can obtain

: 2

ux(x’ Z,t) 2lC‘PB2 ( B 182 %) e—wz/ceiw(x/c—t)’ (12.17)
wp c
cP a? wz _ ; _

Uy (x,7,t) = 00 (a2 ,82 . )e wz/e piw(x/c=1) (12.18)

Eqs (12.17) and (12.18) are the same as eqs (21) and (22) in/Sorrells (1971), except for a difference in the sign convention

for the vertical displacement. The expressions given in the book are not correct. Both u, and u, exponentially decay with

depth and propagate in x-direction with the pressure wave speed c.

¢) Consider P ~ 100 Pa, T ~ 300 s and ¢ ~ 5 m/s for the pressure wave. Using the PREM upper crust properties, we
have p = 2600 kg/m>, @ = 5.8 km/s and B = 3.2 km/s. To ensure that the seismic noise due to atmospheric disturbances
is at most a few nanometers, long-period seismometers should be buried 2 km deep. The depth profiles of the displacement
amplitudes are shown in Fig. [12.1]

61


https://doi.org/10.1111/j.1365-246X.1971.tb03383.x

0

0.2}
04|
0.6

Eosl

i

Depth (k

12+
14+
1.6
1.8

2
10"

Amplitude (nm)

Fig. 12.1 Depth profiles of horizontal and vertical displacement amplitudes under surface pressure wave loading.

12.4 Question 4

The coil response is proportional to w, which can be expressed as

X(w)
Xe(w)

X (w) = Aw, 201og;, ( ) =20log,,2dB = 6dB. (12.19)
The coil response rises at 6 dB per octave. The low frequency total response (w < w,) is proportional to w?, which can

be expressed as
XQ2uw)

X(a)) = Ba)3’ 20 10g10 (m

) =20log;, 8dB = 18 dB. (12.20)

The total response rises at 18 dB per octave at low frequency w < wy.

12.5 Question 5

For a monochromatic surface wave at frequency w, the ratio between strain and displacement amplitudes is the wavenum-

ber k(w). The phase velocity ¢(w) can thus be measured from the narrow-band filtered strain and displacement recordings.

12.6 Question 6

For a velocity feedback seismometer, the coil output goes to an amplifier with output voltage V(s) = KAsé(s). The

feedback system then delivers an acceleration SV, which is applied as a negative acceleration to the inertial sensor. The

Input Total Inertial sensor
u force Coil
U - X 1 ¢ > x
$*+ 265 + w? g —| Voltage « &
Negative
force A | Amplifier
Produces force - |
= B X input voltage Voltage = K As¢ \
Feedback system Output

Fig. 12.2 Schematic for a velocity feedback seismometer. The seismometer damping is made to appear very high.
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governing equations for this system are

KAs
Xiotal = U — Xy, V= 2.1 2 Xiotal> Xf = ,BV~ (12.21)
§% 4+ 285 + w;
The overall response can be solved as
%4 KA
Z - al . (12.22)
i 2+ Qe+ KAB)s + w?

The original damping 2¢ has been increased to 2e + KA.

12.7 Question 7

The building is subjected to ground acceleration ii(f) = A sin (Q¢) H(¢). The resulting building displacement £(¢) satisfies
E+2eé + WP = —ii. (12.23)

When ¢ = 0 (no damping), the solution is given as

sin (wt)

&) = —ii(e) = [ H@)| = —S /t sin (Q1) sin [w(f — 7)] d7
0

w

A t
= — / [cos (QT — wT + wt) — cos (AT + wT — wt)] dr
2w 0

A [sin (Q1) = sin(wt)  sin (Q) + sin (wt)

- 2w Q-w Q+w
A | sin(Awt i + Aw)t

= — M cos [(w + Aw) t] - M cos (Awt)| . (12.24)
2w Aw w+ Aw

The difference between the forcing frequency and resonant frequency is denoted as Aw = (Q — w) /2. According to Eq.
(12.24)), in the limit as Q — w, we have

(1) = % [x cos (wi) — Si“g‘”) - 2%2 [wt cos (wr) — sin (w1)] . (12.25)

In summary, displacements can grow with time to large and thus hazardous values if a building is subjected to ground
motion close to its resonant frequency. The growth continues indefinitely because the input shaking has no end.

Now consider that the ground motion has a finite duration at a fixed frequency, i.e., ii(t) = Asin(Q¢) H(t) H(T — t).
When ¢ < T, the convolution result is the same as Eq. . On the other hand, when ¢ > T we have

A |[sin(QT — wT + wt) —sin(wt)  sin (QT + wT — wt) + sin (wt)
£ = -
2w Q-w Q+w

, fort>T. (12.26)

The engineering displacement response spectrum SD(w, €) is defined to be the maximum value of |£(z)| given a specific
frequency w and damping parameter €. Consider |[(Q — w) T| < 1 and wT > 1. For small ¢t < T, we have |Awt| < 1 and
thus can directly apply Eq. (12:23), which gives

A AVOXHZ+1 AT
IE(0)] ~ —2= |wt cos (wt) — sin (wr)] < 2T+ 1 20 (12.27)
2w? 2w? 2w
For large r > T, Eq. (12.26) leads to
A A |sin(wT)| AT
)]~ < 10 — sin [(@ + Aw) T] cos [(@ + Aw) T — wr]| ~ A S@DL AT (12.28)
20w? 2w w 2w

Therefore, we conclude that SD(w, & = 0) ® AT /(2w). The duration of shaking is important because, close to the resonant
frequency, the undamped response spectrum has an amplitude proportional to 7.
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