
ME 451B    Flow Instabilities 

Instructor: Beverley McKeon 
Topics to be covered: 
1. Laminar-stability theory: Laminar-turbulent transition 

2. Dynamical systems 

¨ Bifurcations 

¨ Global stability, linear stability of parallel flows, conditions for stability 

¨ Viscosity as a destabilizing factor, convective and absolute instability 

3. Rayleigh equation 

¨ Instability criteria, response to small inviscid disturbances 

4. Discussion of a selection of instabilities 

¨ Kelvin-Helmholtz, Rayleigh-Taylor, Richtmyer-Meshkov 

¨ Other instabilities in geophysical flows 

5. The Orr-Sommerfeld equation 

¨ Dual role of viscosity, boundary-layer stability 

6. Modern concepts 

¨ Transient growth 

¨ Non-normal character of the linear Navier-Stokes operator 

¨ Weakly nonlinear stability theory, phenomenological theories of turbulence 

 
Textbooks: 
• Drazin & Reid, Hydrodynamic Stability 
• Schmid & Henningson, Stability and Transition in Shear Flows  



Introduction to Hydrodynamic Stability 

Ø Transition from laminar to turbulence 
Regimes observed in flow between independently rotating concentric cylinders: From laminar 
Couette flows to turbulent Taylor vortices. 

 
Laminar-turbulent transition (e.g., Morkovin map of the roads to wall turbulence) 
¨ Primary instability and eigen-analysis: Exponential growing modes, infinite time 
¨ Transient growth: Eventually decay after reaching the peak amplitude, finite time 
¨ Bypass transition: Large free stream forcing, pipe flow 

  



Two fundamental hypotheses about viscosity 
¨ The inviscid fluid flow may be unstable and the viscous fluid flow is stable. The effect of 

viscosity is stabilizing. 

¨ The inviscid fluid may be stable and the viscous fluid flow is unstable. The effect of 
viscosity is destabilizing. 

 
Effect of viscosity 

¨ The effect of viscosity is to dissipate energy and therefore it can damp out disturbances, 
stabilizing any flow for large enough viscosity.  

¨ However, viscosity also diffuses momentum, which can destabilize some flows. In parallel 
shear flows, they are inviscidly (linearly) stable. 

 
Ø Hydrodynamic stability theory 
¨ Response of a laminar flow to a disturbance of small or moderate amplitude.  
¨ Study under what conditions a small disturbance to a laminar base flow either grows or 

decays. The state of the system can become a different laminar state, turbulent, or etc. 

¨ Obtain the mathematical analysis of the evolution of disturbances while they are small. 
Linear governing equations are desirable, while open questions exist for solutions to the 
linear equations once nonlinearity is involved (i.e., disturbance amplitudes exceeds a few 
percent of the base flow). 

¨ Experiments and simulations are difficult by nature, since disturbances are small to begin 
with, and environments (or errors and noise) must be controlled to avoid contamination. 

 



Ø Approaches to tackling stability problems 
Observations 
Experiments clearly show transition, but the capture of onset of instability is difficult by nature. 
However, capturing the linear growth of perturbation is possible. 
 
Classical methods 
¨ Normal mode / Eigenvalue analysis: Perturbation growth on an infinite time horizon 
¨ Initial value analysis 
 
Modern methods 
¨ Non-normal mode analysis / Transient growth: Growth on a finite time horizon, maybe 

followed by decay if transition does not occur 
¨ Energy, phase-space methods, etc. 
 
Basic idea: Classical modal solution technique 
Originally developed for the stability of particles or structures, adopted to fluid flows. 
 
Complications 
¨ Simpler analysis in modal settings, but real problems may be initial value (IV) ones. 
¨ Modal approach may fail (e.g., in pipe flows). Need non-normal approach. 
¨ Base flows may be spatially or temporally evolving. 
¨ Boundary conditions may be important (e.g., bounded and unbounded flows) 
  



Linear Stability Analysis 

Ø Governing equations 
Incompressible flow of Newtonian fluid. The base flow has	𝒖𝒖(𝒙𝒙, 𝑡𝑡)	and	𝑝𝑝(𝒙𝒙, 𝑡𝑡). The perturbed 
solutions are	𝒖𝒖)(𝒙𝒙, 𝑡𝑡)	and	𝑝𝑝*(𝒙𝒙, 𝑡𝑡). Both satisfy the equations under given boundary conditions. 
 
Momentum (Navier-Stokes) & Continuity 
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Boundary conditions 
Typically, on solid boundaries, we have 

𝑢𝑢*!(𝑥𝑥! , 0) = 𝑢𝑢*!(𝑥𝑥!), 𝑢𝑢*!(𝑥𝑥! , 𝑡𝑡) = 0 
 
Perturbation (Reynolds decomposition) 

𝑢𝑢*! = 𝑈𝑈! + 𝑢𝑢! , 𝑝𝑝* = 𝑃𝑃 + 𝑝𝑝 
 
Base flow equation 

𝜕𝜕𝑈𝑈!

𝜕𝜕𝑡𝑡 + 𝑈𝑈"
𝜕𝜕𝑈𝑈!

𝜕𝜕𝑥𝑥"
= −

𝜕𝜕𝑃𝑃
𝜕𝜕𝑥𝑥!

+
1
Re∇

#𝑈𝑈! ,
𝜕𝜕𝑈𝑈!

𝜕𝜕𝑥𝑥!
= 0 

Usually we assume a time-independent base flow, so no evolution term. 
 
Perturbation equation 
We start from the full perturbed solutions 
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Subtracting the base flow equation, we have 
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Linearized equation 
For small perturbation amplitude, we neglect the second order term. 
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Disturbance size and growth defined from kinetic energy 
The kinetic energy per volume, for an incompressible and isothermal flow, is 

𝐸𝐸$ =
1
2<𝑢𝑢!𝑢𝑢! 	d𝑉𝑉
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The volume can be chosen as the infinite half-space for the boundary layer, or one wavelength 
of disturbance for a channel, etc.  
 
The disturbance energy evolves as governed by the Reynolds-Orr equation. The perturbation 
grows from the balance between extraction of energy from the base flow and energy dissipation 
due to viscous effects. 
 
Ø Definitions of stability 
1. General stability 
From ODE, the base flow is stable in the Lyapunov sense if for any	𝜀𝜀 > 0,	∃𝛿𝛿(𝜀𝜀) > 0	such that 

‖𝒖𝒖)(𝒙𝒙, 0) − 𝑼𝑼(𝒙𝒙, 0)‖ < 𝛿𝛿							 ⟹ 								 ‖𝒖𝒖)(𝒙𝒙, 𝑡𝑡) − 𝑼𝑼(𝒙𝒙, 𝑡𝑡)‖ < 𝜀𝜀, ∀𝑡𝑡 ≥ 0 
 
2. Asymptotic stability 

‖𝒖𝒖)(𝒙𝒙, 𝑡𝑡) − 𝑼𝑼(𝒙𝒙, 𝑡𝑡)‖ → 0, 𝑡𝑡 → ∞ 
 
3. Strong stability 

d
d𝑡𝑡

‖𝒖𝒖)(𝒙𝒙, 𝑡𝑡) − 𝑼𝑼(𝒙𝒙, 𝑡𝑡)‖ < 0, ∀𝒖𝒖)(𝒙𝒙, 0),				∀𝑡𝑡 > 0 

 
4. Stability 

lim
&→(

𝐸𝐸$(𝑡𝑡)
𝐸𝐸$(0)

→ 0 

 
5. Conditional stability 
If there exists a threshold energy	𝛿𝛿 > 0	such that the flow is stable if	𝐸𝐸(0) < 𝛿𝛿. 
 
6. Global stability 
If the threshold energy	𝛿𝛿 → ∞. This is a special case of conditional stability. 
 
7. Monotonic stability 

d𝐸𝐸$

d𝑡𝑡 < 0, ∀𝑡𝑡 > 0 

 



Example of perturbation growth 
Path 1 has monotonic stability to the initial condition, while path 2 has non-monotonic stability.  
Paths 3 and 4 indicate conditional stability, since there exists a threshold energy. 

 
8. Critical Reynolds numbers 
There are several critical	Re	defined based on different types of stability 

¨ For	Re < Re), the flow is monotonically stable 
¨ For	Re < Re*, the flow is globally stable 
¨ For	Re < Re+, the flow is linearly stable (i.e., conditionally stable) 

(i.e., when	Re > Re+ there exists at least one infinitesimal disturbance that is unstable) 
¨ For	Re < Re, , the flow will relaminarize, only if	Re*	does not correspond to the 

lowest	Re	for sustained turbulence 

 
9. Global and local stability 
Consider a wall shear layer. There is no well-posed global (all space) stability problem for the 
Navier-Stokes equation (NSE). Typically, we make a local approximation, move the local axis 
with	𝑈𝑈N = (𝑈𝑈- + 𝑈𝑈#)/2, and study the temporal growth of a spatially developing problem. 

 Re) Re.  Re/ Re0 

Pipe 81.5 / 2000 ∞ 

Channel 49.6 / 1000 5772 

Plane Couette 20.7 125 360 ∞ 

M
onotonic 

G
lobal 

Conditional 
 

 

True profile relative to	𝑈𝑈#(𝑦𝑦) 
Inviscid variation 



10. Open and closed domains 
Even if	𝐻𝐻 → ∞, the flow is still open as	𝑥𝑥 → ∞. We make the closed and local approximation 
using a quasi-periodic model. In 3D, we seek a solution of the form 

𝒖𝒖(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡) = 𝒖𝒖(𝑥𝑥 + 𝑛𝑛𝜆𝜆1 , 𝑦𝑦, 𝑧𝑧 + 𝑚𝑚𝜆𝜆2 , 𝑡𝑡), 𝑛𝑛,𝑚𝑚 ∈ ℕ3 
The problem is then solved within the domain 

𝑥𝑥 ∈ X−
𝜆𝜆1

2 ,
𝜆𝜆1

2 Y , 𝑦𝑦 ∈ (−𝐻𝐻,𝐻𝐻), 𝑧𝑧 ∈ X−
𝜆𝜆2

2 ,
𝜆𝜆2

2 Y , 𝑡𝑡 ≥ 0 

 
11. Convective & absolute instability 
Assume	𝒖𝒖(𝒙𝒙, 0)	has a compact support and	|𝒖𝒖| ∼ 𝑒𝑒4&	with	Re	𝑠𝑠 > 0	for some disturbances or 
modes. The solution	𝒖𝒖(𝒙𝒙, 𝑡𝑡) → 0	as	𝑡𝑡 → 0	for fixed	𝒙𝒙, but	𝒖𝒖(𝒙𝒙, 𝑡𝑡) → ∞	as	𝑡𝑡 → ∞	if we move 
along	𝒙𝒙 = 𝒄𝒄𝑡𝑡 with group velocity	𝒄𝒄 ≠ 0. This is a convective instability which dies away at 
any fixed point, but grow if we follow it with the group velocity	𝒄𝒄. If there exists a mode with 
group velocity	𝒄𝒄 = 𝟎𝟎 and thus	𝒖𝒖(𝒙𝒙, 𝑡𝑡) → ∞	as	𝑡𝑡 → ∞	for fixed	𝒙𝒙, then it is absolutely unstable.  

It is believed that local absolute instability implies global instability, the latter mathematically 
hard to describe. The implications of convective instability are not so clear. The wedge of 
instability can be used to describe convective instability. The wedge orientation corresponds to 
group velocity	𝒄𝒄, while the width depends on operator’s properties. 

 
For an example of a simple 1D flow governed by the linear equation 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡 + ℒ X

𝜕𝜕
𝜕𝜕𝑥𝑥Y 𝜕𝜕 = 0 

ℒ	is a linear differential (polynomial) operator. We seek ansatz of the form	𝑒𝑒!5134&	to study the 
temporal evolution. The non-trivial solution satisfies 

𝑠𝑠 + ℒ(𝑖𝑖𝑖𝑖) = 0, 𝑠𝑠 = 𝑠𝑠(𝑖𝑖) 



Take an initial condition (I.C.) as 

𝜕𝜕(𝑥𝑥, 0) =
1
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Then for	𝑡𝑡 > 0	the solution is simply 

𝜕𝜕(𝑥𝑥, 𝑡𝑡) =
1
2𝜋𝜋< < 𝑉𝑉(𝜉𝜉)	𝑒𝑒!5(178)𝑒𝑒4(5)&	d𝜉𝜉
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For an arbitrary	𝑥𝑥, the absolute or convective instability depends on the limit of	𝜕𝜕	as	𝑡𝑡 → ∞.  

lim
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Suppose a 𝛿𝛿-function perturbation source	𝑉𝑉(𝜉𝜉) = 𝛿𝛿(𝜉𝜉), at	𝑥𝑥 = 0	we have 

𝜕𝜕(0, 𝑡𝑡) =
1
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Given	ℒ(𝑓𝑓) = −(1 + 𝑓𝑓#)	as an example, we have 

𝑠𝑠 = 1 − 𝑖𝑖#, 𝜕𝜕(𝑥𝑥, 𝑡𝑡) ∼ < 𝑒𝑒:-75!;&3!51	d𝑖𝑖
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This corresponds to an absolute instability. 
 
12. Spatial and temporal evolution 
The stability problem can be formulated in space and/or time for disturbance growth 

¨ Temporal evolution of a spatially localized disturbance 
¨ Temporal evolution of a globally periodic disturbance 
¨ Spatial evolution of a temporally oscillatory source 



Comments 
¨ A flow with no disturbance is not practical in laboratory. 
¨ A flow may have one or more unstable disturbances, then it is an unstable flow. However, 

the most unstable disturbance may not be practically achievable / observable. 
¨ A stable base flow may evolve until it becomes unstable. After growth it may then evolve 

to another stable flow (e.g., saturation of nonlinearity) or it may become turbulent. 
 
Ø Bifurcation 
Bifurcation indicates the change in the number or qualitative character of the solutions as some 
parameters change. Local bifurcations are considered through local stability of equilibrium. 

1. Turning point / Saddle bifurcation 
Consider that for some components of velocity	𝒖𝒖	at some point as a function of	Re, with some 
constants	𝑖𝑖 > 0, 𝐿𝐿 ≠ 0, 𝑢𝑢<	and critical Reynolds number	Re=, we have 

𝑎𝑎 = 𝑖𝑖(Re − Re=), 𝑎𝑎 − 𝐿𝐿(𝑢𝑢 − 𝑢𝑢<)# = 0 
At the turning point, the velocity component begins to show different paths 

𝑢𝑢 = 𝑢𝑢< ± q𝑖𝑖
𝐿𝐿
(Re − Re=) 

Below	Re=	there is no solution, at	Re=	there is one solution, and above	Re= two solutions. 
 
2. Transcritical bifurcation 
Consider the following form 

𝑎𝑎𝑢𝑢 − 𝐿𝐿𝑢𝑢# = 0								 ⟹ 								𝑢𝑢 = 0, 𝑢𝑢 =
𝑎𝑎
𝐿𝐿 =

𝑖𝑖(Re − Re=)
𝐿𝐿  

There are always two solutions except at the transcritical point	Re = Re=. 
 
3. Pitchfork bifurcation 
This is typical for flows with symmetry in	𝑢𝑢	with the form 

𝑎𝑎𝑢𝑢 − 𝐿𝐿𝑢𝑢> = 0								 ⟹ 								𝑢𝑢 = 0, 𝑢𝑢 = ±q
𝑖𝑖
𝐿𝐿
(Re − Re=) 



Ø Normal mode analysis 
Assume that a solution can be found to the temporal stability problem. The decomposition of 
the fields is 

𝒖𝒖)(𝒙𝒙, 𝑡𝑡) = 𝑼𝑼(𝒙𝒙) + 𝒖𝒖(𝒙𝒙, 𝑡𝑡), 𝑝𝑝*(𝒙𝒙, 𝑡𝑡) = 𝑃𝑃(𝒙𝒙) + 𝑝𝑝(𝒙𝒙, 𝑡𝑡) 
Consider the solution of the form 

𝒖𝒖(𝒙𝒙, 𝑡𝑡) = 𝒖𝒖r(𝒙𝒙)𝑒𝑒4& , 𝑝𝑝(𝒙𝒙, 𝑡𝑡) = �̂�𝑝(𝒙𝒙)𝑒𝑒4& , 𝑠𝑠 = 𝜎𝜎 + 𝑖𝑖𝑖𝑖 
Then the linearized NS equation becomes 

𝑠𝑠𝒖𝒖r + 𝑼𝑼 ⋅ ∇𝒖𝒖r + 𝒖𝒖r ⋅ ∇𝑼𝑼 = −∇�̂�𝑝 +
1
Re∇

#𝒖𝒖r, ∇ ⋅ 𝒖𝒖r = 0, 𝒖𝒖r|?% = 𝟎𝟎 

The trivial solution	𝒖𝒖r = 𝟎𝟎 and	�̂�𝑝 = 0 always works, while there may exist non-zero solutions 
for special values of	𝑠𝑠. If the equation has non-trivial isolated and proper solutions (i.e., no 
singularities), then these solutions are the eigenvectors with eigenvalues	𝑠𝑠. Generally, each 
solution (normal mode) may be treated separately as it satisfies the linear system. 
 
Write modes in terms of physical variables that enter the problem (e.g., Re, wavenumber	𝑖𝑖) 

𝑠𝑠 = 𝑠𝑠(𝑖𝑖! , 𝜆𝜆, 𝜇𝜇) 
The set	𝑠𝑠	is the discrete spectrum with mode label	𝑖𝑖-, 𝑖𝑖#, ⋯ , 𝑖𝑖@. The mode number	𝑁𝑁	can be 
either finite (𝑁𝑁 < ∞) or infinite (𝑁𝑁 → ∞). Then	𝒖𝒖r(𝒙𝒙!; 𝑖𝑖! , 𝜆𝜆, 𝜇𝜇)	is the set of eigenvectors.  
¨ If	𝜎𝜎 > 0	for a given mode, then the flow is linearly unstable as a general disturbance can 

contain this mode. 
¨ If	𝜎𝜎 = 0	for a given mode, then the mode is neutrally stable. 
¨ If	𝜎𝜎 < 0	for a given mode, then the mode is asymptotically stable as the corresponding 

disturbance will decay. 
¨ If	𝜎𝜎 < 0	for all modes, then the flow is asymptotically stable. 
¨ A mode is marginally stable if	𝜎𝜎(𝑖𝑖!; 𝜆𝜆, 𝜇𝜇) = 0	for some values of (𝜆𝜆, 𝜇𝜇) but then 𝜎𝜎 > 0	for 

some neighboring values. 
 
Marginal stability 
Consider the neutral curve defined by	𝜎𝜎(𝑖𝑖!; 𝜆𝜆, 𝜇𝜇) = 0. It is also a 
marginal curve because	𝜎𝜎 > 0	nearby. In general, there may be 
no, one or many branches of the neutral curve for a given mode. 
 
The imaginary part of	𝜎𝜎	gives the frequency	𝑖𝑖	of the mode 

¨ If	𝑖𝑖(𝑖𝑖!; 𝜆𝜆, 𝜇𝜇) ≠ 0	at marginal stability, then the mode is overstable (oscillatory mode). 
¨ If	𝑖𝑖(𝑖𝑖!; 𝜆𝜆, 𝜇𝜇) = 0	at marginal stability, there is an exchange of instability, indicating a base 

flow different from	𝑼𝑼(𝒙𝒙), corresponding to a bifurcation of the steady flow solution.  



𝑼𝑼(𝒙𝒙) → 𝑼𝑼(𝒙𝒙) + 𝒖𝒖r(𝒙𝒙) = 𝑽𝑽(𝒙𝒙) 
Examples include convection cells when flow is heated from below, steep 2D water waves. 

 
Generally, the eigenmodes are complex. A real disturbance can be obtained from taking the 
real part, or adding with its complex conjugate 

Re{𝒖𝒖r(𝒙𝒙)𝑒𝑒4&}, 𝒖𝒖r(𝒙𝒙)𝑒𝑒4& + 𝒖𝒖r∗(𝒙𝒙)𝑒𝑒4∗& 
 
Initial value problem 
Consider the Laplace transform 

ℒ{𝒖𝒖(𝒙𝒙, 𝑡𝑡)} = 𝒖𝒖N(𝒙𝒙, 𝑠𝑠) = < 𝒖𝒖(𝒙𝒙, 𝑡𝑡)𝑒𝑒74&	d𝑡𝑡
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𝜕𝜕𝒖𝒖
𝜕𝜕𝑡𝑡 � = 𝑠𝑠𝒖𝒖N(𝒙𝒙, 𝑠𝑠) − 𝒖𝒖(𝒙𝒙, 0) 

For the linearized NS equation 

𝑠𝑠𝑢𝑢Ä!(𝒙𝒙, 𝑠𝑠) + ⋯−
1
Re∇

#𝑢𝑢Ä!(𝒙𝒙, 𝑠𝑠) = 𝑢𝑢!(𝒙𝒙, 0),
𝜕𝜕𝑢𝑢Ä!

𝜕𝜕𝑥𝑥!
= 0, 𝑢𝑢Ä!|?% = 0 

This can be solved using the Green’s function 

𝑢𝑢Ä!(𝒙𝒙, 𝑠𝑠) = <�̅�𝐺!"(𝒙𝒙, 𝑠𝑠; 𝒙𝒙B)	𝑢𝑢"(𝒙𝒙B, 0)	d𝒙𝒙B

%
 

The Green’s function satisfies 

𝑠𝑠�̅�𝐺!"(𝒙𝒙, 𝑠𝑠; 𝒙𝒙B) + ⋯−
1
Re∇

#�̅�𝐺!"(𝒙𝒙, 𝑠𝑠; 𝒙𝒙B) = 𝛿𝛿!"𝛿𝛿(𝒙𝒙 − 𝒙𝒙B) 

�̅�𝐺!" 	is the	𝑖𝑖-th component of	𝑢𝑢Ä!(𝒙𝒙, 𝑠𝑠)	when the source is	𝑢𝑢"(𝒙𝒙, 0) = 𝛿𝛿(𝒙𝒙 − 𝒙𝒙B), or the impulse 

response of the linearized equation. The inverse Laplace transform is 

𝑢𝑢!(𝒙𝒙, 𝑡𝑡) =
1
2𝜋𝜋𝑖𝑖 < 𝑢𝑢Ä!(𝒙𝒙, 𝑠𝑠)	𝑒𝑒4&	d𝑠𝑠

C3!(

C7!(
=

1
2𝜋𝜋𝑖𝑖 < É<�̅�𝐺!"(𝒙𝒙, 𝑠𝑠; 𝒙𝒙B)	𝑢𝑢"(𝒙𝒙B, 0)	d𝒙𝒙B

%
Ñ 𝑒𝑒4&	d𝑠𝑠

C3!(

C7!(
	

= <𝐺𝐺!"(𝒙𝒙, 𝑡𝑡; 𝒙𝒙B)	𝑢𝑢"(𝒙𝒙B, 0)	d𝒙𝒙B

%
 

The time-domain Green’s function is 

𝐺𝐺!"(𝒙𝒙, 𝑡𝑡; 𝒙𝒙B) =
1
2𝜋𝜋𝑖𝑖 < �̅�𝐺!"(𝒙𝒙, 𝑠𝑠; 𝒙𝒙B)	𝑒𝑒4&	d𝑠𝑠

C3!(

C7!(
 

The properties of the eigen spectrum of	𝒖𝒖	depends on the mathematical properties of	𝑮𝑮N(𝑠𝑠). 
¨ If all the singularities of	𝑮𝑮N(𝑠𝑠)	are poles, then there is a discrete, complete spectrum. This 

is typically associated with self-adjoint operators. The initial value problem is equivalent 
to the asymptotic stability one. Denote	𝐴𝐴!" 	as the residue at pole	𝑖𝑖, we have 

𝐺𝐺!"(𝒙𝒙, 𝑡𝑡; 𝒙𝒙B) = á𝐴𝐴!"(𝒙𝒙, 𝒙𝒙B; 𝑖𝑖)	𝑒𝑒4#&	
5

 



¨ If there is a branch point / cut or essential singularity, then there is a continuous spectrum. 
Denote	Γ	as the branch cut given by	𝑠𝑠 = 𝑠𝑠(𝑖𝑖), we have 

𝐺𝐺!"(𝒙𝒙, 𝑡𝑡; 𝒙𝒙B) = <�̅�𝐺!"(𝒙𝒙, 𝑠𝑠(𝑖𝑖); 𝒙𝒙B)	𝑒𝑒4(5)&	d𝑖𝑖
D

 

The continuous spectrum often leads to algebraic rather than exponential growth in time. 
 
In general, the solution to the initial value problem is  

𝑢𝑢!(𝒙𝒙, 𝑡𝑡) = < âá𝐴𝐴!"(𝒙𝒙, 𝒙𝒙B; 𝑖𝑖)	𝑒𝑒4#&	
5

+<�̅�𝐺!"(𝒙𝒙, 𝑠𝑠(𝑖𝑖); 𝒙𝒙B)	𝑒𝑒4(5)&	d𝑖𝑖
D

ä 𝑢𝑢"(𝒙𝒙B, 0)	d𝒙𝒙B

%
	

=á𝜙𝜙5(𝒙𝒙)	𝑒𝑒4#&

5

+<𝜙𝜙(𝒙𝒙, 𝑖𝑖)	𝑒𝑒4(5)&	d𝑖𝑖
D

 

This is the sum of proper normal modes and continuous spectrum. We call a mode proper and 
normal when	𝑠𝑠5 	is independent of	𝒙𝒙	and 𝐴𝐴!" 	is separable as	𝐴𝐴!" = 𝜙𝜙(𝒙𝒙)	𝜓𝜓!"(𝒙𝒙B).  



Inviscid Linear Stability Analysis 

Ø Parallel flows 

Consider a base flow	𝑈𝑈! = 𝑈𝑈(𝑦𝑦)	𝛿𝛿!-. The linearized momentum and continuity equations are 
𝜕𝜕𝑢𝑢
𝜕𝜕𝑡𝑡 + 𝑈𝑈

𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥 + 𝜈𝜈

𝜕𝜕𝑈𝑈
𝜕𝜕𝑦𝑦 = −

𝜕𝜕𝑝𝑝
𝜕𝜕𝑥𝑥 ,

𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡 + 𝑈𝑈

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥 = −

𝜕𝜕𝑝𝑝
𝜕𝜕𝑦𝑦	

𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡 + 𝑈𝑈

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥 = −

𝜕𝜕𝑝𝑝
𝜕𝜕𝑧𝑧 ,

𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥 +

𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦 +

𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧 = 0 

 
Velocity / Vorticity formulation 
Take the divergence of momentum equation and use the continuity, and we can obtain the 
Poisson’s equation for pressure (prime for	𝑦𝑦-derivative) 

∇#𝑝𝑝 = −2𝑈𝑈B 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥 

The	𝑦𝑦-momentum equation then becomes 

èX
𝜕𝜕
𝜕𝜕𝑡𝑡 + 𝑈𝑈

𝜕𝜕
𝜕𝜕𝑥𝑥Y∇

# − 𝑈𝑈BB 𝜕𝜕
𝜕𝜕𝑥𝑥ê 𝜕𝜕 = 0 

Note that to obtain this result, the commutator of operators	𝑈𝑈𝜕𝜕1	and	∇#	is not trivial. We can 
also obtain the vorticity equation in	𝑦𝑦-direction 

X
𝜕𝜕
𝜕𝜕𝑡𝑡 + 𝑈𝑈

𝜕𝜕
𝜕𝜕𝑥𝑥Y 𝜂𝜂 = −𝑈𝑈B 𝜕𝜕𝜕𝜕

𝜕𝜕𝑧𝑧 , 𝜂𝜂 =
𝜕𝜕𝑢𝑢
𝜕𝜕𝑧𝑧 −

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥  

The boundary conditions can be stated as	𝜕𝜕 = 0	at a solid wall and/or the far field. The initial 
conditions are 

𝜂𝜂(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 0) = 𝜂𝜂<(𝑥𝑥, 𝑦𝑦, 𝑧𝑧), 𝜕𝜕(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 0) = 𝜕𝜕<(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) 
The velocity / vorticity formulation gives a complete description of the evolution in both time 
and space of an arbitrary infinitesimal disturbance in an inviscid fluid.  
 
The advantage of this formulation using normal velocity and vorticity is the absence of pressure 
term. If pressure is needed, it can be recovered by 

k
𝜕𝜕#

𝜕𝜕𝑥𝑥# +
𝜕𝜕#

𝜕𝜕𝑧𝑧#m𝑝𝑝 =
𝜕𝜕#𝜕𝜕
𝜕𝜕𝑡𝑡𝜕𝜕𝑦𝑦 + 𝑈𝑈

𝜕𝜕#𝜕𝜕
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦 − 𝑈𝑈B 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥 

 



Modal solutions 
Consider a disturbance with streamwise and spanwise wavenumbers	𝛼𝛼	and	𝛽𝛽 

𝒖𝒖(𝒙𝒙, 𝑡𝑡) = 𝒖𝒖r(𝑦𝑦)	𝑒𝑒!(E13F27EC&), 𝑐𝑐 = 𝑐𝑐G + 𝑖𝑖𝑐𝑐H 
To obtain bounded solutions at	𝑥𝑥, 𝑧𝑧 → ∞, we have real	𝛼𝛼	and	𝛽𝛽. This represents a propagating 
wave in the	𝑥𝑥𝑧𝑧-plane with direction	(𝛼𝛼, 𝛽𝛽). The phase speed and the growth/decay rate are 

𝑐𝑐I =
𝛼𝛼𝑐𝑐G

ï𝛼𝛼# + 𝛽𝛽#
, 𝒖𝒖 ∝ 𝒖𝒖r(𝑦𝑦)	𝑒𝑒EC$& 

Based on the growth rate, the stability of the flow can be analyzed as 
¨ Flow is linearly stable if	𝛼𝛼𝑐𝑐! ≤ 0	for all real wavenumbers	𝛼𝛼	and	𝛽𝛽. 
¨ Flow is unstable if	𝛼𝛼𝑐𝑐! > 0	for at least one pair of real wavenumbers	𝛼𝛼	and	𝛽𝛽. 
 
The governing equations then become an ODE system (eigenvalue problem) 

𝑖𝑖𝛼𝛼(𝑈𝑈 − 𝑐𝑐)𝑢𝑢ò + 𝑈𝑈B𝜕𝜕ò = −𝑖𝑖𝛼𝛼�̂�𝑝, 𝑖𝑖𝛼𝛼(𝑈𝑈 − 𝑐𝑐)𝜕𝜕ò = −�̂�𝑝B	
𝑖𝑖𝛼𝛼(𝑈𝑈 − 𝑐𝑐)𝜕𝜕r = −𝑖𝑖𝛽𝛽�̂�𝑝, 𝑖𝑖(𝛼𝛼𝑢𝑢ò + 𝛽𝛽𝜕𝜕r) + 𝜕𝜕òB = 0 

For rigid boundaries, we have	𝜕𝜕ò = 0	at a solid wall and/or the far field. The solution leads to 
the eigenvalue relation of the form	ℱ(𝛼𝛼, 𝛽𝛽, 𝑐𝑐) = 0. In addition to this discrete spectrum, the 
singularity caused by	𝑈𝑈 − 𝑐𝑐 = 0	gives the continuous spectrum. 
 
Squire’s transformation & Equivalent 2D problem 
We can rotate the	𝑥𝑥𝑧𝑧-coordinate to align in the wavenumber direction	(𝛼𝛼, 𝛽𝛽) 

𝛼𝛼* = ï𝛼𝛼# + 𝛽𝛽#, 𝛼𝛼*𝑢𝑢* = 𝛼𝛼𝑢𝑢ò + 𝛽𝛽𝜕𝜕r, 𝑝𝑝* =
𝛼𝛼*
𝛼𝛼 �̂�𝑝, 𝜕𝜕* = 𝜕𝜕ò 

This transformation reduces the problem to the equivalent 2D problem, which is the same by 
directly setting	𝛽𝛽 = 0	and	𝜕𝜕r = 0. 

𝑖𝑖𝛼𝛼*(𝑈𝑈 − 𝑐𝑐)𝑢𝑢* + 𝑈𝑈B𝜕𝜕* = −𝑖𝑖𝛼𝛼*𝑝𝑝*, 𝑖𝑖𝛼𝛼*(𝑈𝑈 − 𝑐𝑐)𝜕𝜕* = −𝑝𝑝*B, 𝑖𝑖𝛼𝛼*𝑢𝑢* + 𝜕𝜕* B = 0 
 
Squire’s theorem 
For rigid boundaries (as the transform does not properly handle BCs otherwise), each unstable 
3D disturbance corresponds to a more unstable 2D case. 
 
To prove this, denote 𝑐𝑐 = 𝑓𝑓(𝛼𝛼)	as the solution to the 2D problem with	𝛽𝛽 = 0	and	𝜕𝜕r = 0. Then 
we have	𝑐𝑐 = 𝑓𝑓(𝛼𝛼*)	as the solution to the equivalent 2D problem. Therefore, the original 3D 
problem has the solution 

𝑐𝑐 = 𝑓𝑓 öï𝛼𝛼# + 𝛽𝛽#õ 

When	𝛽𝛽 ≠ 0, we have	𝛼𝛼* > 𝛼𝛼. For each unstable 3D mode with a growth rate	𝛼𝛼𝑐𝑐! > 0, the 
corresponding 2D mode has	𝛼𝛼*𝑐𝑐! > 𝛼𝛼𝑐𝑐! > 0, which is more unstable. 



Stream function formulation for 2D problem 
From Squire’s theorem, we only need to consider 2D disturbances, which can be described by 
the stream function 

𝜓𝜓B(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) = 𝜙𝜙(𝑦𝑦)	𝑒𝑒!E(17C&), 𝑢𝑢ò =
d𝜙𝜙
d𝑦𝑦 = 𝜙𝜙B, 𝜕𝜕ò = −𝑖𝑖𝛼𝛼𝜙𝜙 

The continuity is automatically satisfied. The momentum equations become 
−(𝑈𝑈 − 𝑐𝑐)	𝜙𝜙B + 𝑈𝑈B𝜙𝜙 = �̂�𝑝, (𝑈𝑈 − 𝑐𝑐)(𝜙𝜙BB − 𝛼𝛼#𝜙𝜙) − 𝜙𝜙𝑈𝑈BB = 0 

They are invariant under the transformation 
𝑢𝑢 → −𝑢𝑢, 𝜕𝜕 → 𝜕𝜕, 𝑥𝑥 → −𝑥𝑥, 𝑡𝑡 → −𝑡𝑡, 𝑝𝑝 → −𝑝𝑝 

So, we have the first pair of solutions 

𝜙𝜙(𝑦𝑦)	𝑒𝑒!E(17C&) → −𝜙𝜙(𝑦𝑦)	𝑒𝑒7!E(17C&) 
As the coefficients of the Rayleigh equation are real, if	𝜙𝜙	is the eigenfunction with stable 
eigenvalue	𝑐𝑐	satisfying	𝛼𝛼𝑐𝑐! > 0, then there is another unstable mode	𝜙𝜙∗	that corresponds to 
eigenvalue	𝑐𝑐∗ . We can thus take	|𝑐𝑐!| > 0	as the condition for instability. Note that neutral 
modes with	𝑐𝑐! = 0	are also useful because they may adjoin unstable solutions. 
 
Ø Classical inviscid stability theorems 
We focus on the temporal stability of parallel shear flows. Assume that the base flow is parallel 
with	𝑈𝑈! = 𝑈𝑈(𝑦𝑦)	𝛿𝛿-!, the fluid is inviscid (Newtonian, incompressible, etc.) and perturbations 
are small so that we can neglect nonlinear terms. 
 
Rayleigh equation 
Start with the wall-normal velocity equation 

èX
𝜕𝜕
𝜕𝜕𝑡𝑡 + 𝑈𝑈

𝜕𝜕
𝜕𝜕𝑥𝑥Y∇

# − 𝑈𝑈BB 𝜕𝜕
𝜕𝜕𝑥𝑥ê 𝜕𝜕 = 0 

In modal form	𝜕𝜕(𝒙𝒙, 𝑡𝑡) = 𝜕𝜕ò(𝑦𝑦)	𝑒𝑒!(E13FJ7EC&), we have the Rayleigh equation 

(𝑈𝑈 − 𝑐𝑐)(𝐷𝐷# − 𝑖𝑖#)𝜕𝜕ò − 𝑈𝑈BB𝜕𝜕ò = 0, 𝑖𝑖# = 𝛼𝛼# + 𝛽𝛽#, 𝐷𝐷 =
d
d𝑦𝑦 

Boundary conditions are	𝜕𝜕ò = 0	at	𝑦𝑦 = ±1	for bounded flows or	𝜕𝜕ò = 0	at	𝑦𝑦 = 0	and	𝑦𝑦 → ∞ for 
semi-infinite domains. This is an eigenvalue problem for a second-order differential operator. 
The wave speed	𝑐𝑐	is the complex eigenvalue and appears in pairs with	𝑐𝑐∗. As the boundary 
conditions are unchanged with the sign of	𝛼𝛼, so we take	𝛼𝛼 ≥ 0	and the criterion for instability 
becomes	𝑐𝑐! > 0	for some positive	𝛼𝛼. 
 
Adjoint Rayleigh equation 
In the operator form, Rayleigh equation becomes 

ℒ𝜙𝜙 = [(𝑈𝑈 − 𝑐𝑐)(𝐷𝐷# − 𝛼𝛼#) − 𝑈𝑈BB]	𝜙𝜙 = 0 



Define an inner product 

〈𝜙𝜙-, 𝜙𝜙#〉 = < 𝜙𝜙-
∗𝜙𝜙#	d𝑦𝑦

J!

J%
, 〈𝜙𝜙-, 𝜙𝜙#〉∗ = 〈𝜙𝜙#, 𝜙𝜙-〉 

Under the same boundary conditions, 𝜙𝜙K	and	ℒK	are called the adjoints of	𝜙𝜙	and	ℒ	if we have 
〈𝜙𝜙K, ℒ𝜙𝜙〉 = 〈ℒK𝜙𝜙K, 𝜙𝜙〉 

Rayleigh equation is not self-adjoint. Its adjoint equation is 
ℒK𝜙𝜙K = [(𝐷𝐷# − 𝛼𝛼#)(𝑈𝑈 − 𝑐𝑐) − 𝑈𝑈BB]	𝜙𝜙K = 0 

Compare with the Rayleigh equation, we can obtain the self-adjoint form 

𝜙𝜙K =
𝐴𝐴𝜙𝜙
𝑈𝑈 − 𝑐𝑐 , 𝐷𝐷 è(𝑈𝑈 − 𝑐𝑐)#𝐷𝐷 X

𝜙𝜙
𝑈𝑈 − 𝑐𝑐Yê − 𝛼𝛼#(𝑈𝑈 − 𝑐𝑐)𝜙𝜙 = 0 

The adjoint eigenvalues are conjugates of the eigenvalues. The eigenfunctions may not be 
orthogonal to each other (e.g., for a non-normal operator), but the adjoint eigenfunctions are 
orthogonal to each other, form a complete basis, and orthogonal to all the eigenfunctions except 
the one that shares a conjugate eigenvalue (bi-orthogonality). 
 
Rayleigh’s inflection point criterion 
Rayleigh criterion gives a necessary condition for instability. It does not require specification 
of a full velocity profile. The criterion states that if there exist an unstable mode with	𝑐𝑐! > 0, 
then we must have	𝑈𝑈BB(𝑦𝑦) = 0	somewhere in the domain. 
 
Proof. Multiply the Rayleigh equation by	𝜕𝜕∗	and integrate in	𝑦𝑦 from	[−1,1]. Assume	𝑐𝑐! > 0	so 
that the Rayleigh equation is not singular. For this unstable mode, we have 

< k𝜕𝜕ò∗𝐷𝐷#𝜕𝜕ò − 𝛼𝛼#|𝜕𝜕ò|# −
𝑈𝑈BB

𝑈𝑈 − 𝑐𝑐
|𝜕𝜕ò|#m 	d𝑦𝑦

-

7-
= 0 

The first term is manipulated using integration by part with the wall boundary conditions 

< 𝜕𝜕ò∗𝐷𝐷#𝜕𝜕ò	d𝑦𝑦
-

7-
= −< 𝐷𝐷𝜕𝜕ò∗𝐷𝐷𝜕𝜕ò	d𝑦𝑦

-

7-
= −< |𝐷𝐷𝜕𝜕ò|#	d𝑦𝑦

-

7-
 

We now have 

< (|𝐷𝐷𝜕𝜕ò|# + 𝛼𝛼#|𝜕𝜕ò|#)	d𝑦𝑦
-

7-
+<

𝑈𝑈BB

𝑈𝑈 − 𝑐𝑐
|𝜕𝜕ò|#

-

7-
= 0 

The first term is real and positive definite, while the second term is generally complex as 

<
𝑈𝑈BB

𝑈𝑈 − 𝑐𝑐
|𝜕𝜕ò|#

-

7-
= < 𝑈𝑈BB|𝜕𝜕ò|#

𝑈𝑈 − 𝑐𝑐L + 𝑖𝑖𝑐𝑐!

|𝑈𝑈 − 𝑐𝑐|# 	d𝑦𝑦
-

7-
 

The only way for the imaginary part to be zero is that	𝑈𝑈BB	changes sign in the domain.  



Alternatively, any profile without an inflection point is linearly, inviscidly stable as	Re → ∞. 
 
Fjørtoft’s criterion (1950) 
Conditions for a linearly unstable base profile can be further constrained by investigating the 
real part of the same equation. For a monotonic	𝑈𝑈(𝑦𝑦), a necessary condition for instability is 

𝑈𝑈BB(𝑈𝑈 − 𝑈𝑈4) < 0, 𝑈𝑈4 = 𝑈𝑈(𝑦𝑦4) 
where	𝑦𝑦4	is the inflection point with	𝑈𝑈BB(𝑦𝑦4) = 0. This implies that the inflection point has to 
be a maximum of the spanwise mean vorticity. 
 
Proof. The real part of the equation is 

<
𝑈𝑈BB(𝑈𝑈 − 𝑐𝑐L)
|𝑈𝑈 − 𝑐𝑐|#

|𝜕𝜕ò|#	d𝑦𝑦
-

7-
= −< (|𝐷𝐷𝜕𝜕ò|# + 𝛼𝛼#|𝜕𝜕ò|#)	d𝑦𝑦

-

7-
 

As we know from the imaginary part 

<
𝑈𝑈BB

|𝑈𝑈 − 𝑐𝑐|#
|𝜕𝜕ò|#	d𝑦𝑦

-

7-
= 0								 ⟹ 								 (𝑐𝑐L − 𝑈𝑈4)<

𝑈𝑈BB

|𝑈𝑈 − 𝑐𝑐|#
|𝜕𝜕ò|#	d𝑦𝑦

-

7-
= 0 

we can add it to the LHS and obtain 

<
𝑈𝑈BB(𝑈𝑈 − 𝑈𝑈4)
|𝑈𝑈 − 𝑐𝑐|#

|𝜕𝜕ò|#	d𝑦𝑦
-

7-
= −< (|𝐷𝐷𝜕𝜕ò|# + 𝛼𝛼#|𝜕𝜕ò|#)	d𝑦𝑦

-

7-
 

The RHS is negative, so we must have	𝑈𝑈BB(𝑈𝑈 − 𝑈𝑈4) < 0	somewhere in the domain. 

In terms of spanwise vorticity, the condition can be written as 
𝜕𝜕𝑖𝑖2

𝜕𝜕𝑦𝑦
(𝑈𝑈 − 𝑈𝑈4) > 0, 𝑖𝑖2 = −

𝜕𝜕𝑈𝑈
𝜕𝜕𝑦𝑦 , 𝑈𝑈BB = −

𝜕𝜕𝑖𝑖2

𝜕𝜕𝑦𝑦  

 
Howard’s semicircle theorem 
The eigenvalues of the Rayleigh equation are confined to a disk of radius	𝑅𝑅, center	𝑐𝑐L + 𝑖𝑖𝑐𝑐! 

𝑅𝑅 =
𝑈𝑈MNO − 𝑈𝑈MHP

2 , 𝑐𝑐L =
𝑈𝑈MNO + 𝑈𝑈MHP

2 , 𝑐𝑐! = 0 

 
 



Proof. Recall the self-adjoint form of the adjoint Rayleigh equation 

𝜕𝜕òK =
𝜕𝜕ò

𝑈𝑈 − 𝑐𝑐 , 𝐷𝐷[(𝑈𝑈 − 𝑐𝑐)#𝐷𝐷𝜕𝜕òK] − 𝛼𝛼#(𝑈𝑈 − 𝑐𝑐)#𝜕𝜕òK = 0 

Multiply the conjugate of	𝜕𝜕òK and integrate over the domain 

< (𝑈𝑈 − 𝑐𝑐)#𝒬𝒬	d𝑦𝑦
-

7-
= 0, 𝒬𝒬 = £𝐷𝐷𝜕𝜕òK£# + 𝛼𝛼#£𝜕𝜕òK£# 

The real and imaginary parts become 

< [(𝑈𝑈 − 𝑐𝑐L)# − 𝑐𝑐!
#]	𝒬𝒬	d𝑦𝑦

-

7-
= 0, 2𝑐𝑐! < (𝑈𝑈 − 𝑐𝑐L)	𝒬𝒬	d𝑦𝑦

-

7-
= 0 

The imaginary part implies that	𝑈𝑈 − 𝑐𝑐L 	must change sign in the domain. For a general	𝑐𝑐! ≠ 0, 
we have	𝑈𝑈MHP < 𝑐𝑐L < 𝑈𝑈MNO. Now we obtain 

< 𝑈𝑈𝒬𝒬	d𝑦𝑦
-

7-
= 𝑐𝑐L < 𝒬𝒬	d𝑦𝑦

-

7-
 

Using this expression, the real part gives 

< (𝑈𝑈# − 2𝑈𝑈𝑐𝑐L + 𝑐𝑐L
# − 𝑐𝑐!

#)	𝒬𝒬	d𝑦𝑦
-

7-
= 0, < 𝑈𝑈#𝒬𝒬	d𝑦𝑦

-

7-
= (𝑐𝑐L

# + 𝑐𝑐!
#)< 𝒬𝒬	d𝑦𝑦

-

7-
 

Since	𝑈𝑈MHP ≤ 𝑈𝑈(𝑦𝑦) ≤ 𝑈𝑈MNO, using the above results, we have 

0 ≥ < (𝑈𝑈 − 𝑈𝑈MHP)(𝑈𝑈 − 𝑈𝑈MNO)	𝒬𝒬	d𝑦𝑦
-

7-
	

≥ < [(𝑐𝑐L
# + 𝑐𝑐!

#) − (𝑈𝑈MHP + 𝑈𝑈MNO)𝑐𝑐L + 𝑈𝑈MHP𝑈𝑈MNO]	𝒬𝒬	d𝑦𝑦
-

7-
 

This finally leads to 

X𝑐𝑐L −
𝑈𝑈MNO + 𝑈𝑈MHP

2 Y
#

+ 𝑐𝑐!
# ≤ X

𝑈𝑈MNO − 𝑈𝑈MHP

2 Y
#

 

As an example, consider the Bickley jet with a steady 2D laminar profile	𝑈𝑈(𝑦𝑦) = sech 𝑦𝑦. Even 
though the fluid is viscous, at high	Re we can apply the inviscid approximation. The unstable 
eigenvalues (as	𝛼𝛼	varies) fall within Howard’s semicircle. 



Conditions for sufficiency 
Tollmien’s heuristic argument: Rayleigh and Fjørtoft criteria are only sufficient for symmetric 
profiles in a channel, and monotonic profiles of boundary layer type. A sufficient condition is 

∂𝑐𝑐!

∂(𝛼𝛼#)®E&
< 0 

This implies that we have unstable	𝑐𝑐! > 0	for	𝛼𝛼	slightly lower than the neutral mode	𝛼𝛼4. 
 
Tollmien’s counter example 
Consider a sinusoidal base flow	𝑈𝑈(𝑦𝑦) = sin 𝑦𝑦	for	𝑦𝑦 ∈ [−ℎ, ℎ]. We have	𝑈𝑈BB(𝑦𝑦) = −𝑈𝑈, and the 
profile is monotonic for	ℎ ≤ 𝜋𝜋/2. The inflection point is	𝑦𝑦4 = 𝑛𝑛𝜋𝜋, and consider	ℎ = 𝜋𝜋/2, we 
have one inflection point at	𝑦𝑦4 = 0. The necessary Rayleigh and Fjørtoft conditions are both 
satisfied, but the flow is stable. 
 
The issue lies in the marginally stable eigen solution, which exists in the general case 

𝑐𝑐 = 𝑈𝑈4 = 0, 𝛼𝛼 = 𝛼𝛼4 = É1 −
𝑛𝑛#𝜋𝜋#

(𝑦𝑦# − 𝑦𝑦-)#
Ñ

-
#
 

𝜙𝜙 = 𝜙𝜙4 = sin É
𝑛𝑛𝜋𝜋(𝑦𝑦# − 𝑦𝑦-)
𝑦𝑦# − 𝑦𝑦-

Ñ , for	|𝑛𝑛| <
𝑦𝑦# − 𝑦𝑦-

𝜋𝜋 ,				𝑛𝑛 ∈ ℤ 

Hence, if	𝑦𝑦# − 𝑦𝑦- < 𝜋𝜋, the flow is stable as there only exists the trivial mode	𝜙𝜙4 = 0. 
 
Ø Critical layers 
A critical layer is defined as a location in the flow where	𝑈𝑈(𝑦𝑦C) = 𝑐𝑐L, the wave speed is real 
and equal to the local mean velocity. We require	𝑈𝑈B(𝑦𝑦C) ≠ 0, and note that	𝑐𝑐 ≠ 𝑐𝑐4	necessarily. 
From the Rayleigh equation 

(𝐷𝐷# − 𝑖𝑖#)𝜕𝜕ò −
𝑈𝑈BB

𝑈𝑈 − 𝑐𝑐 𝜕𝜕ò = 0 

we notice that	𝑈𝑈(𝑦𝑦) = 𝑐𝑐	is a regular singular point of logarithmic type in the complex plane, 
with exponents 0 and 1. For instability, 𝑐𝑐! ≠ 0	and there is no singularity, then it can be solved 
numerically. The local solution can be expressed in terms of a Frobenius series expanding the 
velocity profile around the critical layer 
 
Tollmien’s inviscid solutions 

𝜕𝜕ò-(𝑦𝑦) = (𝑦𝑦 − 𝑦𝑦C)𝑃𝑃-(𝑦𝑦), 𝜕𝜕ò#(𝑦𝑦) = 𝑃𝑃#(𝑦𝑦) +
𝑈𝑈C

BB

𝑈𝑈C
B 𝜕𝜕ò-(𝑦𝑦) ln(𝑦𝑦 − 𝑦𝑦C) 



Tollmien gave two linearly independent solutions, and	𝑃𝑃-(𝑦𝑦)	and	𝑃𝑃#(𝑦𝑦)	are analytic functions 
determined by boundary conditions. Usually, we choose	𝑃𝑃-(𝑦𝑦C) = 𝑃𝑃#(𝑦𝑦C) = 1. 
¨ 𝜕𝜕ò-(𝑦𝑦)	is the regular inviscid solution with	𝑃𝑃-(𝑦𝑦C) ≠ 0. 
¨ 𝜕𝜕ò#(𝑦𝑦)	is the singular inviscid solution with a logarithmic branch point at	𝑦𝑦 = 𝑦𝑦C, and we 

call	𝑃𝑃#(𝑦𝑦)	as the regular part of the singular solution.  
For a real	𝑐𝑐, we also have a real	𝑦𝑦C 	and we specify the value as 

ln(𝑦𝑦 − 𝑦𝑦C) = ~	ln
|𝑦𝑦 − 𝑦𝑦C| , 𝑦𝑦 > 𝑦𝑦C

ln|𝑦𝑦 − 𝑦𝑦C| − 𝑖𝑖𝜋𝜋, 𝑦𝑦 < 𝑦𝑦C
 

The singular inviscid solution is discontinuous at the critical layer. 
 
Streamlines near the critical layer 
Assume a wave amplitude	𝐴𝐴 moving with velocity	𝑐𝑐	such that the motion is steady. Streamlines, 
streak lines and particle paths all coincide. Define a stream function as 

𝜓𝜓(𝑦𝑦) = < [𝑈𝑈(𝑦𝑦) − 𝑐𝑐]	d𝑦𝑦
J

J'
+ 𝐴𝐴	ReØ𝜙𝜙𝑒𝑒!E1Q∞, 𝑥𝑥* = 𝑥𝑥 − 𝑐𝑐𝑡𝑡 

Near the critical layer, we have 

𝑈𝑈 − 𝑐𝑐 ≈ 𝑈𝑈C
B(𝑦𝑦 − 𝑦𝑦C), 𝜙𝜙 ≈ 𝜙𝜙(𝑦𝑦C), 𝜓𝜓(𝑦𝑦) ≈

1
2𝑈𝑈C

B(𝑦𝑦 − 𝑦𝑦C)# + 𝐴𝐴𝜙𝜙(𝑦𝑦C) cos(𝛼𝛼𝑥𝑥*) 

The resulting field is the Kelvin’s cat’s eye pattern of the streamlines near the critical layer. 
There are two types of stagnation point, hyperbolic and center type. There is a concentration 
of vorticity at the cat’s eye, but no instability. 

 
Reynolds stress 
The behavior of the Reynolds stress	𝑢𝑢𝜕𝜕ÄÄÄÄ	is helpful in understanding the structure of the critical 
layers. Consider the stress averaged in the	𝑥𝑥-direction 

𝜏𝜏(𝑦𝑦) = −𝑢𝑢𝜕𝜕ÄÄÄÄ = −
𝛼𝛼
2𝜋𝜋< 𝑢𝑢𝜕𝜕	d𝑥𝑥

#R
E

<
 

With the fluctuations in terms of the stream function, we have 

𝑦𝑦 = 𝑦𝑦C 



𝑢𝑢 = ReØ𝜙𝜙B	𝑒𝑒!E(17C&)∞, 𝜕𝜕 = ReØ−𝑖𝑖𝛼𝛼𝜙𝜙	𝑒𝑒!E(17C&)∞ 

The Reynolds stress and its gradient are obtained as 

𝜏𝜏(𝑦𝑦) =
𝑖𝑖𝛼𝛼
4
(𝜙𝜙𝜙𝜙B∗ − 𝜙𝜙∗𝜙𝜙B)	𝑒𝑒#EC$& ,

d𝜏𝜏
d𝑦𝑦 =

1
2𝛼𝛼𝑐𝑐!

𝑈𝑈BB|𝜙𝜙|#

|𝑈𝑈 − 𝑐𝑐|# 𝑒𝑒
#EC$& 

Note that the derivation uses the Rayleigh equation to substitute	𝜙𝜙BB 
(𝑈𝑈 − 𝑐𝑐)(𝜙𝜙BB − 𝛼𝛼#𝜙𝜙) − 𝑈𝑈BB𝜙𝜙 = 0 

Suppose that an unstable mode exists for some	𝛼𝛼	and that as	𝛼𝛼 → 𝛼𝛼4	(neutral mode), we have 
𝑐𝑐! → 0, 𝑐𝑐L → 𝑈𝑈(𝑦𝑦C) = 𝑈𝑈C 	and	𝑈𝑈 → 𝑐𝑐	as	𝑦𝑦 → 𝑦𝑦C. Then	d𝜏𝜏/d𝑦𝑦 = 0	everywhere except possibly 
at	𝑦𝑦 = 𝑦𝑦C 	where we need to evaluate 

d𝜏𝜏
d𝑦𝑦 = lim

C$→<
C(→S'

1
2𝛼𝛼𝑐𝑐!

𝑈𝑈BB|𝜙𝜙|#

(𝑈𝑈 − 𝑐𝑐L)# + 𝑐𝑐!
# 

Near the critical layer	𝑦𝑦 = 𝑦𝑦C, we can write 

d𝜏𝜏
d𝑦𝑦 = lim

C$→<

1
2𝛼𝛼𝑐𝑐!

𝑈𝑈BB|𝜙𝜙|#

𝑈𝑈C
B#(𝑦𝑦 − 𝑦𝑦C)# + 𝑐𝑐!

# 

Integrate across the critical layer and let	𝑐𝑐! → 0	from above, the discontinuity in	𝜏𝜏	is 

Δ𝜏𝜏 = 𝜏𝜏(𝑦𝑦C
3) − 𝜏𝜏(𝑦𝑦C

7) = lim
C$→<

1
2𝛼𝛼𝑈𝑈C

BB|𝜙𝜙|# <
𝑐𝑐! 	d𝑦𝑦

𝑈𝑈C
B#(𝑦𝑦 − 𝑦𝑦C)# + 𝑐𝑐!

#

J'3T

J'7T
=
1
2𝛼𝛼𝜋𝜋

𝑈𝑈C
BB

𝑈𝑈C
B |𝜙𝜙|

# 

As we have	𝜏𝜏(𝑦𝑦#) = 𝜏𝜏(𝑦𝑦-) = 0, if	𝑈𝑈	is monotonic, then there can only be one jump in	𝜏𝜏 (i.e. 
one critical layer). Because	d𝜏𝜏/d𝑦𝑦 = 0	for the neutral mode, we have	Δ𝜏𝜏 = 0	and	𝑈𝑈C

BB = 0, 
which corresponds to an inflection point at the critical layer. In general, we have	∑ Δ𝜏𝜏 = 0	but 
for each critical layer	Δ𝜏𝜏 ≠ 0. 
 
Ø Piecewise linear profiles 
Parallel flow stability problems can be numerically solved in full now. The historical approach 
of approximating the base flow using piecewise linear profiles is still instructive because it 
leads to analytical forms for the dispersion relationship	𝑐𝑐(𝛼𝛼, 𝛽𝛽)	and eigenfunctions. Piecewise 
linear profiles mean that they can have discontinuities either in	𝑈𝑈	or	𝑈𝑈B. 



Within each linear part, we have	𝑈𝑈BB = 0	and the Rayleigh equation becomes 
(𝑈𝑈 − 𝑐𝑐)(𝐷𝐷# − 𝑖𝑖#)𝜕𝜕ò = 0 

However, we need two jump conditions at the discontinuity. Integrate the Rayleigh equation 
across the discontinuity	𝑦𝑦 = 𝑦𝑦U, we have 

𝐷𝐷[(𝑈𝑈 − 𝑐𝑐)𝐷𝐷𝜕𝜕ò − 𝑈𝑈B𝜕𝜕ò] = (𝑈𝑈 − 𝑐𝑐)𝑖𝑖#𝜕𝜕ò, [(𝑈𝑈 − 𝑐𝑐)𝐷𝐷𝜕𝜕ò − 𝑈𝑈B𝜕𝜕ò]73 = 0 
This states that the pressure is continuous across the discontinuity. The first jump condition for 
eigenfunction	𝜕𝜕ò	can be written as 

�̂�𝑝 =
𝑖𝑖𝛼𝛼
𝑖𝑖# [𝑈𝑈

B𝜕𝜕ò − (𝑈𝑈 − 𝑐𝑐)𝐷𝐷𝜕𝜕ò], ⟦(𝑈𝑈 − 𝑐𝑐)𝐷𝐷𝜕𝜕ò − 𝑈𝑈B𝜕𝜕ò⟧ = 0 

The second jump condition is obtained as 

−
𝑖𝑖#�̂�𝑝

𝑖𝑖𝛼𝛼(𝑈𝑈 − 𝑐𝑐)# = 𝐷𝐷 è
𝜕𝜕ò

𝑈𝑈 − 𝑐𝑐ê , ∑
𝜕𝜕ò

𝑈𝑈 − 𝑐𝑐∏ = 0				or				 ∑
𝜙𝜙

𝑈𝑈 − 𝑐𝑐∏ = 0 

For continuous	𝑈𝑈, this is equivalent to matching vertical velocity (i.e. the interface is material). 
 
Example: Mixing layer 
The base flow is given as	𝑈𝑈(𝑦𝑦) = ±1	above and below the middle layer described as 

𝑈𝑈(𝑦𝑦) = 𝑦𝑦, −1 ≤ 𝑦𝑦 ≤ 1 
The boundary and jump conditions at discontinuities	𝑦𝑦 = ±1	are stated as 

𝜕𝜕ò|J→±( → 0, ⟦(𝑈𝑈 − 𝑐𝑐)𝐷𝐷𝜕𝜕ò − 𝑈𝑈B𝜕𝜕ò⟧ = 0, ∑
𝜕𝜕ò

𝑈𝑈 − 𝑐𝑐∏ = 0 

The solution in each region has the form 

𝜕𝜕òW = 𝐴𝐴𝑒𝑒75J , 𝜕𝜕òWW = 𝐵𝐵𝑒𝑒75J + 𝐶𝐶𝑒𝑒5J , 𝜕𝜕òWWW = 𝐷𝐷𝑒𝑒5J 
By matching the jump conditions at	𝑦𝑦 = ±1, we have 

𝑐𝑐 = ±qX1 −
1
2𝑖𝑖Y

#

−
𝑒𝑒7X5

4𝑖𝑖#  

For larger	𝑖𝑖 > 0.6392, the eigenvalues are real and all disturbances are neutral. Conversely, 
for smaller	0 ≤ 𝑖𝑖 < 0.6392, the eigenvalues are purely imaginary and the flow is unstable. 
 



Kelvin-Helmholtz instability 
The limit of	𝑖𝑖 → 0	is equivalent to the limit of having a zero thickness of shear (vortex sheet). 
This corresponds to the Kelvin-Helmholtz instability. 

lim
5→<

𝑐𝑐#(𝑖𝑖) = lim
5→<

4𝑖𝑖# − 4𝑖𝑖 + 1 − 𝑒𝑒7X5

4𝑖𝑖# = −1, 𝑐𝑐 = ±𝑖𝑖 

This implies that wavelike perturbations on an unbounded vortex sheet in an inviscid fluid do 
not show any dispersion. All wave components share the same zero speed. The maximal growth 
rate occurs at	𝑖𝑖 = 0.4	(or denoted as	𝛼𝛼).	𝛼𝛼 = 0.6392	corresponds to	𝛼𝛼𝛿𝛿 = 1.28, with the shear 
layer thickness	𝛿𝛿 = 2	here. This prediction shows good agreement with the real flow without 
approximation, where the most amplified wavelength is	𝜆𝜆 ≈ 7.85	𝛿𝛿. 

In general, the Kelvin-Helmholtz family of instabilities treat parallel flows with (continuous) 
profiles	𝑢𝑢(𝑦𝑦)	and	𝜌𝜌(𝑦𝑦)	over depth	𝛿𝛿. Now we consider a discontinuity at	𝑦𝑦 = 0	with two layers 
wand the perturbed interface as	𝑦𝑦 = 𝜂𝜂(𝑥𝑥, 𝑡𝑡). For an irrotational flow, we have 

∇#𝜙𝜙# = 0, ∇#𝜙𝜙- = 0 
As	𝑧𝑧 → ±∞, the velocity field becomes just the base flow 

∇𝜙𝜙# → 𝑈𝑈#√̂, ∇𝜙𝜙- → 𝑈𝑈-√̂ 
At the interface, the material assumption / requirement gives the condition on vertical velocity 

𝜕𝜕𝜙𝜙
𝜕𝜕𝑦𝑦 =

D𝜂𝜂
D𝑡𝑡 =

𝜕𝜕𝜂𝜂
𝜕𝜕𝑡𝑡 +

𝜕𝜕𝜙𝜙
𝜕𝜕𝑥𝑥

𝜕𝜕𝜂𝜂
𝜕𝜕𝑥𝑥 , at		𝑦𝑦 = 𝜂𝜂(𝑥𝑥, 𝑡𝑡) 

The pressure is also continuous across the interface. The Bernoulli equation gives 

𝜌𝜌- è𝑐𝑐- −
1
2
|∇𝜙𝜙-|# −

𝜕𝜕𝜙𝜙-

𝜕𝜕𝑡𝑡 − 𝑔𝑔𝜂𝜂ê = 𝜌𝜌# è𝑐𝑐# −
1
2
|∇𝜙𝜙#|# −

𝜕𝜕𝜙𝜙#

𝜕𝜕𝑡𝑡 − 𝑔𝑔𝜂𝜂ê 

For the base flow, we similarly have 

𝜌𝜌- X𝑐𝑐- −
1
2𝑈𝑈-

#Y = 𝜌𝜌# X𝑐𝑐# −
1
2𝑈𝑈#

#Y 

This states the non-linear problem for stability of the base flow. 
 
To linearize the problem, in the two domains we consider the perturbation to the base flow 

𝜙𝜙# = 𝑈𝑈#𝑥𝑥 + 𝜙𝜙#
B , 𝜙𝜙- = 𝑈𝑈-𝑥𝑥 + 𝜙𝜙-

B  
Then the kinematic and dynamic conditions for the perturbation become 

𝜕𝜕𝜙𝜙!
B

𝜕𝜕𝑦𝑦 =
𝜕𝜕𝜂𝜂
𝜕𝜕𝑡𝑡 + 𝑈𝑈!

𝜕𝜕𝜂𝜂
𝜕𝜕𝑥𝑥 , 𝜌𝜌- É𝑈𝑈-

𝜕𝜕𝜙𝜙-
B

𝜕𝜕𝑥𝑥 +
𝜕𝜕𝜙𝜙-

B

𝜕𝜕𝑡𝑡 + 𝑔𝑔𝜂𝜂Ñ = 𝜌𝜌# É𝑈𝑈#
𝜕𝜕𝜙𝜙#

B

𝜕𝜕𝑥𝑥 +
𝜕𝜕𝜙𝜙#

B

𝜕𝜕𝑡𝑡 + 𝑔𝑔𝜂𝜂Ñ 



For small	𝜂𝜂, we can evaluate these conditions at	𝑦𝑦 = 0. Normal mode representation gives the 
eigenvalue problem using the solution form	𝜙𝜙!

B = 𝜙𝜙»! 	𝑒𝑒!𝒌𝒌⋅𝒙𝒙34&	and we have 

𝜌𝜌-[𝑖𝑖𝑔𝑔 + (𝑠𝑠 + 𝑖𝑖𝑖𝑖1𝑈𝑈-)#] = 𝜌𝜌#[𝑖𝑖𝑔𝑔 − (𝑠𝑠 + 𝑖𝑖𝑖𝑖1𝑈𝑈#)#], 𝑖𝑖# = 𝑖𝑖1
# + 𝑖𝑖J

# 

Neutral stability can be found if 

𝑖𝑖𝑔𝑔(𝜌𝜌-
# − 𝜌𝜌#

#) ≥ 𝑖𝑖1
#𝜌𝜌-𝜌𝜌#(𝑈𝑈- − 𝑈𝑈#)# 

There are several special cases: 
¨ Deep water surface gravity waves:	𝜌𝜌# = 0,	𝑈𝑈- = 𝑈𝑈# = 0, neutral stability. 
¨ Internal gravity waves:	𝜌𝜌- > 𝜌𝜌#,	𝑈𝑈- = 𝑈𝑈# = 0, heavier fluids below, neutral stability. 
¨ Rayleigh-Taylor instability:	𝜌𝜌- < 𝜌𝜌#,	𝑈𝑈- = 𝑈𝑈# = 0, acceleration-driven instability. This is 

deserved in inertial confinement facilities (ICFs) where accelerating shocks / interfaces 
become unstable. The growth rate in the linear regime is given as 

𝑠𝑠 = ±ï𝑔𝑔B𝑖𝑖, 𝑔𝑔B =
𝜌𝜌# − 𝜌𝜌-

𝜌𝜌# + 𝜌𝜌-
𝑔𝑔 

¨ Shear-driven instability:	𝜌𝜌- = 𝜌𝜌# 
 
Ø Dispersive effects and wave packets 
The eigenvalue relationship is given by	𝑐𝑐(𝛼𝛼, 𝛽𝛽)	with streamwise	𝛼𝛼 = 𝑖𝑖1	and spanwise	𝛽𝛽 = 𝑖𝑖2. 
The wave speed of an actual disturbance is a complex function of wavenumbers. Consider the 
dispersion of a perturbation consisting of discrete modes as 

𝜕𝜕(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡) =
1
4𝜋𝜋…𝜕𝜕ò(𝑦𝑦, 𝛼𝛼, 𝛽𝛽)	𝑒𝑒!(E13F27\&)	d𝛼𝛼d𝛽𝛽 

Assume	𝛽𝛽 = 0	and the asymptotic behavior is analyzed from the stationary phase 
d
d𝛼𝛼

(𝛼𝛼𝑥𝑥 − 𝑖𝑖𝑡𝑡) = 0, 𝑥𝑥 =
d𝑖𝑖
d𝛼𝛼 𝑡𝑡 = 𝑐𝑐]1𝑡𝑡 

 
Ø Initial value problem revisited 
Define the wall-normal vorticity as	𝜂𝜂(𝒙𝒙, 𝑡𝑡)	for 2D parallel flow. The modal representation is 

𝜕𝜕(𝒙𝒙, 𝑡𝑡) = 𝜕𝜕ò(𝑦𝑦, 𝑡𝑡)	𝑒𝑒!(E13F2), 𝜂𝜂(𝒙𝒙, 𝑡𝑡) =
𝜕𝜕𝑢𝑢
𝜕𝜕𝑧𝑧 −

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥 = �̂�𝜂(𝑦𝑦, 𝑡𝑡)	𝑒𝑒!(E13F2) 

The velocity and vorticity equations are 

èX
𝜕𝜕
𝜕𝜕𝑡𝑡 + 𝑖𝑖𝛼𝛼𝑈𝑈Y (𝐷𝐷# − 𝑖𝑖#) − 𝑖𝑖𝛼𝛼𝑈𝑈BBê 𝜕𝜕ò = 0, X

𝜕𝜕
𝜕𝜕𝑡𝑡 + 𝑖𝑖𝛼𝛼𝑈𝑈Y �̂�𝜂 = −𝑖𝑖𝛽𝛽𝑈𝑈B𝜕𝜕ò 

The boundary conditions are	𝜕𝜕ò = 0	at solid walls and in far field. We also have 

𝑢𝑢ò =
𝑖𝑖
𝑖𝑖# (𝛼𝛼𝐷𝐷𝜕𝜕ò − 𝛽𝛽�̂�𝜂), 𝜕𝜕r =

𝑖𝑖
𝑖𝑖# (𝛽𝛽𝐷𝐷𝜕𝜕ò + 𝛼𝛼�̂�𝜂) 

 
 



Lift-up effect 
When	𝛽𝛽 ≠ 0	(without Squire transformation), integrating the equation for	𝜂𝜂	gives 

�̂�𝜂 = �̂�𝜂<𝑒𝑒7!ES& − 𝑖𝑖𝛽𝛽𝑈𝑈B𝑒𝑒7!ES& < 𝜕𝜕ò(𝑦𝑦, 𝑡𝑡B)	𝑒𝑒!ES&) 	d𝑡𝑡B
&

<
 

The first term is the advection of vorticity by the base flow. The second term is the lift-up of 
fluid by the normal velocity in the presence of shear (when	𝛽𝛽 ≠ 0	and	𝑈𝑈B ≠ 0). Consider a 
fluid parcel transported by	𝜕𝜕	in +𝑦𝑦-direction for	𝑈𝑈B > 0, and being replaced by a parcel at 
larger	𝑦𝑦	with larger velocity. The parcels will appear as streaky fluctuations relative to the base 
flow. Even for decaying	𝜕𝜕ò, this mechanism can lead to large disturbance amplitudes in the 
horizontal component. 
 
Algebraic instability 
When	𝛼𝛼 = 0 the growth can be calculated explicitly. In this case, the Rayleigh equation implies 
that	𝜕𝜕ò	is not a function of time. From the previous solution, we have 

�̂�𝜂 = �̂�𝜂< − 𝑖𝑖𝛽𝛽𝑈𝑈B𝜕𝜕ò<𝑡𝑡 
This behavior is known as algebraic instability, as the growth is not exponential. 
  



Viscous Instability 

Ø Governing equations for parallel flows 
The viscous linear stability equations are 

èX
𝜕𝜕
𝜕𝜕𝑡𝑡 + 𝑈𝑈

𝜕𝜕
𝜕𝜕𝑥𝑥Y ∇

# − 𝑈𝑈BB 𝜕𝜕
𝜕𝜕𝑥𝑥 −

1
Re∇

Xê 𝜕𝜕 = 0	

X
𝜕𝜕
𝜕𝜕𝑡𝑡 + 𝑈𝑈

𝜕𝜕
𝜕𝜕𝑥𝑥 −

1
Re∇

#Y 𝜂𝜂 = −𝑈𝑈B 𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧 

The pressure equation is still 

∇#𝑝𝑝 = −2𝑈𝑈B 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥 

The boundary conditions are	𝜕𝜕 = 𝜕𝜕B = 0	and	𝜂𝜂 = 0	at the solid walls and in the far field. 
 
Orr-Sommerfeld and Squire equations 
With the normal mode representation 

𝜕𝜕(𝒙𝒙, 𝑡𝑡) = 𝜕𝜕ò(𝑦𝑦)	𝑒𝑒!(E13F27\&), 𝜂𝜂(𝒙𝒙, 𝑡𝑡) = �̂�𝜂(𝑦𝑦)	𝑒𝑒!(E13F27\&) 
we obtain the Orr-Sommerfeld (O-S) equation for	𝜕𝜕ò	and the Squire equation for	�̂�𝜂 

è(−𝑖𝑖𝑖𝑖 + 𝑖𝑖𝛼𝛼𝑈𝑈)(𝐷𝐷# − 𝑖𝑖#) − 𝑖𝑖𝛼𝛼𝑈𝑈BB −
1
Re

(𝐷𝐷# − 𝑖𝑖#)#ê 𝜕𝜕ò = 0 

è(−𝑖𝑖𝑖𝑖 + 𝑖𝑖𝛼𝛼𝑈𝑈) −
1
Re

(𝐷𝐷# − 𝑖𝑖#)ê �̂�𝜂 = −𝑖𝑖𝛽𝛽𝑈𝑈B𝜕𝜕ò 

The boundary conditions are	𝜕𝜕ò = 𝐷𝐷𝜕𝜕ò = 0	and	�̂�𝜂 = 0	at the solid walls and in the far field. 
These are viscous extensions of  Rayleigh and inviscid Squire equations. The vorticity equation 
is coupled to velocity unless	𝛽𝛽 = 0	or	𝑈𝑈B = 0. Note that O-S equation is fourth order. 
 
Eigenmodes 
There are two sets of eigenmodes for the OS-S system. The Orr-Sommerfeld modes are found 
by solving the OS equation, then using	𝜕𝜕ò	mode to solve the inhomogeneous Squire equation, 
The eigenmodes and eigenvalues are described as 

Ø𝜕𝜕ò^,			�̂�𝜂^
I,			𝑖𝑖^∞^_-

@  

Here	�̂�𝜂I	is the particular solution of the Squire equation. In a bounded domain, the eigenvalues 
are discrete and infinite in number. In an unbounded domain, there is usually a finite number 
of discrete modes complemented by a continuous spectrum. The Squire modes have	𝜕𝜕ò = 0, 
meaning that OS modes are identically zero. Then solve the homogeneous Squire equation 

{𝜕𝜕ò = 0,			�̂�𝜂`,			𝑖𝑖`}`_-
a  

In general, the set of	𝑖𝑖^	is different from the set of	𝑖𝑖`. Solution methods include expansion 
in orthogonal basis functions, finite difference formulation and shooting methods. 



OS-S system in vector form 
In vector form, we have 

−𝑖𝑖𝑖𝑖  𝑖𝑖
# − 𝐷𝐷# 0
0 1

À è𝜕𝜕ò�̂�𝜂ê + è
ℒbc 0
𝑖𝑖𝛽𝛽𝑈𝑈B ℒcd

ê è𝜕𝜕ò�̂�𝜂ê = 0 

The OS and Squire operators are defined as 

ℒbc = 𝑖𝑖𝛼𝛼𝑈𝑈(𝑖𝑖# − 𝐷𝐷#) + 𝑖𝑖𝛼𝛼𝑈𝑈BB +
1
Re

(𝑖𝑖# − 𝐷𝐷#)#, ℒcd = 𝑖𝑖𝛼𝛼𝑈𝑈 +
1
Re

(𝑖𝑖# − 𝐷𝐷#) 

Denote the eigenvector as	𝒒𝒒r, and we thus obtain 

𝑳𝑳𝒒𝒒r = 𝑖𝑖𝑖𝑖𝑴𝑴𝒒𝒒r, 𝑳𝑳 = è
ℒef 0
𝑖𝑖𝛽𝛽𝑈𝑈B ℒfg

ê , 𝑴𝑴 =  𝑖𝑖
# − 𝐷𝐷# 0
0 1

À 

Note that	𝑴𝑴	is a positive definite operator. 
 
Ø Squire’s theorem 
Squire’s transformation for viscous flows 
Compare 3D and 2D (𝛽𝛽 = 0) OS equations 

è(𝑈𝑈 − 𝑐𝑐)(𝐷𝐷# − 𝑖𝑖#) − 𝑈𝑈BB −
1

𝑖𝑖𝛼𝛼Re
(𝐷𝐷# − 𝑖𝑖#)#ê 𝜕𝜕ò = 0 

è(𝑈𝑈 − 𝑐𝑐)(𝐷𝐷# − 𝛼𝛼#h
# ) − 𝑈𝑈BB −

1
𝑖𝑖𝛼𝛼#hRe#h

(𝐷𝐷# − 𝛼𝛼#h
# )#ê 𝜕𝜕ò = 0 

The solutions to these equations will be identical if 

𝛼𝛼#h = 𝑖𝑖 = ï𝛼𝛼# + 𝛽𝛽#, 𝛼𝛼#hRe#h = 𝛼𝛼Re							 ⟹ 								 Re#h =
𝛼𝛼
𝑖𝑖 Re < Re 

For an unstable 3D disturbance, there will be a 2D disturbance that is unstable at lower	Re#h. 
 
Squire modes 
It can be shown that the Squire modes are always damped,	𝑐𝑐! < 0	for all	𝛼𝛼, 𝛽𝛽, Re. 
 
Squire’s theorem 
The onset of (linear) instability is given by 

Re= = min
E,F

Re(𝛼𝛼, 𝛽𝛽) = min
E

Re(𝛼𝛼, 0) 

 
Ø Eigenvalue spectra of OS equation 
Poiseuille channel flow 
At	Re = 10X, numerical results are shown for two cases. When	𝛼𝛼 ≠ 0, A branch consists of 
wall modes with	𝑐𝑐L → 0, while the P branch consists of center modes with	𝑐𝑐L → 1	for centerline. 
The S branch consists of modes with	𝑐𝑐L ≈ 2/3	(bulk velocity) and are highly damped. 



There is one slightly unstable eigenmode on the A branch, which is called Tollmien-Schlichting 
(TS) wave. This shows viscosity as a destabilizing factor even though the base flow does not 
satisfy Rayleigh’s inflection point criterion. 

The eigenfunctions of A mode, P mode and S mode are shown below for	𝛼𝛼 = 𝛽𝛽 = 1. The real 
and imaginary parts (thin lines) indicate the phase variation. 

For special case	𝛼𝛼 = 0, there is only one branch with	𝑖𝑖L = 0	and always	𝑖𝑖! < 0	(damped). 
Eigenvalues can be determined analytically. The Squire modes and O-S modes are 

𝑖𝑖jk =
𝑖𝑖
Re É𝛽𝛽

# − X𝑛𝑛 −
1
2Y

#

𝜋𝜋#Ñ , 𝑖𝑖lj = −
𝑖𝑖
Re

(𝛽𝛽# − 𝜇𝜇#) 

For O-S modes,	𝜇𝜇	is the solution of the transcendental equation	𝜇𝜇 tan 𝛽𝛽 + 𝛽𝛽 tan 𝜇𝜇 = 0	for odd 
modes and	𝜇𝜇 cot 𝛽𝛽 + 𝛽𝛽 cot 𝜇𝜇 = 0	for even modes. 
 

𝛼𝛼 = 0 
𝛽𝛽 = 1 

𝛼𝛼 = 1 
𝛽𝛽 = 0 

A A P P 

S S 

Re = 10X 



Couette flow 
Couette flow has a slightly different structure: No P branch but two A branches, which implies 
that each eigenfunction has a reflection about the centerline. Compare to Poiseuille flow where 
eigenfunctions come in symmetric and anti-symmetric pairs. Couette flow is linearly stable for 
any	Re, with no eigenvalues having	𝑐𝑐! > 0. 
 
Hagen-Poiseuille (pipe) flow 
Pipe has the same 3-branch structure as channel flow. The circular cross-section constrains that 
only integer azimuthal wavenumbers are allowed, which is denoted by	𝑛𝑛. As for Couette flow, 
pipe flow is also linearly stable. 

Boundary layers (Blasius flow) 
Boundary layers are not streamwise homogeneous in general, so the locally parallel flow 
assumption is required to use this same approach. 

𝛼𝛼 = 1 
𝛽𝛽 = 1 

Plane Couette 

𝛼𝛼 = 1 
𝑛𝑛 = 1 

Pipe 

𝛼𝛼 = 0.2 
Re = 500 

Numerical 

Exact discrete & continuous 



In essence, we assumes	𝑈𝑈(𝑥𝑥, 𝑦𝑦)	and	𝑉𝑉(𝑥𝑥, 𝑦𝑦)	with	𝑉𝑉 ≪ 𝑈𝑈	and	𝜕𝜕𝑈𝑈/𝜕𝜕𝑥𝑥 ≪ 1 for the flow to be 
locally parallel. Consider the following Blasius solution 

𝑈𝑈(𝑦𝑦)
𝑈𝑈(

= 𝑓𝑓B(𝜂𝜂), 𝜂𝜂 =
𝑦𝑦

𝛿𝛿∗(𝑥𝑥) 

We solve for eigenvalues in this form, which consist of a few eigenvalues on A branch, and a 
continuous spectrum that represents a combination of P and S branches. The continuous part 
arises from the semi-infinite domain. The eigenfunction of the discrete mode shows that there 
is a phase change in	𝑢𝑢, which relates to the critical layer. 

The Blasius boundary layer has at most one unstable mode (TS wave) on the A branch. Because 
of its low wave speed	𝑐𝑐L, it is concentrated close to the wall. 
 
Ø Spectrum of continuous stability operator 
The above examples give rise to a discrete set of eigenvalues because the operator has been 
discretized at a specific pair of	(𝛼𝛼, 𝛽𝛽). Variation of	(𝛼𝛼, 𝛽𝛽)	leads to a range of eigenvalues	𝑖𝑖	that 
constitutes the spectrum of the continuous linear stability operator. Taking the Fourier 
transform (discretizing in	𝑖𝑖) leads to the discrete point spectrum. For boundary layer, the 
continuous spectrum is required, and the discretization by Fourier transform is not complete. 

Re = 1000 

Plane Poiseuille Flow 

Re = 10000 



For pipe flows, the integer constraint on the azimuthal wavenumber	𝑛𝑛	restricts the continuous 
operator spectrum to be a set of lines. Points in the complex plane that do not fall on one of the 
lines do not represent eigenvalues for any wave number combination. 
 
Ø Neutral curves 
When considering canonical flows, it is useful to find a representation of the regions of our 
parameters space that are unstable or stable, divided by the neutral curve. Squire’s theorem 
implies that such a curve can be drawn in the	(𝛼𝛼, Re)	space, focusing on 2D instability. 

The neutral curve is the contour for	𝑐𝑐! = 0. Within the neutral curve, unstable solutions exist. 
For Blasius boundary layer, Re =	519.4, 𝛼𝛼C = 0.303, 𝑐𝑐L,C =	0.3965. When	Re > Re=GHm , the 

neutral curve has two branches (bifurcation). Variation of phase velocity	𝑐𝑐L 	reflects A branch, 
except for the top right region where the most unstable mode is on the P branch. 

We can also plot contours in the	(𝛼𝛼, 𝛽𝛽)	space at a fixed	Re. The maximum growth rate occurs 
on the line	𝛽𝛽 = 0. Corrections for non-parallel flow can also be made. 
 

unstable 

𝑐𝑐!
MNO 𝑐𝑐L 

unstable 

𝑐𝑐!
MNO 

𝑐𝑐L 

Poiseuille 

A branch 

P branch 

Blasius 



Ø Viscous critical layers 
For high	Re, inviscid arguments hold for most of the domain, but the effects of viscosity locally 
remain important. Much of the discussion of inviscid critical layer holds over to the viscous 
case. Viscosity is important in resolving the logarithmic singularity at the critical layer and in 
meeting the wall no-slip boundary conditions. 

The viscous modifications can occur in regions of the flow that are distinct or which overlap 
in	𝑦𝑦-direction. The scaling relations above are determined by dominant balance in each layer. 
Eventually, the critical layer singularity could also be resolved by a non-negligible non-linear 
term, or a combination with viscosity. 
 
Ø Non-normality of the stability operator 
A non-normal operator is one for which	ℒℒ3 ≠ ℒ3ℒ, i.e. it does not commute with its adjoint. 
One consequence is that the eigenfunctions of the operator will be non-orthogonal. The OS 
operator	(𝓛𝓛𝐎𝐎𝐎𝐎) is non-normal, leading to sensitivity of the eigen spectrum and the transient 
growth of perturbations (energy growth on a finite time horizon even in linearly stable flows). 
 
Eigenvalue sensitivity 
The discussion here does not involve numerical issues on determining the eigenvalue spectra. 
The eigenvalues of the OS-S system are sensitive to small perturbations of the equations, e.g., 
those due to discretization of continuous equations or finite-precision arithmetic. The 
sensitivity is a property of the linearized Navier-Stokes operator, namely its non-normality. The 
sensitivity is the size of perturbation to eigenvalue	𝛿𝛿𝜆𝜆	for a given perturbation to the operator. 

𝓛𝓛𝒒𝒒 = 𝑴𝑴7-𝑳𝑳𝒒𝒒 = 𝑖𝑖𝑖𝑖𝒒𝒒 = 𝜆𝜆𝒒𝒒 
Denote	𝑷𝑷	as the perturbation operator with	‖𝑷𝑷‖ = 𝜀𝜀 ≪ 1. The modified equation is 

(𝓛𝓛 + 𝑷𝑷)(𝒒𝒒 + 𝛿𝛿𝒒𝒒) = (𝜆𝜆 + 𝛿𝛿𝜆𝜆)(𝒒𝒒 + 𝛿𝛿𝒒𝒒) 
The first-order terms in	𝜀𝜀	lead to 

(𝓛𝓛 − 𝜆𝜆𝑰𝑰)	𝛿𝛿𝒒𝒒 + 𝑷𝑷𝒒𝒒 = 𝛿𝛿𝜆𝜆	𝒒𝒒 

Critical layer 

Wall layer 



An upper bound on the eigenvalue change can be found from the energy norm 
|𝛿𝛿𝜆𝜆| ≤ ‖𝒒𝒒3‖p‖𝑷𝑷‖p‖𝒒𝒒‖p 

 
Pseudo-spectrum 
Trefethen (1992) introduced pseudo-spectra and pseudo-eigenvalues to characterize the spectra 
of perturbed, non-normal matrices and operators. Consider a randomly perturbed matrix	𝐴𝐴” =
𝐴𝐴 + 𝐸𝐸	with	‖𝐸𝐸‖ ≤ 𝜀𝜀. The	𝜀𝜀-pseudo eigenvalues	𝑧𝑧	are the eigenvalues of the perturbed matrix	𝐴𝐴”. 
They satisfy the following relationship 

‖(𝑧𝑧𝑰𝑰 − 𝑨𝑨)7-‖ ≥ 𝜀𝜀7- 
The resolvent of	𝑨𝑨	is defined as	𝑅𝑅(𝑧𝑧) = (𝑧𝑧𝑰𝑰 − 𝑨𝑨)7-	everywhere on the complex plane except 
at the eigenvalues of	𝑨𝑨. 

 
Transient growth in viscous initial value problem 
There can be a transient growth of perturbation	𝒒𝒒	in a 
finite time horizon from the superposition of two non-
orthogonal vectors decaying at different rates as time 
evolves. This is the viscous equivalence to algebraic 
growth considered for inviscid parallel flows. 
 
In the illustration,	𝝓𝝓-	and	𝝓𝝓#	are eigenfunctions with 
a particular weighting that results in the perturbation 
vector	𝒒𝒒. The magnitude of	𝒒𝒒	grows with time at the 
beginning even though both eigenfunctions are decaying. Eventually all magnitudes decay to 
zero for a linearly stable operator. The angle between eigenvectors is equally important. 
 
 



To study the magnitude of perturbation	𝒒𝒒, recall the eigenvalue problem 
𝓛𝓛𝒒𝒒 = 𝑴𝑴7-𝑳𝑳𝒒𝒒 = 𝑖𝑖𝑖𝑖𝒒𝒒, 𝒒𝒒 = [𝜕𝜕ò, �̂�𝜂]/ 

A formal solution of the initial value problem is 
𝜕𝜕𝒒𝒒
𝜕𝜕𝑡𝑡 = 𝑖𝑖𝓛𝓛𝒒𝒒, 𝒒𝒒(𝑡𝑡) = 𝑒𝑒!𝓛𝓛&𝒒𝒒r , 𝑒𝑒!𝓛𝓛& = 𝑰𝑰 + 𝑖𝑖𝓛𝓛𝑡𝑡 −

1
2𝓛𝓛

𝟐𝟐𝑡𝑡# +⋯ 

The energy norm is applied as a measure of perturbation growth, which is defined as 

𝐸𝐸$ = …ℰ	d𝛼𝛼d𝛽𝛽 = …
1
2𝑖𝑖# < (|D𝜕𝜕ò|# + 𝑖𝑖#|𝜕𝜕ò|# + |�̂�𝜂|#)	d𝑦𝑦

-

7-
d𝛼𝛼d𝛽𝛽 

Note that	ℰ	is the energy density in the Fourier space. 
 
Optimal growth 
Define the maximum possible amplification of the initial energy density as 

𝐺𝐺(𝑡𝑡) = max
𝒒𝒒*u𝟎𝟎

‖𝒒𝒒(𝑡𝑡)‖#

‖𝒒𝒒r‖# = ◊𝑒𝑒!𝓛𝓛&◊# 

The curve	𝐺𝐺(𝑡𝑡)	is the envelope of the evolution of all possible initial conditions	𝒒𝒒r. 𝐺𝐺MNO	is the 
absolute maximum occurring at time	𝑡𝑡 = 𝑡𝑡MNO. For	𝑡𝑡 → ∞, we have	𝐺𝐺(𝑡𝑡) → 0	for a linearly 
stable system. Optimal growth refers to the maximum possible growth. 

The maximum amplification occurs for an initial condition that is a combination of eigen-
functions. Such an initial condition can lead to growth that is significantly higher than for a 
single eigenfunction for an unstable operator. 

¨ The presence of a growing eigenfunction can directly lead to instability. 
¨ If	‖𝒒𝒒r‖	is large, nonlinearity may kick in at time before	𝐺𝐺MNO. 
 
Maximum amplification is obtained for	𝛼𝛼 = 0, but another mechanism is also important. The 
tilting of an initial condition that is upstream towards a vertical orientation at	𝑡𝑡MNO	corresponds 
to the transient growth. For	𝛼𝛼 = 0	perturbation, it simply strengthens to	𝑡𝑡MNO	and then decays. 

Re = 1000 

Poiseuille Flow 

𝛼𝛼 = 1 

Re = 5000 

=

 



Maximum transient amplification occurs at	𝛼𝛼 = 0, while maximum modal growth at	𝛽𝛽 = 0. 
 
Summary of optimal growth for different flows 

 𝐺𝐺MNO	(10-3) 𝑡𝑡MNO 𝛼𝛼 𝛽𝛽 
Plane Poiseuille 0.2 Re# 0.076 Re 0 2.04 
Plane Couette 1.18 Re# 0.117 Re 35 / Re 1.6 
Circular pipe 0.07 Re# 0.048 Re 0 1 
Blasius boundary layer 1.50 Re# 0.778 Re 0 0.65 

 
  

𝒒𝒒! 

𝒒𝒒(𝑡𝑡"#$) 

Blasius 

Contours of  𝐺𝐺!"# 

𝛼𝛼 = 1, 𝛽𝛽 = 0 Poiseuille 



Further Examples of Stability and Instability 

Ø Weakly nonlinear instability analysis 
Consider a parallel flow with a perturbation of the form 

𝒖𝒖B(𝒙𝒙, 𝑡𝑡) = 𝒖𝒖(𝒙𝒙, 𝑡𝑡) − 𝑼𝑼(𝒙𝒙) = áÿ𝐴𝐴"(𝑡𝑡)	𝝓𝝓"(𝒙𝒙) + 𝐴𝐴"
∗(𝑡𝑡)	𝝓𝝓"

∗(𝒙𝒙)Ÿ
"

 

𝝓𝝓" 	are the eigenfunctions. For linear theory, we have 

𝐴𝐴"(𝑡𝑡) = 𝑎𝑎"𝑒𝑒4+& , 𝑠𝑠" = 𝜎𝜎" + 𝑖𝑖𝑖𝑖" 

There is no mechanism for interactions between different	𝐴𝐴"(𝑡𝑡). For weakly nonlinear theory, 
we analyze some nonlinear interactions among 	𝐴𝐴"(𝑡𝑡) . Assume that there exists a critical 

parameter	𝑅𝑅C 	such that all disturbances are stable for	𝑅𝑅 < 𝑅𝑅C, and there is one normal mode 
with	𝜎𝜎- > 0	when	𝑅𝑅 = 𝑅𝑅C. Usually, 𝜎𝜎- = 𝑖𝑖(𝑅𝑅 − 𝑅𝑅C) + 𝑂𝑂[(𝑅𝑅 − 𝑅𝑅C)#], where the parameter	𝑅𝑅 
can be Reynolds number, Rayleigh number, etc. 
 
Landau equation 
Consider the weakly nonlinear equation for quantity	𝐴𝐴. There are many methods to derive this, 
but they rest on defining	𝐴𝐴	as 

𝐴𝐴 = 𝜀𝜀𝐴𝐴€(𝜉𝜉, 𝜏𝜏)𝑒𝑒4& , 𝜀𝜀 ≪ 1, 𝜏𝜏 = 𝜀𝜀#𝑡𝑡, 𝜉𝜉 = 𝜀𝜀8𝑥𝑥 − 𝑐𝑐]𝑡𝑡9 

Note that 𝜏𝜏	denotes the long timescale and	𝑐𝑐]	is the group velocity of the neutral disturbances. 

Also	𝑅𝑅 − 𝑅𝑅C = 𝜀𝜀#𝜎𝜎-. Now	𝐴𝐴	varies on two timescales:	𝑒𝑒4&	and	𝐴𝐴€(𝜉𝜉, 𝜏𝜏). Typically, the weakly 
nonlinear equation includes the linear and nonlinear terms as 

d𝐴𝐴
d𝑡𝑡 = 𝑠𝑠𝐴𝐴 −

1
2𝐿𝐿

|𝐴𝐴|#𝐴𝐴, 𝑠𝑠 = 𝜎𝜎 + 𝑖𝑖𝑖𝑖 = 𝜎𝜎- + 𝑖𝑖𝑖𝑖-, 𝐿𝐿 = 𝐿𝐿L + 𝑖𝑖𝐿𝐿! 

𝐿𝐿	is the Landau constant which is PDE specific. The Landau equation describes the magnitude 
d|𝐴𝐴|#

d𝑡𝑡 = 2𝜎𝜎|𝐴𝐴|# − 𝐿𝐿L|𝐴𝐴|X 

The	𝐿𝐿L|𝐴𝐴|X	nonlinear term can either accelerate or saturate the growth depending on its sign. 
The complementary equation for the phase angle is 

d|arg 𝐴𝐴|
d𝑡𝑡 = 𝑖𝑖 −

1
2𝐿𝐿!|𝐴𝐴|# 

The Landau equation can be written in the linear form, with its solution obtained as 
d|𝐴𝐴|7#

d𝑡𝑡 + 2𝜎𝜎|𝐴𝐴|7# = 𝐿𝐿L 

|𝐴𝐴|# =
𝐴𝐴r

#

𝐿𝐿L
2𝜎𝜎 𝐴𝐴r

# + ö1 − 𝐿𝐿
2𝜎𝜎 𝐴𝐴r

#õ 𝑒𝑒7#w&
 



Take	𝐿𝐿L > 0	and	𝑅𝑅 > 𝑅𝑅C, we have	𝜎𝜎 = 𝜎𝜎- > 0	and the magnitude	|𝐴𝐴|	behaves as 

|𝐴𝐴| ∼ 𝐴𝐴r𝑒𝑒w& , 𝑡𝑡 → −∞, |𝐴𝐴| → ï2𝜎𝜎/𝐿𝐿L = ï2𝑖𝑖(𝑅𝑅 − 𝑅𝑅C)/𝐿𝐿L , 𝑡𝑡 → +∞ 

The disturbance equilibrates to a new base flow. It is steady if	𝑖𝑖 = 0, and periodic if	𝑖𝑖 ≠ 0. 
 
Ø Further examples 
Viscous rotating / centrifugal flow instability 
In the inviscid analysis, a parallel to the Rayleigh criterion can be formally made. There are 
three possible scenarios: 

¨ Concentric circles with radius	𝑅𝑅- < 𝑅𝑅#, rotating at	Ω-	and	Ω# (Taylor-Couette flow) 
¨ Flow in a curved pipe / channel with curvatures	𝑅𝑅- < 𝑅𝑅# (Dean’s problem) 
¨ Boundary layer on a curved wall with curvature	𝑅𝑅r (Görtler’s problem) 

 
For the curved pipe, perturbation equations are written in the cylindrical coordinates. Assume 
a narrow gap	𝑑𝑑	between two walls, and the Dean number	Λ	is defined as 

Λ = 36
𝑉𝑉Nxy

𝑟𝑟
𝑑𝑑
𝑅𝑅Ä
, 𝑅𝑅Ä =

𝑅𝑅- + 𝑅𝑅#

2  

𝑉𝑉Nxy	is the bulk velocity, and the first term is effectively the Reynolds number. 

 
For the boundary layer on a curved wall, assume the boundary layer thickness	𝛿𝛿 ≪ 𝑅𝑅r. We can 
neglect the centrifugal effects in the base flow, i.e. assume that the boundary layer solution is 
parallel to the wall, but partially retain them in the disturbance equations. The Görtler number 
𝐺𝐺	is defined as 

𝐺𝐺 =
𝑈𝑈(𝜃𝜃
𝑟𝑟

q
𝜃𝜃
𝑅𝑅r

 

𝜃𝜃	is the momentum thickness of the boundary layer. An exchange of instability is observed (as 
in the Dean’s problem), and the observed structure is the streamwise aligned Görtler vortices. 
 
Compressible parallel shear flow 
Relative to the incompressible case, the compressible one is complicated as we need to consider 
temperature	𝑇𝑇	(or enthalpy	ℎ) and density	𝜌𝜌	are also variables. Also, we have the Mach number 
𝑀𝑀 = 𝑢𝑢Ä/𝑎𝑎	with sound speed	𝑎𝑎 entering the problem. The base flow, density and temperature 
profiles are	𝑈𝑈(𝑦𝑦), 𝜌𝜌(𝑦𝑦)	and	𝑇𝑇(𝑦𝑦). Analysis proceeds similarly to the incompressible case. In 
the compressible case, perturbations may travel supersonically relative to the base flow, which 
requires additional analysis. 




