
 ME 361   Turbulence 

Instructor: Ali Mani 

Lecture 1. Introduction 

Ø Notations 

1. 𝑥𝑥𝑥𝑥𝑥𝑥-coordinate, 𝑢𝑢𝑢𝑢𝑢𝑢-coordinate. 𝑥𝑥! 	and	𝑢𝑢! 	to denote each component. 

2. Governing equation: Incompressible Navier-Stokes equation 
𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕 + 𝑢𝑢

𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥 + 𝑢𝑢

𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥 + 𝑢𝑢

𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥 = −

1
𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥 +

𝜇𝜇
𝜌𝜌	∇"𝑢𝑢 

𝜕𝜕(𝜌𝜌𝑢𝑢!)
𝜕𝜕𝜕𝜕 +

𝜕𝜕4𝜌𝜌𝑢𝑢#𝑢𝑢!5
𝜕𝜕𝑥𝑥#

= −
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥!

+ 𝜇𝜇
𝜕𝜕"𝑢𝑢!

𝜕𝜕𝑥𝑥#𝜕𝜕𝑥𝑥#
	 

𝐷𝐷𝒖𝒖
𝐷𝐷𝜕𝜕 =

𝜕𝜕𝒖𝒖
𝜕𝜕𝜕𝜕 + 𝒖𝒖 ⋅ 𝛁𝛁𝒖𝒖 = −

1
𝜌𝜌𝛁𝛁𝜕𝜕 +

𝜇𝜇
𝜌𝜌𝛁𝛁"𝒖𝒖 

3. Relation symbols 

a. Proportional: 𝐴𝐴 ∝ 𝐵𝐵, not exactly matching dimension 

b. Scale: 𝐴𝐴 ∼ 𝐵𝐵, proportional and dimensions match, only need a	𝑂𝑂(1)	pre-factor 

to turn the relation into equality 

c. Almost equal:	𝐴𝐴 ≈ 𝐵𝐵, dimensions match and their ratio is close to 1 

Example: Stagnation pressure 𝜕𝜕$ 

𝜕𝜕$ − 𝜕𝜕% ∝ 𝑢𝑢%" , 𝜕𝜕$ − 𝜕𝜕% ∼ 𝜌𝜌𝑢𝑢%" , 𝜕𝜕$ − 𝜕𝜕% ≈
1
2𝜌𝜌𝑢𝑢%"  

 

Ø Characteristics of turbulence 

¨ Vortices / 3D vortical structures ¨ Irregular (chaotic, “random”) 

¨ Wide range of scales (small and large eddies) 

¨ Mixing of mass, momentum, heat 

¨ Dissipation (turbulence needs energy from shear / buoyancy / body forces to sustain) 

Much faster dissipation for turbulent processes than laminar processes 

¨ Continuum phenomenon 

Small turbulent eddies 𝑂𝑂(10	µm)  ≫  Mean free path of molecules ~	60	nm 

Average distance of molecules in the air is	4	nm (calculated from density) 

[We do not see individual molecule within eddies, but see a continuum] 



¨ Large Reynolds number, highly nonlinear (dominant advection term in NS eqn.) 

Re =
𝜌𝜌𝜌𝜌𝜌𝜌
𝜇𝜇 =

𝜌𝜌𝜌𝜌
𝜈𝜈 ≫ 1, 𝑢𝑢𝑢𝑢 ≫ 𝜈𝜈 

with	𝑢𝑢	is eddy velocity and	𝑢𝑢	is eddy size 

Example: Flow over a cylinder at	Re = 10&	with diameter	𝐷𝐷 
𝜌𝜌𝜌𝜌𝐷𝐷
𝜇𝜇 = 10& 

Turbulent wake appears behind the cylinder 

¨ Sources of differences in realizations 

a. Experiment: Initial conditions and environmental perturbations 

b. Simulation: Similar variability [e.g., (a + b) + c ≠ a + (b + c)	computationally] 

¨ Statistics are reproducible for different realizations 

𝑢𝑢P = lim
'→%

1
𝑇𝑇T 𝑢𝑢(𝜕𝜕)	d𝜕𝜕

'

$
, 𝑢𝑢P)! = 𝑢𝑢P)" = ⋯ , 𝑢𝑢"PPP)! = 𝑢𝑢"PPP)" = ⋯ 

𝑢𝑢P, 𝑢𝑢"PPP, 𝑢𝑢*PPP	are flow statistics 

¨ SEM: Statistical error of the means, obtained from several realizations 

𝑢𝑢P+,-!. =
𝑢𝑢P)! + 𝑢𝑢P)" + ⋯+ 𝑢𝑢P)#

𝑛𝑛 , SEM =
STD(𝑢𝑢P)

√𝑛𝑛
 

Note: STD(𝑢𝑢P) ≪ STD4𝑢𝑢)$5 

95% confidence level is	1.96 × 𝑆𝑆𝑆𝑆𝑆𝑆	based on Gaussian distribution from central 

limit theorem 

 

  



Lecture 2. Introduction 

Ø Introduction to turbulence theory: Statistical theory 

¨ Ideas for turbulence theory is inspired by kinetic theory of gases 
 Kinetic theory Turbulence theory 
Target system Averaged flow over molecular motions 

Laminar flow 
 
 

Averaged flow 

Underlying physics Chaotic molecular dynamic (M.D.) 
 
 

Chaotic flow, N.S. eqn. (high Re) 

Reduced model Navier-Stokes equation 
Obtain isotropic molecular viscosity:	𝜈𝜈% , 𝜇𝜇% 

Not available 
RANS framework 
Turbulent viscosity	𝜈𝜈&	not isotropic 

Why works / not work - Separation of scales between M.D. (mean 
free path) and size of pipe 
- Chaos is in equilibrium: Maxwell 
distribution of M.D. velocity 

- No separation of scales, eddies 
are as large as cylinder diameter	𝐷𝐷 
- Chaos is non-equilibrium 

¨ Useful insights obtained from analogy to kinetic theory 

Prediction of scaling laws, order of magnitude of behavior 

 

Ø How turbulence is triggered (Flow instability ) 

¨ Example: Kelvin-Helmholtz instability 

 

 

 

 

 

¨ Other instability: Karmann instability (interaction between both shear layers) 

 

 

 

 



¨ Other instability: Rayleigh-Benard instability, significant impact on heat transfer 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¨ Picture of instability 

Instability → Large eddies → Secondary instabilities → Smaller eddies → Even 

smaller eddies → Viscous dissipation 

2D instability → 3D instability → Turbulent spots → Fully developed turbulence 

 

Ø Video: Space developing shear layer with weak inflow turbulence 

¨ Kelvin-Helmholtz instability 

¨ Vortex stretching 

  



Lecture 3. Random walk 

Ø Mixing as a laminar flow concept (random walk) 

 

 

Molecules diffuse due to Brownian motion. Consider the diffusion of tracer particle. 

Follow one particle released at origin, displacement	Δ𝒓𝒓/, Δ𝒓𝒓", …	between adjacent collisions 

Very irregular and not repeatable process, so we study the statistics 

〈𝒓𝒓(𝜕𝜕)〉	denotes	average	over	many	realizations	(ensemble	average) 

〈𝒓𝒓(𝜕𝜕)〉 = 〈𝒖𝒖(𝒙𝒙 = 𝟎𝟎, 𝜕𝜕 = 0)〉 ⋅ 𝜕𝜕 

For stagnant fluid 

𝒖𝒖 = 𝟎𝟎	 → 		 〈𝒓𝒓(𝜕𝜕)〉 = 𝟎𝟎 

Higher-order statistics: 

〈𝒓𝒓(𝜕𝜕) ⋅ 𝒓𝒓(𝜕𝜕)〉 = 〈𝑥𝑥"〉 + 〈𝑥𝑥"〉 + 〈𝑥𝑥"〉 = 𝑅𝑅" 

For isotropic fluid 

〈𝒓𝒓(𝜕𝜕) ⋅ 𝒓𝒓(𝜕𝜕)〉 = 3〈𝑥𝑥"〉 

 

Calculate this characteristic length scale: 

〈𝑥𝑥"〉 = 〈(Δ𝑥𝑥/ + Δ𝑥𝑥" + ⋯+ Δ𝑥𝑥0)"〉 = 〈Δ𝑥𝑥/"〉 + ⋯+ 〈Δ𝑥𝑥/Δ𝑥𝑥"〉 + ⋯ 

The diagonal terms become	𝑛𝑛〈Δ𝑥𝑥"〉, and independency indicates zero off-diagonal terms 

〈𝑥𝑥"〉 = 𝑛𝑛〈Δ𝑥𝑥"〉 = 𝑛𝑛𝑢𝑢12" , 𝑢𝑢12 ≡ z〈Δ𝑥𝑥"〉 

With	𝑛𝑛〈Δ𝜕𝜕〉 = 𝜕𝜕,	and the length of random walk	𝑢𝑢12. Now we define the velocity of random 

walk, and we obtain 

𝑢𝑢12 ≡
𝑢𝑢12
〈Δ𝜕𝜕〉 ,

〈𝑥𝑥"〉 = 𝑢𝑢12" ⋅
𝜕𝜕

〈Δ𝜕𝜕〉 = 𝑢𝑢12𝑢𝑢12𝜕𝜕, 𝑥𝑥)., ∝ √𝜕𝜕 

This indicates the size of the spherical cloud is proportional to	√𝜕𝜕 

 

Ø Connection to continuum diffusion 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 𝐷𝐷∇"𝜕𝜕, 𝜕𝜕(𝜕𝜕 = 0) = 𝛿𝛿(𝒙𝒙) 

The shape at later time is a spreading Gaussian function 

 



For this process we have 

〈𝑥𝑥"〉 =
1
𝑁𝑁~𝑥𝑥!(𝜕𝜕)"

3

!4/

=
∭ 𝑥𝑥"𝜕𝜕(𝒙𝒙)	𝑑𝑑𝑑𝑑5

∭ 𝜕𝜕(𝒙𝒙)	𝑑𝑑𝑑𝑑5
= Ç𝑥𝑥"𝜕𝜕(𝒙𝒙)	𝑑𝑑𝑑𝑑

5
 

The final step uses the initial	𝛿𝛿(𝒙𝒙)	distribution of	𝜕𝜕(𝒙𝒙)	and conservation of particles 

 

Integrating the PDE over space gives 
𝜕𝜕
𝜕𝜕𝜕𝜕
+𝑥𝑥!𝐶𝐶	𝑑𝑑𝑑𝑑

"
= 𝐷𝐷+ 𝑥𝑥!

𝜕𝜕!𝐶𝐶
𝜕𝜕𝑥𝑥!

𝑑𝑑𝑑𝑑
"

+ 𝐷𝐷2 𝑥𝑥! 34
𝜕𝜕!𝐶𝐶
𝜕𝜕𝑦𝑦!

𝑑𝑑𝑦𝑦
#

6𝑑𝑑𝑥𝑥𝑑𝑑𝑑𝑑
$%

+ 𝐷𝐷2 𝑥𝑥! 34
𝜕𝜕!𝐶𝐶
𝜕𝜕𝑑𝑑!

𝑑𝑑𝑑𝑑
%

6𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦
$%

	

= 𝐷𝐷+ 𝑥𝑥!
𝜕𝜕!𝐶𝐶
𝜕𝜕𝑥𝑥!

𝑑𝑑𝑑𝑑
"

= −𝐷𝐷+2𝑥𝑥
"

𝜕𝜕𝐶𝐶
𝜕𝜕𝑥𝑥

𝑑𝑑𝑑𝑑 +2 𝑥𝑥!
𝜕𝜕𝐶𝐶
𝜕𝜕𝑥𝑥

:
&'

('

𝑑𝑑𝑦𝑦𝑑𝑑𝑑𝑑
#%

	

= 𝐷𝐷+2𝐶𝐶	𝑑𝑑𝑑𝑑
"

= 2𝐷𝐷 

The first step uses zero boundary conditions at infinity, and then keeps integration by part 
𝜕𝜕
𝜕𝜕𝜕𝜕

〈𝑥𝑥"〉 = 2𝐷𝐷, 〈𝑥𝑥"〉 = 2𝐷𝐷𝜕𝜕, 2𝐷𝐷 = 𝑢𝑢12𝑢𝑢12 =
〈Δ𝑥𝑥"〉
〈Δ𝜕𝜕12〉 

For gas dynamics, 𝑢𝑢12 ∼ 𝛼𝛼	(speed of sound),	𝑢𝑢12 ∼ 𝑢𝑢	(mean free path),	𝐷𝐷 ∼ 𝛼𝛼𝑢𝑢 

 

Example: For air at atmospheric condition 

𝛼𝛼 = 340	m/s, 𝑢𝑢 = 68	nm, 𝛼𝛼𝑢𝑢 = 2.3 × 1067	m"/𝑠𝑠, ν = 1.5 × 1067	m"/𝑠𝑠 

 

Example: Heat transfer in a room. Heater at one end, and the room width is	𝜌𝜌 = 5 m 

Without turbulence, the diffusion time is 

𝜕𝜕 =
𝜌𝜌"

2𝐷𝐷 = 6.6 × 107	s ∼ 8	days 

In reality, 𝑢𝑢 ≠ 0	is chaotic 

 

Ø Connection to turbulence 

A phenomenological model for turbulent mixing 

𝐷𝐷' ∼ 𝑢𝑢+889	𝑢𝑢+889 

Consider the heater is 10 K hotter than initial temperature, so the density is 3% less. The 

buoyant acceleration is	∼ 0.03𝑔𝑔 = 0.3	m/s". Over 10 cm,	𝑢𝑢+889 ∼ 0.24	m/s, and average in 

the room	𝑢𝑢+889 ∼ 5	cm/s.  



Consider that large eddy contributes more important for mixing. Largest eddy can have the 

room size, so	𝑢𝑢+889 ∼ 5	m, 𝐷𝐷' ∼ 0.25	m"/s. Turbulent mixing gives the time scale 

𝜕𝜕 =
𝜌𝜌"

2𝐷𝐷'
= 50	s 

 

Ratio of mixing rate is the Reynolds number 
𝐷𝐷'

𝐷𝐷:
=

𝑢𝑢+889	𝑢𝑢+889
𝜈𝜈 = Re 

The other interpretation is the ratio between inertial and viscous forces 

Low Re indicates that before eddy forms, Brownian motion will smear out all perturbations 

  



Lecture 4. Scaling of semi-parallel flows for jets 

Ø Laminar case 

¨ Free shear flows: waves, jets, shear layers 

Example of wake: Instantaneous VS Average pictures 

 

 

 

 

   

  Study	𝛿𝛿(𝑥𝑥)	and	Δ𝜌𝜌(𝑥𝑥) 

 

¨ Jets (𝜌𝜌% = 0), Round jet 

Semi-parallel with	𝛿𝛿 ≪ 𝑥𝑥. Study	𝛿𝛿(𝑥𝑥)	and	Δ𝜌𝜌(𝑥𝑥) 

 

 

 

 

 

 

 

¨ Scaling analysis for laminar and steady flow 

𝑥𝑥-momentum equation is 

𝑢𝑢
𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥 + 𝑢𝑢

𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥 + 𝑢𝑢

𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥 = −

1
𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥 + 𝜈𝜈

𝜕𝜕"𝑢𝑢
𝜕𝜕𝑥𝑥" + 𝜈𝜈

𝜕𝜕"𝑢𝑢
𝜕𝜕𝑥𝑥" + 𝜈𝜈

𝜕𝜕"𝑢𝑢
𝜕𝜕𝑥𝑥"  

  For scaling analysis: 

𝑥𝑥, 𝑥𝑥 ∼ 𝛿𝛿, 𝑢𝑢 ∼ 𝑢𝑢 ∼ Δ𝜌𝜌
𝛿𝛿
𝑥𝑥 	(from	continuity	𝛁𝛁 ⋅ 𝒖𝒖 = 0) 

  So we have 
(Δ𝜌𝜌)"

𝑥𝑥 + Δ𝜌𝜌
𝛿𝛿
𝑥𝑥 ⋅

Δ𝜌𝜌
𝛿𝛿 ∼

𝜕𝜕
𝜌𝜌𝑥𝑥 + 𝜈𝜈

Δ𝜌𝜌
𝑥𝑥" + 𝜈𝜈

Δ𝜌𝜌
𝛿𝛿" ∼

𝜕𝜕
𝜌𝜌𝑥𝑥 + 𝜈𝜈

Δ𝜌𝜌
𝛿𝛿"  

 

 



  To estimate pressure, we need	𝑥𝑥-momentum equation 

𝑢𝑢
𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥 + 𝑢𝑢

𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥 + 𝑢𝑢

𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥 = −

1
𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥 + 𝜈𝜈

𝜕𝜕"𝑢𝑢
𝜕𝜕𝑥𝑥" + 𝜈𝜈

𝜕𝜕"𝑢𝑢
𝜕𝜕𝑥𝑥" + 𝜈𝜈

𝜕𝜕"𝑢𝑢
𝜕𝜕𝑥𝑥"  

  This scales to 

(Δ𝜌𝜌)"𝛿𝛿
𝑥𝑥" ∼ −

𝜕𝜕
𝜌𝜌𝛿𝛿 + 𝜈𝜈

Δ𝜌𝜌𝛿𝛿
𝑥𝑥* + 𝜈𝜈

Δ𝜌𝜌
𝑥𝑥𝛿𝛿 ∼ −

𝜕𝜕
𝜌𝜌𝛿𝛿 + 𝜈𝜈

Δ𝜌𝜌
𝑥𝑥𝛿𝛿 ,

𝜕𝜕
𝜌𝜌 ∼ max è

(𝛥𝛥𝜌𝜌)"𝛿𝛿"

𝑥𝑥" ,
𝜈𝜈Δ𝜌𝜌
𝑥𝑥 ë 

So the pressure term is either much smaller than advection or the viscous term, it can 

be neglected. Into the	𝑥𝑥-momentum equation, we have 
(𝛥𝛥𝜌𝜌)"

𝑥𝑥 ∼ 𝜈𝜈
𝛥𝛥𝜌𝜌
𝛿𝛿"  

 

¨ This scaling relation simplifies governing equation for semi-parallel flows 

𝑢𝑢
𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥 + 𝑢𝑢

𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥 + 𝑢𝑢

𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥 ≃ 𝜈𝜈∇;"𝑢𝑢 

This equation works for jets, shear layers, wakes. For plumes, the buoyancy force 

needs to be included 

 

¨ Seek a power law solution 

Δ𝜌𝜌 ∝ 𝑥𝑥., 𝛿𝛿 ∝ 𝑥𝑥0 

  From scaling relation, we have 

𝛿𝛿" ∼
𝜈𝜈𝑥𝑥
Δ𝜌𝜌 , 𝑥𝑥"0 ∝ 𝑥𝑥/6. , 2𝑛𝑛 = 1 − 𝑚𝑚 

  We still need one more constraint, and it will be from constant momentum deficit 

  

¨ Mass continuity 

If we assume constant axial flow rate, net flow rate is about	𝛿𝛿"Δ𝜌𝜌 ∝ 𝑥𝑥$,	and 

then	2𝑛𝑛 + 𝑚𝑚 = 0,	but in fact this does not hold. This is due to entrainment of the radially 

inward flow. 

  

 

 



¨ General momentum conservation equation including body force (see Handout) 

¨ Constant momentum deficit 

î 𝜌𝜌𝑢𝑢(𝑢𝑢 − 𝜌𝜌%)	𝑑𝑑𝑥𝑥𝑑𝑑𝑥𝑥
9<

= const ∝ 𝑥𝑥$ 

  For a round jet with	𝜌𝜌% = 0 

î𝜌𝜌𝑢𝑢"𝑑𝑑𝑆𝑆
=

∼ 𝜌𝜌(Δ𝜌𝜌)"𝛿𝛿" ∝ 𝑥𝑥$, 𝑚𝑚 + 𝑛𝑛 = 0 

  For a 2D jet with	𝜌𝜌% = 0 

î𝜌𝜌𝑢𝑢"𝑑𝑑𝑆𝑆
=

∼ 𝜌𝜌(Δ𝜌𝜌)"𝛿𝛿 ∝ 𝑥𝑥$, 2𝑚𝑚 + 𝑛𝑛 = 0 

 

Ø Turbulent case (averaged velocity field) 

¨ Phenomenological governing equation 

𝑢𝑢P
𝜕𝜕𝑢𝑢P
𝜕𝜕𝑥𝑥 + �̅�𝑢

𝜕𝜕𝑢𝑢P
𝜕𝜕𝑥𝑥 + 𝑢𝑢ñ

𝜕𝜕𝑢𝑢P
𝜕𝜕𝑥𝑥 ≃ 𝜈𝜈'∇;"𝑢𝑢P 

¨ Scaling analysis 

𝑢𝑢P
𝜕𝜕𝑢𝑢P
𝜕𝜕𝑥𝑥 ∼ 𝜈𝜈'

𝜕𝜕"𝑢𝑢P
𝜕𝜕𝑥𝑥" , 𝜈𝜈' ∼ 𝑢𝑢+889	𝑢𝑢+889 ∼ Δ𝜌𝜌𝛿𝛿,

(Δ𝜌𝜌)"

𝑥𝑥 ∼ Δ𝜌𝜌𝛿𝛿 ⋅
Δ𝜌𝜌
𝛿𝛿" , 𝛿𝛿 ∼ 𝑥𝑥 

 

Term / Momentum balance 2D planar jet (𝑛𝑛 = −2𝑚𝑚) 3D round jet (𝑛𝑛 = −𝑚𝑚) 

Laminar (2𝑛𝑛 = 1 −𝑚𝑚) 
𝑛𝑛 =

2
3 ,			𝑚𝑚 = −

1
3 

𝛿𝛿 ∼ 𝑥𝑥
!
",			𝛥𝛥𝛥𝛥 ∼ 𝑥𝑥#

$
" 

𝑛𝑛 = 1,			𝑚𝑚 = −1 

𝛿𝛿 ∼ 𝑥𝑥,			𝛥𝛥𝛥𝛥 ∼
1
𝑥𝑥 

Turbulent (𝑛𝑛 = 1) 
𝑛𝑛 = 1,			𝑚𝑚 = −

1
2 

𝛿𝛿 ∼ 𝑥𝑥,			𝛥𝛥𝛥𝛥 ∼
1
√𝑥𝑥

 

𝑛𝑛 = 1,			𝑚𝑚 = −1 

𝛿𝛿 ∼ 𝑥𝑥,			𝛥𝛥𝛥𝛥 ∼
1
𝑥𝑥 

 

  



Lecture 5. Scaling of semi-parallel flows for wakes 

Ø Recap Lecture 4 

For semi-parallel flows, the dominant balance for a laminar flow is 

𝑢𝑢
𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥 + 𝑢𝑢

𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥 + 𝑢𝑢

𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥 ≃ 𝜈𝜈∇;"𝑢𝑢 

 Phenomenologically (not rigorous governing eqn.), for a turbulent flow we have 

𝑢𝑢P
𝜕𝜕𝑢𝑢P
𝜕𝜕𝑥𝑥 + �̅�𝑢

𝜕𝜕𝑢𝑢P
𝜕𝜕𝑥𝑥 + 𝑢𝑢ñ

𝜕𝜕𝑢𝑢P
𝜕𝜕𝑥𝑥 ≃ 𝜈𝜈'∇;"𝑢𝑢P 

 Seek the following scaling solution: 

Δ𝑢𝑢 ∝ 𝑥𝑥., 𝛿𝛿 ∝ 𝑥𝑥0 

 (Note: If	𝑛𝑛 ≥ 1,	then the semi-parallel assumption is violated) 

 We need term balance: 

𝑢𝑢P
𝜕𝜕𝑢𝑢P
𝜕𝜕𝑥𝑥 ∼ 𝜈𝜈'

𝜕𝜕"𝑢𝑢P
𝜕𝜕𝑥𝑥" , 𝜈𝜈' ∼ Δ𝜌𝜌𝛿𝛿 

 with global conservation analysis 

 

Ø Data analysis for jets 

Given velocity field in space and time, calculate 

Δ𝑢𝑢(𝑥𝑥) = 𝑢𝑢P(𝑥𝑥, 𝑥𝑥 = 0, 𝑥𝑥 = 0) 

Obtain the virtual origin based on 
1
Δ𝑢𝑢 ∝ 𝑥𝑥 − 𝑥𝑥$ 

 Then check if the velocity profiles collapse by plotting relationship of these two variables 
𝑥𝑥

𝑥𝑥 − 𝑥𝑥$
		and		𝑢𝑢P(𝑥𝑥, 𝑥𝑥 = 0) ⋅ (𝑥𝑥 − 𝑥𝑥$) 

 

Ø Scaling analysis of wakes 

¨ Global balance (momentum deficit) 

î𝑢𝑢(𝑢𝑢 − 𝜌𝜌%)𝑑𝑑𝑆𝑆
=

= const. 

  Since	𝜌𝜌% ∝ 𝑥𝑥$	and	Δ𝜌𝜌 ∝ 𝑥𝑥., then	𝜌𝜌% − Δ𝜌𝜌 ∝ 𝑂𝑂(𝜌𝜌%) 

For 2D case: 

î𝑢𝑢(𝑢𝑢 − 𝜌𝜌%)𝑑𝑑𝐴𝐴
=

∼ 𝜌𝜌%Δ𝜌𝜌𝛿𝛿 ∝ 𝑥𝑥$, 𝑚𝑚 + 𝑛𝑛 = 0 



  For 3D case: 

î𝑢𝑢(𝑢𝑢 − 𝜌𝜌%)𝑑𝑑𝐴𝐴
=

∼ 𝜌𝜌%Δ𝜌𝜌𝛿𝛿" ∝ 𝑥𝑥$, 𝑚𝑚 + 2𝑛𝑛 = 0 

 

¨ Term balance (advection in	𝑥𝑥, 𝑥𝑥	direction can also be neglected) 

For laminar flow: 

𝜌𝜌%
Δ𝜌𝜌
𝑥𝑥 ∼ 𝜈𝜈

Δ𝜌𝜌
𝛿𝛿" , 𝛿𝛿" ∝ 𝑥𝑥, 2𝑛𝑛 = 1 

For turbulent flow: 

𝜌𝜌%
Δ𝜌𝜌
𝑥𝑥 ∼ Δ𝜌𝜌𝛿𝛿 ⋅

Δ𝜌𝜌
𝛿𝛿" ,

Δ𝜌𝜌
𝛿𝛿 ∝

1
𝑥𝑥 , 𝑚𝑚 = 𝑛𝑛 − 1 

 

Term / Momentum balance 2D wake (𝑚𝑚+ 𝑛𝑛 = 0) 3D wake (𝑚𝑚+ 2𝑛𝑛 = 0) 

Laminar (2𝑛𝑛 = 1) 
𝑛𝑛 =

1
2 ,			𝑚𝑚 = −

1
2 

𝛿𝛿 ∼ √𝑥𝑥,			𝛥𝛥𝛥𝛥 ∼
1
√𝑥𝑥

 

𝑛𝑛 =
1
2 ,			𝑚𝑚 = −1 

𝛿𝛿 ∼ √𝑥𝑥,			𝛥𝛥𝛥𝛥 ∼
1
𝑥𝑥 

Turbulent (𝑚𝑚 = 𝑛𝑛 − 1) 
𝑛𝑛 =

1
2 ,			𝑚𝑚 = −

1
2 

𝛿𝛿 ∼ √𝑥𝑥,			𝛥𝛥𝛥𝛥 ∼
1
√𝑥𝑥

 

𝑛𝑛 =
1
3 ,			𝑚𝑚 = −

2
3 

𝛿𝛿 ∼ 𝑥𝑥
$
",			𝛥𝛥𝛥𝛥 ∼ 𝑥𝑥#

!
" 

 

Ø Data analysis for wakes 

Investigate term balance, estimate turbulent eddy viscosity (nearly a constant) 

𝑢𝑢P
𝜕𝜕𝑢𝑢P
𝜕𝜕𝑥𝑥 ∼ 𝜈𝜈'

𝜕𝜕"𝑢𝑢P
𝜕𝜕𝑥𝑥" 

 Influence of Reynolds number (molecular viscosity), compare	𝜈𝜈' 	and	𝜈𝜈: 

 For 3D turbulent wake, at very large distance the local Reynolds number (Re ∝ Δ𝜌𝜌𝛿𝛿) is 

small and becomes laminar 

 

  



Lecture 6. RANS equations 

Ø Recap Lecture 5 

Approximate PDE: Example for steady heat transport equation 

𝑢𝑢P
𝜕𝜕�̅�𝜃
𝜕𝜕𝑥𝑥 + �̅�𝑢

𝜕𝜕�̅�𝜃
𝜕𝜕𝑥𝑥 + 𝑢𝑢ñ

𝜕𝜕�̅�𝜃
𝜕𝜕𝑥𝑥 ≃ 𝛾𝛾'∇;" �̅�𝜃, 𝑢𝑢P

𝜕𝜕�̅�𝜃
𝜕𝜕𝑥𝑥 ∼ 𝛾𝛾'

𝜕𝜕"�̅�𝜃
𝜕𝜕𝑥𝑥" 

 

Ø Reynolds averaged N-S equation 

¨ RANS: PDE governing averaged fields 

Smooth fields, often steady, sufficient for most applications 

𝜕𝜕>(𝑢𝑢)PPPPPPPP = 𝜕𝜕>(𝑢𝑢P) 

Counterexamples (taking the mean cannot study these topics): Noise in 

aeroacoustics, unstable modes, aero-optics, combustion 

¨ Systematic derivation of RANS 

a. Start with NS eqn. 

𝜕𝜕𝑢𝑢#
𝜕𝜕𝑥𝑥#

= 0,
𝜕𝜕𝑢𝑢!
𝜕𝜕𝜕𝜕 +

𝜕𝜕(𝑢𝑢#𝑢𝑢!)
𝜕𝜕𝑥𝑥#

= −
1
𝜌𝜌

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥!

+ 𝜈𝜈
𝜕𝜕"𝑢𝑢!

𝜕𝜕𝑥𝑥#𝜕𝜕𝑥𝑥#
 

  Other form of momentum balance 

𝜕𝜕𝑢𝑢!
𝜕𝜕𝜕𝜕 + 𝑢𝑢#

𝜕𝜕𝑢𝑢!
𝜕𝜕𝑥𝑥#

=
1
𝜌𝜌
𝜕𝜕𝜎𝜎!#
𝜕𝜕𝑥𝑥!

, 𝜎𝜎!# = −𝜕𝜕𝛿𝛿!# + 2𝜇𝜇𝑆𝑆!# , 𝑆𝑆!# =
1
2õ

𝜕𝜕𝑢𝑢!
𝜕𝜕𝑥𝑥#

+
𝜕𝜕𝑢𝑢#
𝜕𝜕𝑥𝑥!

ú 

b. Reynolds decomposition: Mean + Fluctuations 

𝑢𝑢!(𝒙𝒙, 𝜕𝜕) = 𝜌𝜌! + 𝑢𝑢!? 

  The mean can be time average or ensemble average 

𝜌𝜌! = 𝑢𝑢P! = lim
'→%

1
𝑇𝑇T 𝑢𝑢!𝑑𝑑𝜕𝜕

-@'

-
, 𝜌𝜌! = 〈𝑢𝑢!〉 

 

 

 

 

 

 



Jet is “statistically time stationary” means statistics do not depend on	𝜕𝜕), and thus we 

have	〈𝑢𝑢!〉 = 𝑢𝑢P!. One counterexample is a decaying turbulence (𝑢𝑢PA = 0	for large	𝑇𝑇) 

 

 

 

 

c. Apply averaging on NS eqn. 

𝜕𝜕〈𝑢𝑢#〉
𝜕𝜕𝑥𝑥#

= 0,
𝜕𝜕〈𝑢𝑢!〉
𝜕𝜕𝜕𝜕 +

𝜕𝜕〈𝑢𝑢#𝑢𝑢!〉
𝜕𝜕𝑥𝑥#

= −
1
𝜌𝜌
𝜕𝜕〈𝜕𝜕〉
𝜕𝜕𝑥𝑥!

+ 𝜈𝜈
𝜕𝜕"〈𝑢𝑢!〉
𝜕𝜕𝑥𝑥#𝜕𝜕𝑥𝑥#

 

  4 equations with primary 4 unknowns:	〈𝑢𝑢!〉, 〈𝜕𝜕〉. Additional unknowns:	〈𝑢𝑢!𝑢𝑢#〉 

〈𝑢𝑢!𝑢𝑢#〉 = 〈𝑢𝑢!〉〈𝑢𝑢#〉 + 〈𝑢𝑢!?𝑢𝑢#?〉 

d. Substitute into RANS eqn. 

𝜕𝜕〈𝑢𝑢!〉
𝜕𝜕𝜕𝜕 +

𝜕𝜕4〈𝑢𝑢#〉〈𝑢𝑢!〉5
𝜕𝜕𝑥𝑥#

=
1
𝜌𝜌
𝜕𝜕𝑇𝑇!#
𝜕𝜕𝑥𝑥#

 

𝑇𝑇!# = −〈𝜕𝜕〉𝛿𝛿!# + 2𝜇𝜇〈𝑆𝑆!#〉 − 𝜌𝜌〈𝑢𝑢#?𝑢𝑢!?〉, 𝑆𝑆!# =
1
2õ

𝜕𝜕〈𝑢𝑢!〉
𝜕𝜕𝑥𝑥#

+
𝜕𝜕〈𝑢𝑢#〉
𝜕𝜕𝑥𝑥!

ú 

  The stress tensor includes mean pressure, viscous stress, Reynolds stress 

e. Statistically stationary case 

𝜕𝜕4𝑢𝑢P#𝑢𝑢P!5
𝜕𝜕𝑥𝑥#

= −
1
𝜌𝜌

𝜕𝜕�̅�𝜕
𝜕𝜕𝑥𝑥!

+ 𝜈𝜈
𝜕𝜕"𝑢𝑢P!

𝜕𝜕𝑥𝑥#𝜕𝜕𝑥𝑥#
−

𝜕𝜕𝑢𝑢B?𝑢𝑢C?PPPPPP
𝜕𝜕𝑥𝑥#

 

 

Ø Turbulence closure problem 

RANS is exact but unclosed. Need turbulence models 

〈𝑢𝑢!?𝑢𝑢#?〉 = 𝑓𝑓!#(⋅) 

 Phenomenological model discussed in Lecture 4 & 5 is one option 

−〈𝑢𝑢#?𝑢𝑢!?〉 = 2𝜈𝜈'〈𝑆𝑆!#〉 

 This model is local: turbulent flux can be calculated from local gradient of mean flow. In 

reality the process can be non-local. 

 



Ø Example: turbulent channel flow 

 

 

 

 

 

 

 RANS equation is 

𝜕𝜕𝑢𝑢P"

𝜕𝜕𝑥𝑥 +
𝜕𝜕(𝑢𝑢P�̅�𝑢)
𝜕𝜕𝑥𝑥 +

𝜕𝜕(𝑢𝑢P𝑢𝑢ñ)
𝜕𝜕𝑥𝑥 = −

1
𝜌𝜌
𝜕𝜕�̅�𝜕
𝜕𝜕𝑥𝑥 + 𝜈𝜈∇"𝑢𝑢P −

𝜕𝜕𝑢𝑢?𝑢𝑢?PPPPPP
𝜕𝜕𝑥𝑥 −

𝜕𝜕𝑢𝑢?𝑢𝑢?PPPPPP
𝜕𝜕𝑥𝑥 −

𝜕𝜕𝑢𝑢?𝑢𝑢?PPPPPP
𝜕𝜕𝑥𝑥  

 Under homogeneous assumption, we get an ODE in	𝑥𝑥-direction 

0 = −
1
𝜌𝜌
𝜕𝜕�̅�𝜕
𝜕𝜕𝑥𝑥 + 𝜈𝜈

𝜕𝜕"𝑢𝑢P
𝜕𝜕𝑥𝑥" −

𝜕𝜕𝑢𝑢?𝑢𝑢?PPPPPP
𝜕𝜕𝑥𝑥  

 The pressure gradient force is not a function of	𝑥𝑥	due to homogeneity 

 Velocity fluctuations scale to	𝑢𝑢).,
? ∼ 5 − 10%	𝜌𝜌, 𝑢𝑢).,

? ∼ 1 − 5%	𝜌𝜌. Although this 

fluctuation is small, but the contribution is still larger than	𝜈𝜈.	and mixes in the	𝑥𝑥-direction 

much more efficient than molecular diffusion 

  



Lecture 7. RANS-type equations for multi-physics problems 

Ø Recap Lecture 6 

𝜕𝜕〈𝑢𝑢!〉
𝜕𝜕𝜕𝜕 +

𝜕𝜕4〈𝑢𝑢#〉〈𝑢𝑢!〉5
𝜕𝜕𝑥𝑥#

=
1
𝜌𝜌

𝜕𝜕
𝜕𝜕𝑥𝑥!

ü−〈𝜕𝜕〉𝛿𝛿!# + 2𝜇𝜇〈𝑆𝑆!#〉 − 𝜌𝜌〈𝑢𝑢#?𝑢𝑢!?〉†,
𝜕𝜕〈𝑢𝑢#〉
𝜕𝜕𝑥𝑥#

= 0 

 

Ø Example: Turbulent channel flow 

Fixed mean pressure gradient 

−
𝜕𝜕�̅�𝜕
𝜕𝜕𝑥𝑥 ⋅ 2ℎ = 2𝜏𝜏D = 2𝜇𝜇

𝜕𝜕𝑢𝑢P
𝜕𝜕𝑥𝑥£94$

 

 

 

 

 

 

RANS equation for turbulent channel flow 

0 = −
1
𝜌𝜌
𝜕𝜕�̅�𝜕
𝜕𝜕𝑥𝑥 + 𝜈𝜈

𝜕𝜕"𝑢𝑢P
𝜕𝜕𝑥𝑥" −

𝜕𝜕𝑢𝑢?𝑢𝑢?PPPPPP
𝜕𝜕𝑥𝑥  

 Turbulent velocity scales:	𝑢𝑢).,
? 	, 𝑢𝑢).,

? ∼ 0 − 10%	𝜌𝜌 

 

Ø Revisit scaling of 3D turbulent jet 

𝑢𝑢P
𝜕𝜕𝑢𝑢P
𝜕𝜕𝑥𝑥 ∼ 𝜈𝜈'

𝜕𝜕"𝑢𝑢P
𝜕𝜕𝑥𝑥" , 𝜈𝜈' ∼ Δ𝜌𝜌𝛿𝛿,

(Δ𝜌𝜌)"

𝑥𝑥 ∼ Δ𝜌𝜌𝛿𝛿 ⋅
Δ𝜌𝜌
𝛿𝛿" , 𝛿𝛿 ∼ 𝑥𝑥 

 Note that	𝜈𝜈' ∼ 0.1𝛥𝛥𝜌𝜌 ⋅ 𝛿𝛿, and	𝛿𝛿 ≪ 𝑥𝑥. However, the contribution from turbulent mixing 

is still much larger than the contribution from molecular viscous stress 

 The meaning of	𝑢𝑢?𝑢𝑢?PPPPPP	is the correlation between	𝑢𝑢?	and	𝑢𝑢?	in the channel 

 

 

 

 

𝜌𝜌)+E = ℎ, 𝜌𝜌)+E = z𝜏𝜏D/𝜌𝜌, 𝑇𝑇)+E = 𝜌𝜌)+E/𝜌𝜌)+E 



Ø Rayleigh-Benard convection 
𝜕𝜕𝒖𝒖
𝜕𝜕𝜕𝜕 + (𝒖𝒖 ⋅ 𝜵𝜵)𝒖𝒖 = −

1
𝜌𝜌$

𝛻𝛻𝜕𝜕 + 𝜈𝜈𝛻𝛻"𝒖𝒖 + 𝒈𝒈𝛽𝛽𝑇𝑇 

𝜕𝜕𝑇𝑇
𝜕𝜕𝜕𝜕 + (𝒖𝒖 ⋅ 𝜵𝜵)𝑇𝑇 = 𝛼𝛼𝛻𝛻"𝑇𝑇, 𝜵𝜵 ⋅ 𝒖𝒖 = 0 

Boussinesq approximation: 𝛽𝛽𝑇𝑇 ≈ 𝜌𝜌/𝜌𝜌$ with thermal expansion coefficient	𝛽𝛽 

 

Special case of infinite parallel plates 

𝑢𝑢P = �̅�𝑢 = 𝑢𝑢ñ = 0 

𝑥𝑥-momentum equation 

−
1
𝜌𝜌
𝜕𝜕�̅�𝜕
𝜕𝜕𝑥𝑥 −

𝜕𝜕𝑢𝑢?𝑢𝑢?PPPPPP
𝜕𝜕𝑥𝑥 + 𝑔𝑔𝛽𝛽𝑇𝑇P = 0 

 Temperature evolution 

𝜕𝜕𝑇𝑇
𝜕𝜕𝜕𝜕 +

𝜕𝜕(𝑢𝑢#𝑇𝑇)
𝜕𝜕𝑥𝑥#

= 𝛼𝛼𝛻𝛻"𝑇𝑇 

 

Ø Electro convective chaos 

Dimensionless governing equations 

0 = −𝛻𝛻𝜕𝜕 + 𝛻𝛻"𝒖𝒖 +
𝜅𝜅
𝜀𝜀 𝜌𝜌𝑬𝑬 Small Re, LHS = 0 

−𝜀𝜀	𝜵𝜵 ⋅ 𝑬𝑬 = 𝜌𝜌, 𝜵𝜵 ⋅ 𝒖𝒖 = 0 
𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕 + 𝒖𝒖 ⋅ 𝜵𝜵𝜌𝜌 + 𝜵𝜵 ⋅ (𝑐𝑐𝑬𝑬) = 𝛻𝛻"𝜌𝜌,

𝜕𝜕𝑐𝑐
𝜕𝜕𝜕𝜕 + 𝒖𝒖 ⋅ 𝜵𝜵𝑐𝑐 + 𝜵𝜵 ⋅ (𝜌𝜌𝑬𝑬) = 𝛻𝛻"𝑐𝑐 

𝜌𝜌 = [Na@] − [Cl6], 𝑐𝑐 = [Na@] + [Cl6] 

 RANS equation will lead to additional unknowns such as	𝑢𝑢C?𝑐𝑐?PPPPP, 𝜌𝜌?𝑆𝑆C?PPPPPP 

 

 

 

 

 

 

 



Lecture 8. Statistical symmetry and homogeneity 

Ø Statistical symmetry 

Eqns and B.C. remain invariant to mirroring of domain along a coordinate 

Transformation:	𝑥𝑥0 → −𝑥𝑥0, 𝑢𝑢0 → −𝑢𝑢0 

Implication:	〈⋅〉 = 0	for quantities that change sign due to this transformation 

 

Ø Statistical homogeneity 

Eqns and B.C. remain invariant to translation along a coordinate 

Transformation:	𝑥𝑥0 → 𝑥𝑥0 + 𝑢𝑢 

Implication:	𝜕𝜕〈⋅〉/𝜕𝜕𝑥𝑥0 = 0 

 

Ø Navier-Stokes equations 

¨ Symmetric and homogeneous for all 3 spatial coordinates 

¨ Homogeneous with time 

¨ Important to check boundary conditions 

 

Ø Example: Fully developed turbulent channel flow 

B.C. 𝑢𝑢 = 𝑢𝑢 = 𝑢𝑢 = 0	at	𝑥𝑥 = 0, 2ℎ 

Background pressure gradient 
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥 =

Δ𝜕𝜕
Δ𝜌𝜌 +

𝜕𝜕𝜕𝜕?

𝜕𝜕𝑥𝑥  

Governing equations 

𝜕𝜕𝑢𝑢#
𝜕𝜕𝑥𝑥#

= 0,
𝜕𝜕𝑢𝑢!
𝜕𝜕𝜕𝜕 + 𝑢𝑢#

𝜕𝜕𝑢𝑢!
𝜕𝜕𝑥𝑥#

= −
1
𝜌𝜌

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥!

+ 𝜈𝜈∇"𝑢𝑢! 

¨ 𝑥𝑥-direction symmetry 

Physics intuition Symmetric transform Implication 

𝑤𝑤< = 𝑤𝑤=<  𝑤𝑤< = −𝑤𝑤=<  𝑤𝑤< = 0 

𝑢𝑢)𝑤𝑤)@@@@@@ = 𝑢𝑢)𝑤𝑤= )@@@@@@ 𝑢𝑢)𝑤𝑤)@@@@@@ = −𝑢𝑢)𝑤𝑤= )@@@@@@ 𝑢𝑢)𝑤𝑤)@@@@@@ = 0 

¨ 𝑥𝑥, 𝑥𝑥-direction homogeneity: 𝜕𝜕〈⋅〉/𝜕𝜕𝑥𝑥 = 𝜕𝜕〈⋅〉/𝜕𝜕𝑥𝑥 = 0 

 



¨ 𝑥𝑥-direction is not symmetric 
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥 =

Δ𝜕𝜕
Δ𝜌𝜌 +

𝜕𝜕𝜕𝜕?

𝜕𝜕𝑥𝑥 ,
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥∞ = −

Δ𝜕𝜕
Δ𝜌𝜌 +

𝜕𝜕𝜕𝜕?

𝜕𝜕𝑥𝑥∞  

¨ 𝑥𝑥-direction is not homogeneous, but is symmetric at centerline 

�̅�𝑢(𝑥𝑥 = ℎ) = 0,
𝜕𝜕𝑢𝑢P
𝜕𝜕𝑥𝑥

(𝑥𝑥 = ℎ) = 0, 𝑢𝑢?𝑢𝑢?PPPPPP(𝑥𝑥 = ℎ) = 0,
𝜕𝜕𝑢𝑢?𝑢𝑢?PPPPPP
𝜕𝜕𝑥𝑥

(𝑥𝑥 = ℎ) = 0 

¨ Continuity: Homogeneity in	𝑥𝑥, 𝑥𝑥	gives	𝜕𝜕𝑢𝑢/𝜕𝜕𝑥𝑥 = 0,	and with B.C. we have	�̅�𝑢 = 0 

 

Ø Example: Rayleigh-Benard convection 

¨ 𝑥𝑥, 𝑥𝑥-direction: Symmetric and homogeneous 

¨ 𝑥𝑥-direction: Not symmetric and not homogeneous 

 

Ø Example: Stoke’s first problem 

¨ B.C. 𝑢𝑢FGH-+ = 𝜌𝜌𝑈𝑈(𝜕𝜕). This problem is not symmetric and not homogeneous in time 

¨ 𝑥𝑥-direction: Not symmetric, but homogeneous 

¨ 𝑥𝑥-direction: Not symmetric and not homogeneous 

¨ 𝑥𝑥-direction: Symmetric and homogeneous: 𝑢𝑢ñ = 𝑢𝑢?𝑢𝑢?PPPPPP = 𝑢𝑢?𝑢𝑢?PPPPPP = 0, 𝜕𝜕〈⋅〉/𝜕𝜕𝑥𝑥 = 0 

¨ Simplified RANS equation (with continuity giving	�̅�𝑢 = 0) 

𝜕𝜕𝑢𝑢P
𝜕𝜕𝜕𝜕 = 𝜈𝜈

𝜕𝜕"𝑢𝑢P
𝜕𝜕𝑥𝑥" −

𝜕𝜕𝑢𝑢?𝑢𝑢?PPPPPP
𝜕𝜕𝑥𝑥  

 

Ø Example: Fully developed 3D round jet 

𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕 +

1
𝑟𝑟

𝜕𝜕
𝜕𝜕𝑟𝑟

(𝑟𝑟𝑢𝑢)𝑢𝑢) +
1
𝑟𝑟

𝜕𝜕
𝜕𝜕𝜃𝜃

(𝑢𝑢A𝑢𝑢) +
𝜕𝜕𝑢𝑢"

𝜕𝜕𝑥𝑥 = −
1
𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥 + 𝜈𝜈 ≥

1
𝑟𝑟

𝜕𝜕
𝜕𝜕𝑟𝑟 ¥𝑟𝑟

𝜕𝜕𝑢𝑢
𝜕𝜕𝑟𝑟µ +

1
𝑟𝑟"

𝜕𝜕"𝑢𝑢
𝜕𝜕𝜃𝜃" +

𝜕𝜕"𝑢𝑢
𝜕𝜕𝑥𝑥"∂ 

¨ 𝜃𝜃-direction: Symmetric and homogeneous,	𝑢𝑢APPP = 0, 𝜕𝜕〈⋅〉/𝜕𝜕𝜃𝜃 = 0 

¨ 𝑟𝑟, 𝑥𝑥-direction: Not symmetric and not homogeneous 

¨ Simplified RANS equation (no external pressure gradient) 

𝑢𝑢P
𝜕𝜕𝑢𝑢P
𝜕𝜕𝑥𝑥 + 𝑢𝑢P)

𝜕𝜕𝑢𝑢P
𝜕𝜕𝑟𝑟 =

𝜈𝜈
𝑟𝑟

𝜕𝜕
𝜕𝜕𝑟𝑟 ¥𝑟𝑟

𝜕𝜕𝑢𝑢P
𝜕𝜕𝑟𝑟µ − ≥

𝜕𝜕𝑢𝑢?𝑢𝑢?PPPPPP
𝜕𝜕𝑥𝑥 +

1
𝑟𝑟

𝜕𝜕
𝜕𝜕𝑟𝑟

(𝑟𝑟	𝑢𝑢)?𝑢𝑢?PPPPPP)∂ 

  



Lecture 9. Turbulence closure 

Ø Recap 

For turbulent jet, the eddy is nearly circle in	𝑥𝑥𝑥𝑥-plane (i.e. 𝑢𝑢).,
? ∼ 𝑢𝑢).,

? ). But for 

turbulent channel flow, eddy is elongated in the stream-wise direction (i.e. 𝑢𝑢).,
? ≫ 𝑢𝑢).,

? ) 

 On the wall we have instantaneous zero velocity:	𝑢𝑢 = 𝑢𝑢 = 𝑢𝑢 = 0. Besides, continuity 

equation gives	𝜕𝜕𝑢𝑢/𝜕𝜕𝑥𝑥 = 0.	But	𝜕𝜕𝑢𝑢/𝜕𝜕𝑥𝑥 ≠ 0	and has a large gradient. 

 RANS equations are unclosed. For example, Rayleigh-Benard convection has 5 eqs. and 

5 standard unknowns (𝑢𝑢P, �̅�𝑢, 𝑢𝑢ñ, �̅�𝜃, �̅�𝜕) and unclosed terms like	𝜃𝜃?𝑢𝑢?PPPPPP 

 

Ø Boussinesq approximation (locality and isotropy) 

Based on analogy between molecular mixing and turbulent mixing 

 

 

 

Model the unclosed term with 

−𝑢𝑢?𝑢𝑢?PPPPPP ≃ Δ𝑥𝑥	𝑢𝑢? 	
𝜕𝜕𝑢𝑢P
𝜕𝜕𝑥𝑥 , 𝜈𝜈' ∼ Δ𝑥𝑥	𝑢𝑢?, m. f. p. is	mean	free	path 

 In general, with major assumptions of locality and isotropy  

−𝑢𝑢C?𝑢𝑢B?PPPPPP ≃ ν' õ
𝜕𝜕𝑢𝑢P!
𝜕𝜕𝑥𝑥#

+
𝜕𝜕𝑢𝑢P#
𝜕𝜕𝑥𝑥!

ú −
1
3𝑢𝑢I? 𝑢𝑢I?PPPPPPP𝛿𝛿!# 	 

A problem of the first term: The trace of Reynolds stress is 2 TKE (which is positive), 

while the trace of velocity gradient is the divergence (which is zero). The variance (e.g.	𝑢𝑢′𝑢𝑢′PPPPP) 

should be further captured by turbulent pressure term, which can be absorbed into	�̅�𝜕𝛿𝛿!#. 

For scaling with sound speed in the air,	𝑢𝑢′𝑢𝑢′PPPPP ∼ 𝛼𝛼" ∼ 𝛾𝛾𝑅𝑅𝑇𝑇, which is related to pressure. 

 

Ø Example: Mean parallel flow 

Boussinesq approximation gives 

−𝑢𝑢?𝑢𝑢?PPPPPP = 𝜈𝜈'
𝜕𝜕𝑢𝑢P
𝜕𝜕𝑥𝑥 > 0 

Mechanism of sustaining	𝑢𝑢?𝑢𝑢?PPPPPP < 0	is tilting & stretching (3D).  



�̅�𝑠!# = º
0 �̅�𝑠/" 0
�̅�𝑠"/ 0 0
0 0 0

Ω , �̅�𝑠!#J = diag(𝑠𝑠, −𝑠𝑠, 0) 

 

 

 

 

 

 

Consider the stress only have non-zero	�̅�𝑠/", there will be stretching along	45∘	direction. 

Vortex stretching also indicates	𝑢𝑢′𝑢𝑢′PPPPP < 0. 

 

Ø Prandtl mixing length model (for parallel and semi-parallel flows) 

This models the eddy velocity based on mean velocity gradient 

𝜈𝜈' ∼ 𝑢𝑢+889	𝑢𝑢+889 , 𝑢𝑢+889 ∼ 𝑢𝑢+889 	 £
𝜕𝜕𝑢𝑢P
𝜕𝜕𝑥𝑥£ 

 So the turbulent viscosity is written based on the mixing length	𝑢𝑢. 

𝜈𝜈' = 𝑢𝑢." £
𝜕𝜕𝑢𝑢P
𝜕𝜕𝑥𝑥£ 

 Mixing length is analogous to mean free path when interpreting viscosity, and is different 

for different flows 

 

¨ Mixing length model for 2D jets 

Define	𝛿𝛿	based on the half center-line velocity 

𝑢𝑢.(𝑥𝑥) = 𝜕𝜕𝛿𝛿(𝑥𝑥) 

with dimensionless pre-specified constant	𝜕𝜕. Now the RANS equation for 2D planar 

jet is now closed 

𝑢𝑢P
𝜕𝜕𝑢𝑢P
𝜕𝜕𝑥𝑥 + �̅�𝑢

𝜕𝜕𝑢𝑢P
𝜕𝜕𝑥𝑥 =

𝜕𝜕
𝜕𝜕𝑥𝑥 æ(𝜈𝜈 + 𝜈𝜈')

𝜕𝜕𝑢𝑢P
𝜕𝜕𝑥𝑥ø ,

𝜕𝜕𝑢𝑢P
𝜕𝜕𝑥𝑥 +

𝜕𝜕�̅�𝑢
𝜕𝜕𝑥𝑥 = 0, 𝜈𝜈' = 𝜕𝜕"𝛿𝛿" £

𝜕𝜕𝑢𝑢P
𝜕𝜕𝑥𝑥£ 

 

¨ Side note: General non-local model 

−𝑢𝑢?𝑢𝑢?PPPPPP(𝑥𝑥) = T 𝜈𝜈'(𝑥𝑥; 𝑥𝑥?)
𝜕𝜕𝑢𝑢P
𝜕𝜕𝑥𝑥

(𝑥𝑥?)	𝑑𝑑𝑥𝑥?
9@%

96%
 



¨ Mixing length model for turbulent channel flow 

𝑢𝑢. = 𝜅𝜅𝑥𝑥 

with von Karman constant	𝜅𝜅 = 0.4 

 

  



Lecture 10. Turbulence channel flows & boundary layers 

Ø Turbulent channel flow 

Two “boundary layers” with thickness	ℎ	or	𝛿𝛿 

 Reference parameters:	𝜌𝜌LMN = 𝜌𝜌NOPQR, 𝜌𝜌LMN = ℎ 

 

Derive reference velocity from pressure gradient (known) 

𝐹𝐹 = −
𝜕𝜕�̅�𝜕
𝜕𝜕𝑥𝑥 ⋅ Δ𝑥𝑥 ⋅ 2ℎ, 𝜏𝜏D = 𝜇𝜇

𝜕𝜕𝑢𝑢P
𝜕𝜕𝑥𝑥 

 C.V. analysis gives the friction velocity 

𝜏𝜏D = 𝜇𝜇
𝜕𝜕𝑢𝑢P
𝜕𝜕𝑥𝑥£94$

= −ℎ
𝜕𝜕�̅�𝜕
𝜕𝜕𝑥𝑥 , 𝑢𝑢S = ¬

𝜏𝜏D
𝜌𝜌 = ¬𝜈𝜈

𝜕𝜕𝑢𝑢P
𝜕𝜕𝑥𝑥£TUOO

 

 Another reference length scale is the viscous length 

𝛿𝛿V =
𝜈𝜈
𝑢𝑢S

 

  

 Inner (viscous) units: 

𝑢𝑢@ =
𝑢𝑢
𝑢𝑢S

, 𝑥𝑥@ =
𝑥𝑥
𝛿𝛿V

 

 Outer units: 

𝑢𝑢@ =
𝑢𝑢
𝑢𝑢S

, 𝜂𝜂 =
𝑥𝑥
𝛿𝛿 

  

 RANS equation for channel: 
𝜕𝜕
𝜕𝜕𝑥𝑥 æ𝜈𝜈

𝜕𝜕𝑢𝑢P
𝜕𝜕𝑥𝑥 − 𝑢𝑢?𝑢𝑢?PPPPPPø =

1
𝜌𝜌
𝜕𝜕�̅�𝜕
𝜕𝜕𝑥𝑥 = −

𝜏𝜏D
𝜌𝜌ℎ = −

𝑢𝑢S"

ℎ  

 Non-dimensional version, and integrate it for once, we obtain 

𝜕𝜕
𝜕𝜕𝜂𝜂 ≥

𝜈𝜈
𝑢𝑢Sℎ

𝜕𝜕𝑢𝑢P@

𝜕𝜕𝜂𝜂 − 𝑢𝑢@?𝑢𝑢@?PPPPPPPPP∂ = −1,
1

ReS
𝜕𝜕𝑢𝑢P@

𝜕𝜕𝜂𝜂 − 𝑢𝑢@?𝑢𝑢@?PPPPPPPPP = 1 − 𝜂𝜂 

 For simple notation, we will use 
1

ReS
𝜕𝜕𝑢𝑢P
𝜕𝜕𝑥𝑥 − 𝑢𝑢?𝑢𝑢?PPPPPP = 1 − 𝑥𝑥, ReS =

𝑢𝑢Sℎ
𝜈𝜈 =

𝛿𝛿
𝛿𝛿V

= ℎ@ 

 ReS	can also be interpreted as the ratio of outer and inner length scales 

 

  



 What is the profile of	𝑢𝑢P(ReS, 𝑥𝑥),	the center-line velocity	𝜌𝜌W@(ReS)? 

 Given center-line velocity, the Reynolds number is thus 

Re =
𝜌𝜌Wℎ
𝜈𝜈 = 𝜌𝜌W@

𝑢𝑢Sℎ
𝜈𝜈 = 𝜌𝜌W@	ReS 

  

Derivation of the velocity profile 

1. For the outer zone, we have 

−𝑢𝑢@?𝑢𝑢@?PPPPPPPPP = 1 −
𝑥𝑥
𝛿𝛿 

 For wall-bounded flows, near the wall the molecular mixing dominates. So for the entire 

region, we cannot say turbulent stress always dominates, which is different from jets. 

 However, sufficiently away from the wall (𝑥𝑥@ ≫ 1, a condition related to	ReS), we can 

safely neglect the viscous stress, and consider the following expression independent of	ReS 
𝑢𝑢P − 𝑢𝑢W

𝑢𝑢S
= 𝑔𝑔 ƒ

𝑥𝑥
𝛿𝛿≈ 

  

2. For the inner zone (𝑥𝑥 ≪ 𝛿𝛿), we have	𝑢𝑢@	independent of Reynolds number 

𝑢𝑢@ =
𝑢𝑢P
𝑢𝑢S

= 𝑓𝑓(𝑥𝑥@) 

 The velocity gradient satisfies 

𝑑𝑑𝑢𝑢@

𝑑𝑑𝑥𝑥@∆
94$

=
𝛿𝛿V
𝑢𝑢S

𝑑𝑑𝜌𝜌ñ
𝑑𝑑𝑥𝑥∆

94$
=

𝛿𝛿V
𝜈𝜈𝑢𝑢S

⋅ 𝜈𝜈
𝑑𝑑𝜌𝜌ñ
𝑑𝑑𝑥𝑥∆

94$
=

𝛿𝛿V
𝜈𝜈𝑢𝑢S

⋅ 𝑢𝑢S" = 1 

 So the simplified momentum balance is 
𝜕𝜕𝑢𝑢P@

𝜕𝜕𝑥𝑥@ − 𝑢𝑢@?𝑢𝑢@?PPPPPPPPP ≃ 1 

 

3. For overlap zone (𝛿𝛿V ≪ 𝑥𝑥 ≪ 𝛿𝛿), typical values are 

	𝑥𝑥@ > 40,
𝑥𝑥
𝛿𝛿 < 0.2 

 In this case, both inner and outer scaling relations should be valid 
𝜕𝜕𝑢𝑢@

𝜕𝜕𝜂𝜂 =
𝑑𝑑𝑔𝑔
𝑑𝑑𝜂𝜂 ,

𝜕𝜕𝑢𝑢@

𝜕𝜕𝜂𝜂 =
𝑥𝑥@

𝜂𝜂
𝑑𝑑𝑓𝑓
𝑑𝑑𝑥𝑥@ 

 Therefore, both derivatives should be constant 

𝜂𝜂
𝑑𝑑𝑔𝑔
𝑑𝑑𝜂𝜂 = 𝑥𝑥@

𝑑𝑑𝑓𝑓
𝑑𝑑𝑥𝑥@ = const., 𝑔𝑔(𝜂𝜂) = 𝐴𝐴 ln 𝜂𝜂 + 𝐵𝐵 



 

 

 

 

 

 

 

 The log-layer has the expression 

𝑢𝑢@ =
1
𝜅𝜅 ln 𝑥𝑥@ + 𝐴𝐴, 𝜅𝜅 = 0.4, 𝐴𝐴 = 5.5 

 

Ø Prandtl mixing length model & log-layer 

In the overlap zone, we have 

−𝑢𝑢@?𝑢𝑢@?PPPPPPPPP = 1 

 Mixing length model indicates 

𝜈𝜈'
𝜕𝜕𝑢𝑢P
𝜕𝜕𝑥𝑥 = 𝑢𝑢." £

𝜕𝜕𝑢𝑢P
𝜕𝜕𝑥𝑥£

𝜕𝜕𝑢𝑢P
𝜕𝜕𝑥𝑥 = 1, 𝑢𝑢. = 𝜅𝜅𝑥𝑥 

 Therefore, the log-layer can be obtained 

𝜅𝜅𝑥𝑥
𝜕𝜕𝑢𝑢P
𝜕𝜕𝑥𝑥 = 1,

𝜕𝜕𝑢𝑢P
𝜕𝜕𝑥𝑥 =

1
𝜅𝜅𝑥𝑥 , 𝑢𝑢P =

1
𝜅𝜅 ln 𝑥𝑥 + 𝐵𝐵 

 A strong weakness of mixing length model: At the centerline, velocity gradient is 0. But 

in reality,	𝜈𝜈' ≠ 0	as there is strong mixing around the centerline. 

  



Lecture 11. Reynolds stress transport equation 

How to model Reynolds stress	𝑢𝑢C?𝑢𝑢B?PPPPPP, and how it is influenced by velocity gradient	𝜕𝜕𝑢𝑢PG/𝜕𝜕𝑥𝑥I 

 

Ø Transport equation for Reynolds stress 

1. Start with NS equation 
𝜕𝜕𝑢𝑢!
𝜕𝜕𝜕𝜕 +

𝜕𝜕(𝑢𝑢I𝑢𝑢!)
𝜕𝜕𝑥𝑥I

= −
1
𝜌𝜌

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥!

+ 𝜈𝜈𝛻𝛻"𝑢𝑢! 

2. RANS equation 
𝜕𝜕𝑢𝑢P!
𝜕𝜕𝜕𝜕 +

𝜕𝜕(𝑢𝑢I𝑢𝑢CPPPPPP)
𝜕𝜕𝑥𝑥I

= −
1
𝜌𝜌

𝜕𝜕�̅�𝜕
𝜕𝜕𝑥𝑥!

+ 𝜈𝜈𝛻𝛻"𝑢𝑢P! 

3. Subtraction between these two equations, evolution of perturbation 
𝜕𝜕𝑢𝑢!?

𝜕𝜕𝜕𝜕 +
𝜕𝜕

𝜕𝜕𝑥𝑥I
(𝑢𝑢PI𝑢𝑢!? + 𝑢𝑢I? 𝑢𝑢P! + 𝑢𝑢I? 𝑢𝑢!? − 𝑢𝑢I? 𝑢𝑢C?PPPPPP) = −

1
𝜌𝜌
𝜕𝜕𝜕𝜕?

𝜕𝜕𝑥𝑥!
+ 𝜈𝜈𝛻𝛻"𝑢𝑢!? 

𝜕𝜕𝑢𝑢#?

𝜕𝜕𝜕𝜕 +
𝜕𝜕

𝜕𝜕𝑥𝑥I
(𝑢𝑢PI𝑢𝑢#? + 𝑢𝑢I? 𝑢𝑢P# + 𝑢𝑢I? 𝑢𝑢#? − 𝑢𝑢I? 𝑢𝑢B?PPPPPP) = −

1
𝜌𝜌
𝜕𝜕𝜕𝜕?

𝜕𝜕𝑥𝑥#
+ 𝜈𝜈𝛻𝛻"𝑢𝑢#? 

4. Cross multiplication and Reynolds-averaging 

𝜕𝜕𝑢𝑢C?𝑢𝑢B?PPPPPP
𝜕𝜕𝜕𝜕 +

𝜕𝜕
𝜕𝜕𝑥𝑥I

4𝑢𝑢PI𝑢𝑢C?𝑢𝑢B?PPPPPP5 = −
1
𝜌𝜌õ

𝜕𝜕𝜕𝜕?𝑢𝑢B?PPPPPP
𝜕𝜕𝑥𝑥!

+
𝜕𝜕𝜕𝜕?𝑢𝑢C?PPPPPP
𝜕𝜕𝑥𝑥#

− 2	𝜕𝜕?𝑆𝑆CB?PPPPPPú	

+𝜈𝜈
𝜕𝜕"𝑢𝑢C?𝑢𝑢B?PPPPPP
𝜕𝜕𝑥𝑥I𝜕𝜕𝑥𝑥I

− 2𝜈𝜈
𝜕𝜕𝑢𝑢C?

𝜕𝜕𝑥𝑥I
𝜕𝜕𝑢𝑢B?

𝜕𝜕𝑥𝑥I

PPPPPPPPPP
	

−𝑢𝑢B?𝑢𝑢I?PPPPPP 𝜕𝜕𝑢𝑢P!
𝜕𝜕𝑥𝑥I

− 𝑢𝑢C?𝑢𝑢I?PPPPPP 𝜕𝜕𝑢𝑢P#
𝜕𝜕𝑥𝑥I

−
𝜕𝜕𝑢𝑢I? 𝑢𝑢C?𝑢𝑢B?PPPPPPPPP

𝜕𝜕𝑥𝑥I
 

 Reynolds stress transport equation give 6 addition equations 

 𝑢𝑢C?𝑢𝑢B?PPPPPP	is now primary unknowns, but we have new unclosed terms: pressure correlation 

terms (energy re-distribution into isotropy), velocity gradient correlation terms (dissipation), 

triple correlation terms (turbulent transport of Reynolds stress) 

 

a. Compared with DNS, we can reduce the time and spatial resolution needed for modeling, 

but we have more equations to solve 

b. Same advection, diffusion, production terms appear for Reynolds stress, more physics 

interpretation and potentially better to capture non-local effects 



Ø Turbulent kinetic energy equation 

TKE = 𝑒𝑒 =
𝑢𝑢C?𝑢𝑢C?PPPPPP
2 =

1
2
(𝑢𝑢?𝑢𝑢?PPPPPP + 𝑢𝑢?𝑢𝑢?PPPPPP + 𝑢𝑢?𝑢𝑢?PPPPPPP), MKE =

1
2𝑢𝑢P!𝑢𝑢P! 

 

Take	𝑖𝑖 = 𝑗𝑗	for the Reynolds stress transport equation 

𝐷𝐷TKE
𝐷𝐷𝜕𝜕 =

𝜕𝜕TKE
𝜕𝜕𝜕𝜕 + 𝑢𝑢PI

𝜕𝜕TKE
𝜕𝜕𝑥𝑥I

=
1
𝜌𝜌

𝜕𝜕
𝜕𝜕𝑥𝑥#

À−𝜕𝜕?𝑢𝑢B?PPPPPP −
𝜌𝜌
2	𝑢𝑢B?𝑢𝑢C?𝑢𝑢C?PPPPPPPP + 2𝜇𝜇	𝑢𝑢C?𝑆𝑆CB?PPPPPPÃ − 2𝜈𝜈𝑆𝑆CB? 𝑆𝑆CB?PPPPPPP − 𝑢𝑢C?𝑢𝑢B?PPPPPP ⋅ 𝑆𝑆CBPPPP 

The change of TKE, when observed following a moving eddy blob, is contributed by: 

Dissipation	−𝜀𝜀, Production (overall positive)	𝑃𝑃, Pressure work, Triple correlation, 

Transport by viscous stress 

Sign of the production term: −𝑢𝑢C?𝑢𝑢B?PPPPPP ⋅ 𝑆𝑆CBPPPP ∼ 𝜈𝜈' 	𝑆𝑆CBPPPP ⋅ 𝑆𝑆CBPPPP, positive in an overall sense 

If doing Boussinesq approximation for the triple correlation term, we now commit less 

errors compared with modeling Reynolds stress 

 

Ø Kinetic energy of mean flow 

1. Start with RANS equation 

𝐷𝐷𝑢𝑢P!
𝐷𝐷𝜕𝜕 =

1
𝜌𝜌
𝜕𝜕𝑇𝑇!#
𝜕𝜕𝑥𝑥#

, 𝑇𝑇!# = −�̅�𝜕𝛿𝛿!# + 2𝜇𝜇𝑆𝑆!̅# − 𝜌𝜌𝑢𝑢C?𝑢𝑢B?PPPPPP 

2. Cross multiplication 

𝐷𝐷MKE
𝐷𝐷𝜕𝜕 =

𝜕𝜕MKE
𝜕𝜕𝜕𝜕 + 𝑢𝑢PI

𝜕𝜕MKE
𝜕𝜕𝑥𝑥I

=
1
𝜌𝜌
𝜕𝜕𝑢𝑢P!𝑇𝑇!#
𝜕𝜕𝑥𝑥#

+
𝜕𝜕𝑢𝑢P!
𝜕𝜕𝑥𝑥#

𝛿𝛿!#�̅�𝜕 − 2𝜈𝜈
𝜕𝜕𝑢𝑢P!
𝜕𝜕𝑥𝑥#

𝑆𝑆!̅# + 𝑢𝑢C?𝑢𝑢B?PPPPPP 𝜕𝜕𝑢𝑢P!
𝜕𝜕𝑥𝑥#

 

3. Simplification and manipulation 

𝐷𝐷MKE
𝐷𝐷𝜕𝜕 =

𝜕𝜕MKE
𝜕𝜕𝜕𝜕 + 𝑢𝑢PI

𝜕𝜕MKE
𝜕𝜕𝑥𝑥I

=
1
𝜌𝜌
𝜕𝜕𝑢𝑢P!𝑇𝑇!#
𝜕𝜕𝑥𝑥#

− 2𝜈𝜈𝑆𝑆!̅#𝑆𝑆!̅# + 𝑢𝑢C?𝑢𝑢B?PPPPPP ⋅ 𝑆𝑆!̅# 

The change of MKE, when observed following a moving fluid, is contributed by: 

 Divergence of flux, Small viscous term (negative, often small except near the wall), 

Minus Production 

 

 

 



Lecture 12. TKE equation for canonical problems (0D or 1D problems) 

Ø Recap Lecture 11: TKE equation 

TKE =
1
2𝑢𝑢C?𝑢𝑢C?PPPPPP,

𝐷𝐷
𝐷𝐷𝜕𝜕 =

𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝑢𝑢P#

𝜕𝜕
𝜕𝜕𝑥𝑥#

 

𝐷𝐷TKE
𝐷𝐷𝜕𝜕 =

1
𝜌𝜌

𝜕𝜕
𝜕𝜕𝑥𝑥#

À−𝜕𝜕?𝑢𝑢B?PPPPPP −
𝜌𝜌
2	𝑢𝑢B?𝑢𝑢C?𝑢𝑢C?PPPPPPPP + 2𝜇𝜇	𝑢𝑢C?𝑆𝑆CB?PPPPPPÃ − 2𝜈𝜈𝑆𝑆CB? 𝑆𝑆CB?PPPPPPP − 𝑢𝑢C?𝑢𝑢B?PPPPPP ⋅ 𝑆𝑆CBPPPP 

𝑃𝑃 = −𝑢𝑢C?𝑢𝑢B?PPPPPP ⋅ 𝑆𝑆CBPPPP, 𝜀𝜀 = 2𝜈𝜈𝑆𝑆CB? 𝑆𝑆CB?PPPPPPP 

 

Ø Turbulent channel flow 

1. TKE equation 

0 =
1
𝜌𝜌

𝜕𝜕
𝜕𝜕𝑥𝑥 ≥−𝜕𝜕?𝑢𝑢?PPPPPP − 𝜌𝜌𝑢𝑢′

𝑢𝑢B?𝑢𝑢B?

2
PPPPPPPP

+ 2𝜇𝜇	𝑢𝑢C?𝑆𝑆C"?PPPPPP∂ − 2𝜈𝜈𝑆𝑆CB? 𝑆𝑆CB?PPPPPPP − 𝑢𝑢?𝑢𝑢?PPPPPP 𝜕𝜕𝑢𝑢P
𝜕𝜕𝑥𝑥 

𝑃𝑃 = −𝑢𝑢?𝑢𝑢?PPPPPP 𝜕𝜕𝑢𝑢P
𝜕𝜕𝑥𝑥 , 𝜀𝜀 = 2𝜈𝜈𝑆𝑆CB? 𝑆𝑆CB?PPPPPPP 

 

2. MKE equation 

0 = −
𝑢𝑢P
𝜌𝜌
𝜕𝜕�̅�𝜕
𝜕𝜕𝑥𝑥 +

1
𝜌𝜌

𝜕𝜕
𝜕𝜕𝑥𝑥 æ𝑢𝑢P ⋅ 𝜇𝜇

𝜕𝜕𝑢𝑢P
𝜕𝜕𝑥𝑥 − 𝑢𝑢P ⋅ 𝑢𝑢?𝑢𝑢?PPPPPPø − 𝑃𝑃 − 2𝜈𝜈𝑆𝑆!̅#𝑆𝑆!̅# 

 

 

3. Production term 

Recall RANS equation 

𝜕𝜕𝑢𝑢@PPPP
𝜕𝜕𝑥𝑥@ − 𝑢𝑢?@𝑢𝑢?@PPPPPPPPP = 1 − 𝜂𝜂 

𝑃𝑃.HX
@ = 0.25,			at		𝑥𝑥@ ≃ 12 

 

4. In the log layer, the non-dimensional quantities are 

〈𝑢𝑢?"〉
TKE = 1,

〈𝑢𝑢?"〉
TKE = 0.4,

〈𝑢𝑢?"〉
TKE = 0.6,

〈𝑢𝑢?𝑢𝑢?〉
TKE = −0.28 

 
𝜅𝜅
𝜀𝜀
𝜕𝜕𝑢𝑢P
𝜕𝜕𝑥𝑥 = 𝑆𝑆

𝜅𝜅
𝜀𝜀 = 3.2, 3.2 = −

𝑆𝑆〈𝑢𝑢?𝑢𝑢?〉
0.28𝜀𝜀 =

𝑃𝑃
0.28𝜀𝜀 ,

𝑃𝑃
𝜀𝜀 = 0.9 



Ø Homogeneous shear flow 

𝑢𝑢P = 𝑠𝑠𝑥𝑥, �̅�𝑢 = 𝑢𝑢ñ = 0 

1. TKE equation 
𝜕𝜕TKE
𝜕𝜕𝜕𝜕 = −𝑢𝑢?𝑢𝑢?PPPPPP 𝜕𝜕𝑢𝑢P

𝜕𝜕𝑥𝑥 − 𝜀𝜀 

The statistics are homogeneous in	𝑥𝑥-direction, and RANS become an ODE 

 

2. Non-dimensional quantities (for tuning and testing RANS models) 

〈𝑢𝑢?"〉
TKE = 1,

〈𝑢𝑢?"〉
TKE = 0.4,

〈𝑢𝑢?"〉
TKE = 0.6,

〈𝑢𝑢?𝑢𝑢?〉
TKE = −0.28,

𝑃𝑃
𝜀𝜀 = 1.7 

 

3. Analytic solution of TKE 
𝜕𝜕TKE
𝜕𝜕𝜕𝜕 = 0.28 ⋅ TKE ⋅ S ⋅ ¥1 −

1
1.7µ = 0.12 ⋅ 𝑆𝑆 ⋅ TKE 

TKE in this flow exponentially grows 

TKE = TKE$ ⋅ exp(0.12	𝑆𝑆𝜕𝜕) 

 

4. Empirical relationship for dissipation 

𝜖𝜖 ∼
𝑢𝑢*

𝑢𝑢 ∼
(TKE)

*
"

𝑢𝑢 , 𝑢𝑢 ∼
(TKE)

*
"

𝜖𝜖 ∼ exp(0.06	𝑆𝑆𝜕𝜕) 

 

Ø Homogeneous & Isotropic turbulence (grid turbulence) 

The length scale of the decay is much larger than the turbulence itself (~ grid size), so 

locally it is a homogeneous & isotropic turbulence 

1. TKE equation 
𝑑𝑑TKE
𝑑𝑑𝜕𝜕 = −𝜖𝜖 

2. Power law solution from observation 

TKE = TKE$ ⋅ ¥
𝜕𝜕
𝜕𝜕$
µ
60

, 𝜖𝜖 ∝ 𝜕𝜕606/ 

Length scale of the turbulence grows with time, but turbulent viscosity decreases with time. 

These observations indicate	1 < 𝑛𝑛 < 2, and empirical values are 

𝑛𝑛 = 1.3, 𝜖𝜖 ∝ 𝜕𝜕6".*, 𝑢𝑢 ∝ 𝜕𝜕$.*7, ReG ∝ 𝜕𝜕6$.*  



Lecture 13. Introduction to correlations 

Ø Spatial correlation 

Correlations in homogeneous flow: Only dependent on separation vector	𝒓𝒓 

𝑅𝑅ZZ(𝒓𝒓) ≡ 𝑢𝑢′(𝒙𝒙)𝑢𝑢′(𝒙𝒙 + 𝒓𝒓) 

More general, the second order correlation tensor 

𝑅𝑅!#(𝒓𝒓) = 〈𝑢𝑢!?(𝒙𝒙 + 𝒓𝒓, 𝜕𝜕)	𝑢𝑢#′(𝒙𝒙, 𝜕𝜕)〉 

 Special case (average in all homogeneous directions) 

𝑅𝑅//(𝑟𝑟–̂) = 〈𝑢𝑢?(𝑥𝑥 + 𝑟𝑟, 𝑥𝑥, 𝑥𝑥, 𝜕𝜕)	𝑢𝑢?(𝑥𝑥, 𝑥𝑥, 𝑥𝑥, 𝜕𝜕)〉, 𝑅𝑅//(0) = 〈𝑢𝑢?𝑢𝑢?〉 

 

Ø Integral length scale (size of large structures	∝ 𝑳𝑳) 

𝜌𝜌 =
∫ 𝑅𝑅//(𝑟𝑟)	𝑑𝑑𝑟𝑟
%
$

〈𝑢𝑢?𝑢𝑢?〉  

For homogeneous directions, we need simulation domain size	≫ 𝑳𝑳	(several times of	𝜌𝜌) 
 
 
 
 
 
 

 
Ø Temporal correlations 

𝑅𝑅//(𝜏𝜏) = 〈𝑢𝑢?(𝑥𝑥, 𝑥𝑥, 𝑥𝑥, 𝜕𝜕 + 𝜏𝜏)	𝑢𝑢?(𝑥𝑥, 𝑥𝑥, 𝑥𝑥, 𝜕𝜕)〉 

Integral	Time =
∫ 𝑅𝑅//(𝜏𝜏)	𝑑𝑑𝜏𝜏
%
$

〈𝑢𝑢?𝑢𝑢?〉 	 

For homogeneous directions, we need simulation time	≫	integral time scale 
In SEM formula, each segment should be independent. The window size should be 

larger than the integral time 
 

Ø Taylor micro-scale 

𝑅𝑅//(𝑟𝑟) ≃ 𝑢𝑢?𝑢𝑢? +
1
2
𝜕𝜕"𝑅𝑅
𝜕𝜕𝑟𝑟" ∆

)4$
𝑟𝑟", 𝜆𝜆[ = ÷

2𝑢𝑢?𝑢𝑢?

−𝜕𝜕"𝑅𝑅
𝜕𝜕𝑟𝑟" £)4$

◊

//"

 



 Defined based on the leading orders of Taylor series. Taylor Reynolds number is 

Re] =
𝜌𝜌).,𝜆𝜆

𝜈𝜈  

 This micro-scale	𝜆𝜆	characterizes turbulent dissipation, but not the smallest eddy size 

𝜖𝜖 ∼ 𝜈𝜈
𝜌𝜌).,
"

𝜆𝜆"  

 

Ø Space-time correlations 

The flow is homogeneous in	𝑥𝑥, 𝑥𝑥	and time (e.g. turbulent channel flow) 

𝑅𝑅ZZ(𝑟𝑟, 𝜏𝜏) = 〈𝑢𝑢?(𝑥𝑥 + 𝑟𝑟, 𝑥𝑥, 𝑥𝑥, 𝜕𝜕 + 𝜏𝜏)	𝑢𝑢?(𝑥𝑥, 𝑥𝑥, 𝑥𝑥, 𝜕𝜕)〉 

 Convective velocity (at which the features are moving across the probe) is usually the 

same with the local mean velocity. 

But in some scenarios, these two velocities can be very different. On the wall there are 

pressure or shear spots moving, but the local mean velocity on the wall is zero. These shear 

spots are related to moving vortices a bit away from the wall posing footprints on the wall. 

 

 

 

 

 

 

Ø How to compute correlations 

1. Data should be defined on uniform mesh for the directions to compute correlations (e.g. 

Δ𝑥𝑥	and	Δ𝜕𝜕	of the data should be uniform) 

2. Choice	𝑟𝑟	or	𝜏𝜏	when performing shift-multiply-average 

𝑟𝑟 = 0, Δ𝑥𝑥, 2Δ𝑥𝑥, 3Δ𝑥𝑥,… , 𝜏𝜏 = 0, Δ𝜕𝜕, 2Δ𝜕𝜕, 3Δ𝜕𝜕, … 

3. Do not use for loops in MATLAB when doing average 

4. Periodic extension in spatial domain, but not for time 

𝜏𝜏.HX ≤
𝑇𝑇.HX

2  

 i.e. at least 50% of overlap  



Lecture 14. Measurement of eddy diffusivity 

Ø Lagrangian methods 

Consider a statistically homogeneous process 

〈𝑥𝑥"〉 = 2𝐷𝐷𝜕𝜕 

with	𝑥𝑥	denotes the position of Lagrangian particles. However, this formula indicates 

that	𝑟𝑟 = z〈𝑥𝑥"〉,	with a singular velocity at	𝑥𝑥 = 0. 

We need to take the limit of	𝜕𝜕 → ∞	to estimate	𝐷𝐷 

𝐷𝐷 =
1
2

𝑑𝑑
𝑑𝑑𝜕𝜕

〈𝑥𝑥"〉 =
1
2
〈
𝑑𝑑𝑥𝑥"

𝑑𝑑𝜕𝜕
〉 = 〈𝑥𝑥(𝜕𝜕)	𝑢𝑢(𝜕𝜕)〉 = 〈𝑢𝑢(𝜕𝜕)T 𝑢𝑢(𝜕𝜕?)	𝑑𝑑𝜕𝜕?

-

$
〉	

= 〈T 𝑢𝑢(𝜕𝜕)	𝑢𝑢(𝜕𝜕?)	𝑑𝑑𝜕𝜕?
-

$
〉 = T 〈𝑢𝑢(𝜕𝜕)	𝑢𝑢(𝜕𝜕?)〉	𝑑𝑑𝜕𝜕?

-

$
 

Define the time difference as	𝜏𝜏 = 𝜕𝜕? − 𝜕𝜕 

𝐷𝐷 = T 〈𝑢𝑢(𝜕𝜕)	𝑢𝑢(𝜕𝜕 + 𝜏𝜏)〉	𝑑𝑑𝜏𝜏
$

6-
= T 〈𝑢𝑢(𝜕𝜕)	𝑢𝑢(𝜕𝜕 + 𝜏𝜏)〉	𝑑𝑑𝜏𝜏

-

$
 

where we use time symmetry at the last step. At the limit of	𝜕𝜕 → ∞, we have 

𝐷𝐷 = T 〈𝑢𝑢(𝜕𝜕)	𝑢𝑢(𝜕𝜕 + 𝜏𝜏)〉	𝑑𝑑𝜏𝜏
%

$
= T 𝜕𝜕(𝜏𝜏)	𝑑𝑑𝜏𝜏

%

$
 

Note that	𝜕𝜕(𝜏𝜏)	is for a moving Lagrangian particle. 

 

Ø Generalization & application in transport of a scalar quantity 

𝜕𝜕𝑐𝑐
𝜕𝜕𝜕𝜕 +

𝜕𝜕4𝑢𝑢#𝑐𝑐5
𝜕𝜕𝑥𝑥#

= 𝐷𝐷:∇"𝑐𝑐,
𝜕𝜕𝑐𝑐̅
𝜕𝜕𝜕𝜕 +

𝜕𝜕4𝑢𝑢P#𝑐𝑐̅5
𝜕𝜕𝑥𝑥#

=
𝜕𝜕
𝜕𝜕𝑥𝑥#

≥𝐷𝐷:
𝜕𝜕𝑐𝑐̅
𝜕𝜕𝑥𝑥#

− 𝑢𝑢#?𝑐𝑐?∂		 

Boussinesq approximation (local approximation, gradient diffusion model), as well as its 

anisotropic extension, gives 

−𝑢𝑢#?𝑐𝑐? ≃ 𝐷𝐷'
𝜕𝜕𝑐𝑐̅
𝜕𝜕𝑥𝑥#

, −𝑢𝑢!?𝑐𝑐? ≃ 𝐷𝐷!#
𝜕𝜕𝑐𝑐̅
𝜕𝜕𝑥𝑥#

 

The goal is to determine	𝐷𝐷!#. We can estimate it from correlations 

𝐷𝐷!# = T 𝜕𝜕!#(𝜏𝜏)	𝑑𝑑𝜏𝜏
%

$
, 𝜕𝜕!#(𝜏𝜏) = 〈

1
2 𝑢𝑢!(𝜕𝜕)	𝑢𝑢#(𝜕𝜕 + 𝜏𝜏) +

1
2𝑢𝑢#(𝜕𝜕)𝑢𝑢!(𝜕𝜕 + 𝜏𝜏)〉 

 

 



Note:	𝑢𝑢!(𝜕𝜕)	obtained from particle tracking is a term in the following expression 

𝑿𝑿3^ = 𝑿𝑿3 + Δ𝜕𝜕	𝒖𝒖(𝑿𝑿0) + Random	Δ𝒙𝒙 

where the random walk should satisfy that its diffusivity is	𝐷𝐷: 

 

Ø Measurement of eddy diffusivity for inhomogeneous systems 

For inhomogeneous systems (e.g. Rayleigh-Benard convection), simplified RANS 

equation for a passive scalar is 

0 =
𝜕𝜕
𝜕𝜕𝑥𝑥 æ𝐷𝐷:

𝜕𝜕𝑐𝑐̅
𝜕𝜕𝑥𝑥 − 𝑢𝑢?𝑐𝑐?ø 

with Boussinesq model and	𝑥𝑥-dependent eddy diffusivity 

−𝑢𝑢?𝑐𝑐? = 𝐷𝐷'(𝑥𝑥)
𝜕𝜕𝑐𝑐̅
𝜕𝜕𝑥𝑥 

General closure eddy diffusivity operator (input-output relation) is 

−𝑢𝑢!?𝑐𝑐?(𝒙𝒙) = T 𝐷𝐷!#(𝒙𝒙, 𝒚𝒚)
𝜕𝜕𝑐𝑐̅
𝜕𝜕𝑥𝑥#5(𝒚𝒚)

	𝑑𝑑*𝒚𝒚	 

This relation is exact, even though it is linear. Because for scalar quantity the governing 

equation is linear.  

Hamba (2004, 2005, physics of fluids) proposed the idea of solving DNS with the 

following condition 

𝜕𝜕𝑐𝑐̅
𝜕𝜕𝑥𝑥#

= 𝛿𝛿(𝒚𝒚 − 𝒚𝒚$) 

Post-processing of simulation data will give 

−𝑢𝑢!?𝑐𝑐? = 𝐷𝐷!#(𝒙𝒙, 𝒚𝒚$) 

and then we can repeat for all	𝒚𝒚$ 

 

Ø Introduction to macroscopic forcing method (Mani & Park, 2021, PR-Fluids) 

𝜕𝜕𝑐𝑐
𝜕𝜕𝜕𝜕 +

𝜕𝜕4𝑢𝑢#𝑐𝑐5
𝜕𝜕𝑥𝑥#

= 𝐷𝐷:∇"𝑐𝑐 + 𝑆𝑆(𝒙𝒙) 

 For 1D limit RANS-space in	𝑥𝑥"-direction 

−𝑢𝑢"? 𝑐𝑐?(𝑥𝑥") = T 𝐷𝐷!#(𝑥𝑥", 𝑥𝑥")
𝜕𝜕𝑐𝑐̅
𝜕𝜕𝑥𝑥"9"

	𝑑𝑑𝑥𝑥" 



with Taylor expansion around	𝑥𝑥" 

𝜕𝜕𝑐𝑐̅
𝜕𝜕𝑥𝑥"

=
𝜕𝜕𝑐𝑐̅
𝜕𝜕𝑥𝑥"

+ (𝑥𝑥" − 𝑥𝑥")
𝜕𝜕"𝑐𝑐̅
𝜕𝜕𝑥𝑥""

+
(𝑥𝑥" − 𝑥𝑥")"

2
𝜕𝜕*𝑐𝑐̅
𝜕𝜕𝑥𝑥"*

+ ⋯ 

we have	

−𝑢𝑢"? 𝑐𝑐?(𝑥𝑥") = 𝐷𝐷($)(𝑥𝑥")
𝜕𝜕𝑐𝑐̅
𝜕𝜕𝑥𝑥"

+ 𝐷𝐷(/)(𝑥𝑥")
𝜕𝜕"𝑐𝑐̅
𝜕𝜕𝑥𝑥""

+ 𝐷𝐷(")(𝑥𝑥")
𝜕𝜕*𝑐𝑐̅
𝜕𝜕𝑥𝑥"*

+ ⋯	

with each coefficient (moment of different orders) calculated as 

𝐷𝐷($) = T𝐷𝐷""(𝑥𝑥", 𝑥𝑥")	𝑑𝑑𝑥𝑥"
9

, 𝐷𝐷(/) = T(𝑥𝑥" − 𝑥𝑥")𝐷𝐷""(𝑥𝑥", 𝑥𝑥")	𝑑𝑑𝑥𝑥"
9

	

𝐷𝐷($)	is the Boussinesq term, and higher order terms capture non-Boussinesq effects.	

 

Calculate	𝐷𝐷($)(𝑥𝑥"): Choose	𝑆𝑆(𝑥𝑥")	such that	𝑐𝑐̅(𝑥𝑥") = 𝑥𝑥",	and this can be done by adding a 

nudging term for the scalar evolution equation 

−𝑢𝑢"? 𝑐𝑐?(𝑥𝑥") = 𝐷𝐷($)(𝑥𝑥")	

Calculate	𝐷𝐷(/)(𝑥𝑥"): Choose	𝑆𝑆(𝑥𝑥")	such that	𝑐𝑐̅(𝑥𝑥") = 𝑥𝑥""/2. Similarly choose polynomial 

form of	𝑆𝑆(𝑥𝑥") 

 

	 However, the previous expansion is not convergent.  

A general converging closure operator is 

≥1 + 𝑎𝑎/(𝑥𝑥")
𝜕𝜕

𝜕𝜕𝑥𝑥"
+ 𝑎𝑎"

𝜕𝜕"

𝜕𝜕𝑥𝑥""
+ ⋯∂ƒ−𝑢𝑢"? 𝑐𝑐?≈ (𝑥𝑥") = 𝑎𝑎$

𝜕𝜕𝑐𝑐̅
𝜕𝜕𝑥𝑥"

	

The macro-scale (RANS space) denotes	𝑞𝑞P, while micro-scale (fluctuation space) denotes	𝑞𝑞? 

  



Lecture 15. Kolmogorov scale 

Ø Energy budget 

Production term 

𝑃𝑃 = −〈𝑢𝑢!?𝑢𝑢#?〉〈𝑆𝑆!#〉 

Dissipation term 

𝜖𝜖 = 2𝜈𝜈〈𝑆𝑆!#? 𝑆𝑆!#? 〉 

In the integral sense,	𝑃𝑃 ≃ 𝜖𝜖 (most cases away from the wall). They are in the same order. 

 

Instantaneous picture of velocity profile: 

Large eddy scale:	𝑢𝑢 

Smallest eddy size (Kolmogorov scale):	𝜂𝜂 

We need to find	𝜂𝜂	and	𝑢𝑢b 

 

Ø Scaling analysis of smallest eddy size 

For large eddy scale	𝑢𝑢	and velocity scale	𝑢𝑢G, they are related to the geometry and 

background flow velocity 

Scaling of production and dissipation terms gives 

𝑃𝑃 = −〈𝑢𝑢!?𝑢𝑢#?〉〈𝑠𝑠!#〉 ∼
𝑢𝑢G*

𝑢𝑢 , 𝜖𝜖 ∼ 𝜈𝜈
𝑢𝑢b"

𝜂𝜂" ,
𝑢𝑢G*

𝑢𝑢 ∼ 𝜈𝜈
𝑢𝑢b"

𝜂𝜂"  

Note the difference in scaling of derivative in RANS and fluctuation spaces 

¨ Example: Jet with		𝑢𝑢 ∼ 𝛿𝛿 ∼ 0.5	m, 𝑢𝑢G ∼ 100	m/s, 𝜈𝜈 ∼ 1067	m"/s 

𝑃𝑃 ∼ 2 × 10c	m"/s*,
𝑢𝑢b
𝜂𝜂 ∼ z𝑃𝑃/𝜈𝜈 ∼ 4 × 107	s6/ 

Consider	𝜂𝜂 = 0.1	mm, then we have	𝑢𝑢b = 40	m/s. To see if this is correct, we need 

another constraint, which is the Reynolds number 

Reb =
𝜂𝜂𝑢𝑢b
𝜈𝜈 ∼ 1 

 This indicates that these scales are dominated by viscous stress. Two constraints give 

𝜂𝜂 = õ
𝜈𝜈*

𝜖𝜖 ú
//&	

, 𝑢𝑢b =
𝜈𝜈
𝜂𝜂 = (𝜈𝜈𝜖𝜖)//&, 𝜕𝜕b =

𝜂𝜂
𝑢𝑢b

= ƒ
𝜈𝜈
𝜖𝜖≈

//"
 



  For the above jet, the scaling analysis indicates 

𝜼𝜼 = 𝟓𝟓	𝛍𝛍𝛍𝛍, 𝑢𝑢b = 2	m/s 

¨ Example: A mixer with power 500 W, mixing 2 L of maple sytup with	 

𝜈𝜈 = 1.2 × 106&	m"/s, 𝜌𝜌 = 1.3 × 10*	kg/m* 

  Since all power goes into dissipation, we have 

𝜖𝜖 =
Power
Mass =

500
1.3 × 10* × 2 × 106* 	m

"/s* = 190		m"/s* 

  The corresponding Kolmogorov scale is	𝜂𝜂 = 0.3	mm 

 

Ø Estimation of DNS computational cost 

Number of mesh points in one direction 

𝑢𝑢
𝜂𝜂 = õ

𝑢𝑢&𝜖𝜖
𝜈𝜈* ú

/
&
= ¥

𝑢𝑢𝑢𝑢G
𝜈𝜈 µ

*
&
= ReG

*
& 

Example: For the previous jet example, number of mesh points in 3D 

ReG ∼ 5 × 10c, 𝑁𝑁*> ∼ 10/7 

	 Typically people choose	Δ > 𝜂𝜂	with	Δ = 1.5	𝜂𝜂, which is related to the prefactor.	𝜂𝜂	is only 

the scale of eddy, and the eddy size in reality is larger 

 For DNS of turbulent channel flow, people use 

Δ𝑥𝑥@ < 10, Δ𝑥𝑥@ < 5, Δ𝑥𝑥@ < 0.5 

Near the wall there are hairpin vortices, and the features are elongated in flow direction 

  



Lecture 16. Different scales of eddies 

Ø Recap Lecture 15 

𝜂𝜂 ≡ õ
𝜈𝜈*

𝜖𝜖 ú

/
&
, 𝑢𝑢b ≡

𝜈𝜈
𝜂𝜂 = (𝜈𝜈𝜖𝜖)

/
&, 𝜖𝜖 = 2𝜈𝜈	𝑆𝑆CB? 𝑆𝑆CB?PPPPPPP = 15𝜈𝜈 ¥

𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥µ

"PPPPPPPP
		for	HIT 

For large scale quantities 

𝑢𝑢G ≡ √TKE, 𝑢𝑢 ≡
𝑢𝑢G*

𝜖𝜖  

 We only need to measure TKE and dissipation to calculate these scales 

 

Ø Intermediate eddies 

𝜖𝜖 =
𝑢𝑢G*

𝑢𝑢 = 𝜈𝜈
𝑢𝑢b"

𝜂𝜂" =
𝑢𝑢b*

𝜂𝜂 ,
𝑢𝑢b
𝑢𝑢G

= ƒ
𝜂𝜂
𝑢𝑢≈

//*
 

The expectation relationship is sketched below. The true scenario will be a cloud. 

 

 

 

 

 

 

 

Ø Energy transfer 

𝑃𝑃 = −〈𝑢𝑢!?𝑢𝑢#?〉〈𝑆𝑆!#〉 ∼ 𝜈𝜈G〈𝑆𝑆!#〉〈𝑆𝑆!#〉, 𝜖𝜖 ∼ 𝜈𝜈b〈𝑆𝑆!#? 𝑆𝑆!#? 〉 

 

 

 

 

 

 Mechanism of energizing eddies: Vortex stretching 

𝜔𝜔 = 𝜔𝜔$𝑒𝑒e- , 𝐴𝐴 ∼
𝑢𝑢8
𝑑𝑑  



 For eddies with length scale	𝑑𝑑*, the ‘best’ eddies that can efficiently stretch vortices of 

this scale are those with size	𝑑𝑑". This is because: larger eddies have smaller strain rate	𝐴𝐴, 

smaller eddies are dimensionally incompatible (within the structures of current eddy) 

 Energy flowing in per unit mass (using exponential grow of	𝑢𝑢8): 

𝑑𝑑𝑢𝑢8"

𝑑𝑑𝜕𝜕 ∼ 𝑢𝑢8𝐴𝐴𝑢𝑢8 ∼
𝑢𝑢8*

𝑑𝑑  

Energy flowing out per unit mass: 

𝜈𝜈8𝑆𝑆Á!#𝑆𝑆Á!# ∼ 𝑑𝑑𝑢𝑢8 ⋅ ƒ
𝑢𝑢8
𝑑𝑑 ≈

"
∼

𝑢𝑢8*

𝑑𝑑  

 Energy balance indicates that the above quantity is constant:	𝒖𝒖𝒅𝒅 ∝ 𝒅𝒅𝟏𝟏/𝟑𝟑. This analysis is 

not following a single eddy under stretching, but is considering eddies of different sizes that 

have already been mixed (statistically quasi-steady), i.e. reaching a balance between vortex 

stretching that tends to reduce eddy size and mixing with smaller eddies that tends to increase 

eddy size. 

 

Ø Small scales for transport of a scalar field 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 +

𝜕𝜕
𝜕𝜕𝑥𝑥#

4𝑢𝑢#𝜕𝜕5 = 𝛾𝛾∇"𝜕𝜕 

1. If	𝛾𝛾 = 𝜈𝜈, then we have smallest structure	𝜂𝜂i = 𝜂𝜂.  

2. Now consider we have smaller	𝛾𝛾 < 𝜈𝜈, qualitatively we would have	𝜂𝜂i < 𝜂𝜂 

𝜏𝜏jkLMklm ∼ 𝜏𝜏b ∼
𝜂𝜂
𝑢𝑢b

∼
𝜂𝜂"

𝜈𝜈 , 𝜏𝜏RQNN ∼
𝜂𝜂i"

𝛾𝛾  

Efficient thinning requires	𝜏𝜏jkLMklm < 𝜏𝜏RQNN indicating that 

diffusion (Brownian motion) will not smooth the features out. 

Critical point gives the Batchelor scale 

𝜂𝜂"

𝜈𝜈 ∼
𝜂𝜂i"

𝛾𝛾 , 𝜂𝜂i = 𝜂𝜂 ƒ
𝛾𝛾
𝜈𝜈≈

/
" , 𝑆𝑆W ≡

𝜈𝜈
𝛾𝛾 

In this case, the stretching is dominated by	𝜂𝜂. For water we have Schmidt number	𝑆𝑆W =

1000, so scalar transport in water needs 30 times finer mesh 

 



3. Now consider we have larger	𝛾𝛾 > 𝜈𝜈, qualitatively we would have	𝜂𝜂i = 𝑑𝑑 > 𝜂𝜂 

𝜏𝜏jkLMklm ∼
𝑑𝑑
𝑢𝑢8

∼ 𝜏𝜏RQNN ∼
𝑑𝑑"

𝛾𝛾 , 𝑢𝑢8 = 𝑢𝑢b ¥
𝑑𝑑
𝜂𝜂µ

/
*
, 𝑢𝑢b =

𝜈𝜈
𝜂𝜂 

which gives the Obukov-Corsin scale 

𝜂𝜂i = 𝑑𝑑 = 𝜂𝜂 ƒ
𝛾𝛾
𝜈𝜈≈

*/&
 

In this case, the stretching is dominated by	𝜂𝜂i ,	and the smallest eddy to stretch the feature is 

the length scale of that feature. In the other case, Kolmogorov scale is the best stretcher, since 

we want the largest velocity gradient 

  



Lecture 17. Spectral analysis of homogeneous turbulence 

 

 

 

 

 

 

 

 

 

 

 

 

 

 When	𝜂𝜂	approaches the mean free path, 𝑢𝑢G 	and thus	𝑢𝑢b 	will be comparable to sound 

speed, there for supersonic effects appear and the entire picture needs to be revisited 

 

Ø 1D Fourier transform 

Quantification of velocity in terms of scales (wavenumbers) with inverse FT 

𝑢𝑢(𝑥𝑥) = T 𝑢𝑢Í(𝑘𝑘)𝑒𝑒!IX𝑑𝑑𝑘𝑘
@%

6%
≃ ~ 𝑢𝑢Í#Δ𝑘𝑘𝑒𝑒!I'X

@%

#46%

, 𝑘𝑘# = 𝑗𝑗Δ𝑘𝑘 

 

 

 

 

 

 For real-valued signal,	𝑢𝑢Í(−𝑘𝑘) = 𝑢𝑢Í∗(𝑘𝑘). The statistical quantity of interest is	〈|𝑢𝑢Í(𝑘𝑘)|"〉. 

This is because	〈𝑢𝑢Í(𝑘𝑘)〉 = 0	for HIT 

 



 Fourier transform gives the spectral amplitude 

𝑢𝑢Í(𝑘𝑘) =
1
2𝜋𝜋T 𝑢𝑢(𝑥𝑥)𝑒𝑒6!IX𝑑𝑑𝑥𝑥

@%

6%
 

But in practice, we only have finite signals. If we use the following convention 

𝑢𝑢Í#Δ𝑘𝑘 =
1
𝜌𝜌T 𝑢𝑢(𝑥𝑥)𝑒𝑒6!I'X𝑑𝑑𝑥𝑥

o

$
 

the reported value will still depend on	𝜌𝜌. We want a definition independent of box size 

 

Ø Continuous & discrete transforms 

𝑢𝑢(𝑥𝑥) = ~ 𝑢𝑢Í#Δ𝑘𝑘𝑒𝑒!(#pI)X
@%

#46%

 

 Δ𝑘𝑘	is the resolution in the	𝑘𝑘	space. Once we select one	Δ𝑘𝑘, the signal	𝑢𝑢(𝑥𝑥)	will be 

periodic with period of	2𝜋𝜋/Δ𝑘𝑘, which should be consistent with box size of simulation, and 

should be much larger than the integral length	𝜌𝜌// 

 

 

  

 

 

 

 

Ø Connection between FT and correlation 

〈Ó𝑢𝑢Í#Δ𝑘𝑘Ó
"〉 = 〈𝑢𝑢Í#𝑢𝑢Í#∗〉(Δ𝑘𝑘)" =

1
𝜌𝜌"

〈≥T 𝑢𝑢(𝑥𝑥)𝑒𝑒6!I'X𝑑𝑑𝑥𝑥
o

$
∂ ≥T 𝑢𝑢(𝑥𝑥?)𝑒𝑒!I'X(𝑑𝑑𝑥𝑥?

o

$
∂〉	

=
1
𝜌𝜌"T T 〈𝑢𝑢(𝑥𝑥)𝑢𝑢(𝑥𝑥?)〉𝑒𝑒6!I'qX6X(r𝑑𝑑𝑥𝑥?

o

$
𝑑𝑑𝑥𝑥

o

$
=

1
𝜌𝜌" T T 𝑅𝑅ZZ(𝑟𝑟)𝑒𝑒6!I')𝑑𝑑𝑟𝑟

o6X

6X
𝑑𝑑𝑥𝑥

o

$
	

=
2𝜋𝜋
𝜌𝜌 ⋅

1
2𝜋𝜋T 𝑅𝑅ZZ(𝑟𝑟)𝑒𝑒6!I')𝑑𝑑𝑟𝑟

o
"

6o"

=
2𝜋𝜋
𝜌𝜌 ⋅

1
2𝜋𝜋T 𝑅𝑅ZZ(𝑟𝑟)𝑒𝑒6!I')𝑑𝑑𝑟𝑟

@%

6%
	

=
2𝜋𝜋
𝜌𝜌 ⋅ ℱ{𝑅𝑅ZZ(𝑟𝑟)} 



 Therefore, our original convention is box-size dependent with factor	2𝜋𝜋/𝜌𝜌 

 

Ø Definition of 1D spectrum 

𝑆𝑆ZZ(𝑘𝑘X) = ℱ{𝑅𝑅ZZ(𝑟𝑟)} 

This is well defined, box-size independent, but very expensive to compute. It can be 

manipulated into the following form 

𝑆𝑆ZZ(𝑘𝑘X) =
𝜌𝜌
2𝜋𝜋

〈Ó𝑢𝑢Í#Δ𝑘𝑘Ó
"〉 =

1
2𝜋𝜋𝜌𝜌

〈∆T 𝑢𝑢(𝑥𝑥)𝑒𝑒6!I'X𝑑𝑑𝑥𝑥
o

$
∆
"

〉 

In practice, we compute 1D spectrum based on FFT 

𝑆𝑆ZZ(𝑘𝑘X) =
(Δ𝑥𝑥)"

2𝜋𝜋𝜌𝜌
〈Ú~𝑢𝑢4𝑥𝑥#5𝑒𝑒6!I)X'

3

#4/

Ú

"

〉 , 𝑘𝑘X = 0,±
2𝜋𝜋
𝜌𝜌 ,±

4𝜋𝜋
𝜌𝜌 ,… 

The factor guarantees that the quantity is independent of mesh and box-size, given that 

Δ𝑥𝑥	resolves small eddy and	𝜌𝜌	is larger than	𝜌𝜌//. FFT parameters are 

Δ𝑘𝑘 =
2𝜋𝜋
𝜌𝜌 , Δ𝑥𝑥 =

𝜌𝜌
𝑁𝑁 , 𝑘𝑘# = 𝑗𝑗Δ𝑘𝑘, 𝑥𝑥# = 𝑗𝑗Δ𝑥𝑥, 𝑥𝑥/ = 0, 𝑥𝑥3 = 𝜌𝜌 − Δ𝑥𝑥 

  



Lecture 18. Fourier transform in practice 

Ø Recap Lecture 17: 1D (power) spectrum of	𝑢𝑢, with mesh	𝛥𝛥𝑥𝑥	and box	𝜌𝜌 

𝑆𝑆ZZ(𝑘𝑘X) = ℱ{𝑅𝑅ZZ(𝑟𝑟)} =
(Δ𝑥𝑥)"

2𝜋𝜋𝜌𝜌
〈|FFT{𝑢𝑢?(𝑥𝑥)}|"〉, 𝑘𝑘X = 0,±

2𝜋𝜋
𝜌𝜌 ,±

4𝜋𝜋
𝜌𝜌 ,… 

 The unit of	𝑆𝑆ZZ	is	𝜌𝜌"𝜌𝜌 

  

Ø Properties of Fourier transform 

¨ Parseval’s theorem 

T 𝑆𝑆//(𝑘𝑘/)	𝑑𝑑𝑘𝑘/
@%

6%
= 𝑢𝑢?" 

 The proof is based on the cross-correlation	𝑅𝑅//	evaluated at	𝑟𝑟/ = 0 

𝑅𝑅//(𝑟𝑟/) = ℱ6/{𝑆𝑆//(𝑘𝑘/)} = T 𝑆𝑆//(𝑘𝑘/)𝑒𝑒!I!)! 	𝑑𝑑𝑘𝑘/
@%

6%
 

𝑅𝑅//(0) = 𝑢𝑢?" = T 𝑆𝑆//(𝑘𝑘/)	𝑑𝑑𝑘𝑘/
@%

6%
=

2𝜋𝜋
𝜌𝜌 ~ 𝑆𝑆//4𝑘𝑘#5

3
"6/

#463"

 

 The spectrum represents how kinetic energy is distributed in wavenumber domain 

 

 

 

 

 

 The area below	𝑆𝑆//(𝑘𝑘)	is related to 
Area
2 = Kinetic	energy	due	to	scales	[𝑘𝑘, 𝑘𝑘 + 𝑑𝑑𝑘𝑘] 

 

¨ Fourier transform of derivatives 

𝑢𝑢(𝑥𝑥) ↔ 𝑢𝑢Í(𝑘𝑘),
𝑑𝑑𝑢𝑢
𝑑𝑑𝑥𝑥 ↔ 𝑖𝑖𝑘𝑘𝑢𝑢Í  

 

 

 



Ø Extension to multi-dimension (vector wavenumber	𝒌𝒌) 

¨ Example: Channel flow at	𝑥𝑥@ = 15	with	𝑢𝑢(𝜕𝜕, 𝑥𝑥, 𝑥𝑥) 

Pure 1D with	𝒌𝒌 = (𝑘𝑘X , 0)       2D with	𝒌𝒌 = 4𝑘𝑘X , 𝑘𝑘95 

 

 

 

 

 

 

 

 

 

 

 

 

 Direction of the vector wavenumber is normal to the wavefront 

 

¨ Inverse FT in 2D is 

𝑢𝑢(𝑥𝑥, 𝑥𝑥) = T T 𝑢𝑢Í(𝑘𝑘X , 𝑘𝑘<)	𝑒𝑒!𝒌𝒌⋅𝒙𝒙	𝑑𝑑𝑘𝑘X
@%

6%
𝑑𝑑𝑘𝑘<

@%

6%
 

 

¨ 2D spectrum is calculated by 

𝑆𝑆ZZ(𝑘𝑘X , 𝑘𝑘<) = FT2D{𝑅𝑅ZZ(𝑟𝑟X , 𝑟𝑟<)} =
(𝛥𝛥𝑥𝑥)"

2𝜋𝜋𝜌𝜌X
⋅
(𝛥𝛥𝑥𝑥)"

2𝜋𝜋𝜌𝜌<
〈|FFT2{𝑢𝑢?(𝑥𝑥, 𝑥𝑥)}|"〉 

 

Ø Fourier transform with MATLAB 

1D array representing	𝑢𝑢(𝑥𝑥), with data	𝑢𝑢(0), 𝑢𝑢(𝛥𝛥𝑥𝑥), … , 𝑢𝑢(𝜌𝜌 − 𝛥𝛥𝑥𝑥)	and	𝛥𝛥𝑥𝑥 = 𝜌𝜌/𝑁𝑁 

 FFT of this array gives 

𝑢𝑢Í(0), 𝑢𝑢Í(𝛥𝛥𝑘𝑘), … , 𝑢𝑢Í õ¥
𝑁𝑁
2 − 1µΔ𝑘𝑘ú , 𝑢𝑢Í ¥−

𝑁𝑁
2 𝛥𝛥𝑘𝑘µ ,… , 𝑢𝑢Í(−𝛥𝛥𝑘𝑘), 𝛥𝛥𝑘𝑘 =

2𝜋𝜋
𝜌𝜌  



 2D FFT storage in MATLAB 

 

 

 

 

 

 

 

 

 

  



Lecture 19. Kolmogorov hypothesis 

Ø Recap: Quantification of turbulence in terms of scales 

Resolution requirements for DNS 

Spectral analysis: Validation & detailed comparison between experiments 

 

Ø Correlation & spectrum tensor 

1D spectrum: 

𝑆𝑆//(𝑘𝑘/) = ℱ{𝑅𝑅//(𝑟𝑟/)} 

 Generalization to 3D homogeneous flows (spectrum tensor): 

𝜕𝜕!#(𝒌𝒌) = ℱ(*)¯𝑅𝑅!#(𝒓𝒓)˘ =
(Δ𝑥𝑥)"

2𝜋𝜋𝜌𝜌X

(Δ𝑥𝑥)"

2𝜋𝜋𝜌𝜌9

(Δ𝑥𝑥)"

2𝜋𝜋𝜌𝜌<
〈𝑢𝑢Í!?𝑢𝑢Í#?

∗〉 

 Connection to TKE 

TKE =
1
2
〈𝑢𝑢!?𝑢𝑢!?〉 =

1
2Ç𝜕𝜕!!(𝒌𝒌)	𝑑𝑑*𝒌𝒌

𝒌𝒌
 

 Kinetic energy of all structures with wavenumber	[𝑘𝑘! , 𝑘𝑘! + 𝑑𝑑𝑘𝑘!]	is calculated as 
1
2𝜕𝜕!!𝑑𝑑𝑘𝑘/𝑑𝑑𝑘𝑘"𝑑𝑑𝑘𝑘* 

 In isotropic turbulence, spectrum tensor is only function of	|𝒌𝒌| = 𝑘𝑘 

TKE =
1
2
〈𝑢𝑢!𝑢𝑢!〉 = T 𝜕𝜕!!(𝑘𝑘)	2𝜋𝜋𝑘𝑘"𝑑𝑑𝑘𝑘

%

$
 

 In general, the Reynolds stress component can be expressed as 

〈𝑢𝑢!?𝑢𝑢#?〉 = Ç𝜕𝜕!#(𝒌𝒌)	𝑑𝑑*𝒌𝒌
𝒌𝒌

 

 

Ø 3D energy spectrum 

For an isotropic flow, the 3D energy spectrum	𝑆𝑆(𝑘𝑘)	is 

𝑆𝑆(𝑘𝑘) = 2𝜋𝜋𝑘𝑘"𝜕𝜕!!(𝑘𝑘), TKE = T 𝑆𝑆(𝑘𝑘)𝑑𝑑𝑘𝑘
@%

$
 

 

 

 

 



 Extension to non-isotropic flow: Integrate over the spherical shells in k-space 

𝑆𝑆(𝑘𝑘) = Ç
1
2𝜕𝜕!!(𝒌𝒌?)	𝛿𝛿(|𝒌𝒌?| − 𝑘𝑘)	𝑑𝑑*𝒌𝒌?

𝒌𝒌
	

≃
1
Δ𝑘𝑘Ç

1
2𝜕𝜕!!(𝒌𝒌?)𝑑𝑑*𝒌𝒌?

5(I)
, 𝑑𝑑(𝑘𝑘) = ˙𝒌𝒌?˚𝑘𝑘 − Δ𝑘𝑘

2 < |𝒌𝒌?| < 𝑘𝑘 + Δ𝑘𝑘
2 ¸ 

 Numerically, in the normalized domain (Δ𝑘𝑘 = 1), we compute it as 

𝑆𝑆(𝑘𝑘) = ~
1
2𝜕𝜕!!(𝒌𝒌?)

5(I)

	 

 

Ø Kolmogorov hypothesis 

𝑆𝑆 = 𝑆𝑆(𝑘𝑘, 𝜖𝜖, 𝑢𝑢, 𝜂𝜂) 

 When	𝑘𝑘 ≫ 2𝜋𝜋/𝑢𝑢, 𝑆𝑆 = 𝑆𝑆(𝑘𝑘, 𝜖𝜖, 𝜂𝜂). Similarly, when	𝑘𝑘 ≪ 2𝜋𝜋/𝜂𝜂, 𝑆𝑆 = 𝑆𝑆(𝑘𝑘, 𝜖𝜖, 𝑢𝑢) 

 In high Reynolds number	Re ≫ 1,	there exists an overlap zone 

𝑆𝑆 = 𝑆𝑆(𝑘𝑘, 𝜖𝜖),
2𝜋𝜋
𝑢𝑢 ≪ 𝑘𝑘 ≪

2𝜋𝜋
𝜂𝜂  

 Dimensional analysis gives (𝑆𝑆 = [𝜌𝜌*𝑇𝑇6"], 𝑘𝑘 = [𝜌𝜌6/], 𝜖𝜖 = [𝜌𝜌"𝑇𝑇6*]): 

𝑆𝑆 = 𝜕𝜕𝜖𝜖"/*𝑘𝑘67/*, 𝜕𝜕 ≃ 1.5 

 

 

 

 

 

 

 

 Connection with velocity scaling relationship 

TKE ∼ 𝑢𝑢8" ∼ T 𝑆𝑆(𝑘𝑘)𝑑𝑑𝑘𝑘
"v
8 @8I

"v
8 68I

∼ T𝑆𝑆(𝑘𝑘)𝑘𝑘	𝑑𝑑(log 𝑘𝑘) 

𝑢𝑢8" ∼ 𝜖𝜖"/*𝑘𝑘6"/*, 𝑢𝑢8 ∼ (𝜖𝜖𝑑𝑑)//*, 𝜖𝜖 ∼
𝑢𝑢8*

𝑑𝑑 	 

  



Lecture 20. Taylor hypothesis 

Ø Recap: 3D energy spectrum & inertial range 

Observation of inertial range requires	𝜂𝜂 ≪ 𝜆𝜆 ≪ 𝑢𝑢 

 

 

 

 

 

 

 

 

 

 

 

 

 The Reynolds number to observe Kolmogorov spectrum should satisfy 
1
6 𝜌𝜌// > 60𝜂𝜂 

 

Ø Connection between	𝑆𝑆//(𝑘𝑘/)	and	𝑆𝑆(𝑘𝑘) 

Experimental quantification of	𝑆𝑆(𝑘𝑘) 

𝒖𝒖(𝑥𝑥, 𝑥𝑥, 𝑥𝑥, 𝜕𝜕) → 𝑅𝑅!!(𝒓𝒓) → 𝜕𝜕!!(𝒌𝒌) → 𝑆𝑆(𝑘𝑘) 

But this can be hard to calculate. We hope to quantify	𝑆𝑆(𝑘𝑘)	only using	𝑢𝑢(𝑥𝑥, 𝜕𝜕). Start from the 

definition of energy spectrum and correlation function 

𝑆𝑆//(𝑘𝑘/) =
1
2𝜋𝜋	T 𝑅𝑅//(𝑟𝑟/)	𝑒𝑒6!I!)! 	𝑑𝑑𝑟𝑟/

@%

6%
, 𝑅𝑅//(𝒓𝒓) = Ç𝜕𝜕//(𝒌𝒌)	𝑒𝑒!𝒌𝒌⋅𝒓𝒓	𝑑𝑑*𝒌𝒌

5
 

We can obtain	𝑆𝑆//(𝑘𝑘/)	by integrating	𝜕𝜕//(𝒌𝒌)	over the other two wavenumber components. 

The exponent does not show up because we select	𝒌𝒌 = 𝑘𝑘/𝒆𝒆ÍX .  

 

 



With the assumption of isotropic turbulence, we have 

𝑆𝑆//(𝑘𝑘/) = î𝜕𝜕//4𝑘𝑘/, 𝑘𝑘9 , 𝑘𝑘<5	𝑑𝑑𝑘𝑘9𝑑𝑑𝑘𝑘<
=

= T 𝜕𝜕//(𝑘𝑘/, 𝑘𝑘) , 0)	2𝜋𝜋𝑘𝑘) 	𝑑𝑑𝑘𝑘)
@%

$
 

Therefore, with the pre-factor denoted as	𝐴𝐴, we have 

𝑆𝑆//(𝑘𝑘/) = 𝐴𝐴T 〈|𝑢𝑢Í/|"〉	2𝜋𝜋𝑘𝑘) 	𝑑𝑑𝑘𝑘)
@%

$
 

From continuity equation 
𝜕𝜕𝑢𝑢!
𝜕𝜕𝑥𝑥!

= 0, 𝑖𝑖𝑘𝑘!𝑢𝑢Í! = 𝑖𝑖𝒌𝒌 ⋅ �̨�𝒖 = 0	 

We can define a local coordinate system, and	�̨�𝒖	is always within	𝑥𝑥’-𝑥𝑥?	plane. Again based on 

isotropy, we obtain 

𝜕𝜕!!(𝒌𝒌) = 2𝐴𝐴 〈Ó𝑢𝑢Í9(Ó
"〉 

𝐴𝐴〈|𝑢𝑢Í/|"〉 = 𝐴𝐴 sin" 𝜃𝜃 〈Ó𝑢𝑢Í9(Ó
"〉 =

sin" 𝜃𝜃
2 𝜕𝜕!!(𝒌𝒌) =

1
2

𝑘𝑘)"

|𝒌𝒌|" 𝜕𝜕!!(𝒌𝒌) = õ1 −
𝑘𝑘/"

𝑘𝑘"ú
𝑆𝑆(𝑘𝑘)
4𝜋𝜋𝑘𝑘" 

Therefore, the final expression is 

𝑆𝑆//(𝑘𝑘/) = T
𝑆𝑆(𝑘𝑘)
2𝑘𝑘" õ1 −

𝑘𝑘/"

𝑘𝑘"ú𝑘𝑘)𝑑𝑑𝑘𝑘)
@%

$
= T

𝑆𝑆(𝑘𝑘)
2𝑘𝑘 õ1 −

𝑘𝑘/"

𝑘𝑘"ú𝑘𝑘𝑑𝑑𝑘𝑘
@%

I!
 

where we use the following relations 

𝑘𝑘" = 𝑘𝑘)" + 𝑘𝑘/", 𝑘𝑘𝑑𝑑𝑘𝑘 = 𝑘𝑘)𝑑𝑑𝑘𝑘) 

The inverse relation is 

𝑆𝑆(𝑘𝑘) = 𝑘𝑘*
𝑑𝑑
𝑑𝑑𝑘𝑘 ≥

1
𝑘𝑘
𝑑𝑑𝑆𝑆//(𝑘𝑘)

𝑑𝑑𝑘𝑘 ∂ 

Measuring	𝑆𝑆//(𝑘𝑘/)	can predict	𝑆𝑆(𝑘𝑘)	for incompressible and isotropic turbulence. In the 

inertial range, we have 

𝑆𝑆(𝑘𝑘) ∝ 𝑘𝑘67/* 			⇔ 		 𝑆𝑆//(𝑘𝑘/) ∝ 𝑘𝑘/
67/* 

For low wavenumbers,	𝑆𝑆//(𝑘𝑘/)	is higher as it integrates over	𝑘𝑘) 	(higher	𝑘𝑘	components) 

 

 

 

 



Ø Taylor’s hypothesis 

Turbulence can be approximately viewed as frozen structure convected past a sensor 

𝑅𝑅//(𝜏𝜏) = 𝑅𝑅//(𝜏𝜏𝑑𝑑x) 

where	𝑑𝑑x 	is the convective velocity (“mean flow”) 

Spectrum in time can be directly obtained from	𝑆𝑆//(𝑘𝑘/) 

𝑆𝑆//(𝜔𝜔) =
(Δ𝜕𝜕)"

2𝜋𝜋𝑇𝑇
〈|𝑢𝑢Í(𝜔𝜔)|"〉 = ℱ{𝑅𝑅//(𝜏𝜏)} =

1
2𝜋𝜋T 𝑅𝑅//(𝜏𝜏)	𝑒𝑒6!yS	𝑑𝑑𝜏𝜏

@%

6%
	

=
1
2𝜋𝜋T 𝑅𝑅//(𝑟𝑟/ = 𝜏𝜏𝑑𝑑x)	𝑒𝑒6!yS	𝑑𝑑𝜏𝜏

@%

6%
=

1
𝑑𝑑x

𝑆𝑆// ¥𝑘𝑘/ =
𝜔𝜔
𝑑𝑑x

µ 

Vice versa, we have 

𝑆𝑆//(𝑘𝑘/) = 𝑑𝑑x 	𝑆𝑆//(𝜔𝜔 = 𝑘𝑘/𝑑𝑑x) 

 

Ø Spectral analysis for non-homogeneous flows 

With isotropy for small scales and local homogeneity, we can compute	𝑆𝑆//(𝜔𝜔)	and thus 

𝑆𝑆//(𝑘𝑘/)	using Taylor’s hypothesis. Then we can obtain	𝑆𝑆(𝑘𝑘)	based on the relation between 

the two spectra. In the inertial range, we can then compute	𝜖𝜖, 𝜈𝜈	and	𝜂𝜂. 

The computation of	𝑆𝑆//(𝜔𝜔)	uses raw data, and does not involve any assumption. 

 

Ø Spectral analysis for finite-length signal 

 

 

 

 

Use windows to perform averaging, with window much longer than correlation time, and 

time step smaller to Kolmogorov time 

𝑇𝑇 ≫ 𝑇𝑇//, Δ𝜕𝜕 ≤ 𝜕𝜕b 

 Use window functions (e.g. Hanning window) before FFT to taper the signal 

𝑢𝑢zMT? (𝜕𝜕) = 𝑢𝑢LUT? (𝜕𝜕) ⋅
1
2 æ1 − cos ¥

2𝜋𝜋𝜕𝜕
𝑇𝑇 µø ⋅ ¬

8
3 



Ø Energy spectrum for pressure 

𝜕𝜕8 ∝ 𝑢𝑢8" ∝ 𝑑𝑑"/*, 𝑆𝑆(𝜕𝜕) ∝
𝜕𝜕8"

𝑘𝑘 ∝ 𝑘𝑘6{/* 

Similar dimensional analysis can give the same result. Consider the following relation 

𝑆𝑆(𝜕𝜕) ∼ 𝜌𝜌"𝜖𝜖|𝑘𝑘} 
Given the unit of relevant physical quantities 

𝑆𝑆(𝜕𝜕) = [𝜌𝜌"𝜌𝜌&𝜌𝜌] = [𝜌𝜌"𝜌𝜌7𝑇𝑇6&], 𝑘𝑘 = [𝜌𝜌6/], 𝜖𝜖 = [𝜌𝜌"𝑇𝑇6*] 
we can obtain 

−3𝛼𝛼 = −4, 2𝛼𝛼 − 𝛽𝛽 = 5, 𝛼𝛼 =
4
3 , 𝛽𝛽 = −

7
3 

Therefore, the energy spectrum for pressure scales as 
𝑆𝑆(𝜕𝜕) ∼ 𝜌𝜌"𝜖𝜖&/*𝑘𝑘6{/* 

  



Lecture 21. Dynamics in spectral space 

Ø Navier-Stokes equation in wavenumber domain 

𝜕𝜕𝑢𝑢!
𝜕𝜕𝜕𝜕 +

𝜕𝜕(𝑢𝑢#𝑢𝑢!)
𝜕𝜕𝑥𝑥#

= −
1
𝜌𝜌

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥!

+ 𝜈𝜈∇"𝑢𝑢! ,
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑢𝑢Í! + 𝑖𝑖𝑘𝑘#(𝑢𝑢Í! ∗ 𝑢𝑢Í#) = −

𝑖𝑖𝑘𝑘!
𝜌𝜌 �̂�𝜕 − 𝜈𝜈|𝒌𝒌|"𝑢𝑢Í! 

With the convolution 

𝑢𝑢C𝑢𝑢B# = 𝑢𝑢Í! ∗ 𝑢𝑢Í# = T 𝑢𝑢Í!(𝒌𝒌?)	𝑢𝑢Í#(𝒌𝒌 − 𝒌𝒌?)	𝑑𝑑*𝒌𝒌?
5(

 

The proof is 

𝑢𝑢!𝑢𝑢# = õT 𝑢𝑢Í! 	𝑒𝑒!𝒌𝒌
(⋅𝒓𝒓𝑑𝑑*𝒌𝒌?

5(
úõT 𝑢𝑢Í# 	𝑒𝑒!𝒌𝒌

((⋅𝒓𝒓𝑑𝑑*𝒌𝒌??
5((

ú = T T 𝑢𝑢Í!𝑢𝑢Í# 	𝑒𝑒!q𝒌𝒌
(@𝒌𝒌((r⋅𝒓𝒓𝑑𝑑*𝒌𝒌?𝑑𝑑*𝒌𝒌??

5((5(
	

= T T 𝑢𝑢Í!(𝒌𝒌?)𝑢𝑢Í#(𝒌𝒌 − 𝒌𝒌?)	𝑒𝑒!𝒌𝒌⋅𝒓𝒓
5(

𝑑𝑑*𝒌𝒌?𝑑𝑑*𝒌𝒌
5

= ℱ6/ èT 𝑢𝑢Í!(𝒌𝒌?)𝑢𝑢Í#(𝒌𝒌 − 𝒌𝒌?)𝑑𝑑*𝒌𝒌?
5(

ë 

Together with the governing equation for	𝑢𝑢Í!∗ 
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑢𝑢Í! + 𝜈𝜈|𝒌𝒌|"𝑢𝑢Í! = −𝑖𝑖𝑘𝑘#4𝑢𝑢Í! ∗ 𝑢𝑢Í#5 −

𝑖𝑖𝑘𝑘!
𝜌𝜌 �̂�𝜕 

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑢𝑢Í!

∗ + 𝜈𝜈|𝒌𝒌|"𝑢𝑢Í!∗ = 𝑖𝑖𝑘𝑘#4𝑢𝑢Í! ∗ 𝑢𝑢Í#5
∗ +

𝑖𝑖𝑘𝑘!
𝜌𝜌 �̂�𝜕∗ 

Cross-multiplication, summation, and Reynolds-averaging gives (with continuity	𝑘𝑘!𝑢𝑢Í! = 0) 
𝜕𝜕
𝜕𝜕𝜕𝜕

〈𝑢𝑢Í!𝑢𝑢Í!∗〉 + 2𝜈𝜈|𝒌𝒌|"〈𝑢𝑢Í!𝑢𝑢Í!∗〉 = 𝑖𝑖𝑘𝑘#〈𝑢𝑢Í!4𝑢𝑢Í! ∗ 𝑢𝑢Í#5
∗ − 𝑢𝑢Í!∗4𝑢𝑢Í! ∗ 𝑢𝑢Í#5〉 

Multiply by the pre-factor for spectrum and integrate over spherical shell gives 
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑆𝑆

(𝑘𝑘) + 2𝜈𝜈|𝒌𝒌|"𝑆𝑆(𝑘𝑘) = 𝑇𝑇(𝑘𝑘) 

The dissipation spectrum is	𝐷𝐷(𝑘𝑘) = 2𝜈𝜈|𝒌𝒌|"𝑆𝑆(𝑘𝑘), and	𝑇𝑇(𝑘𝑘)	is the energy transfer term 

 

 

 

 

 

 

 Connection with physical space 

T𝑆𝑆(𝑘𝑘)𝑑𝑑𝑘𝑘 = TKE, T𝐷𝐷(𝑘𝑘)𝑑𝑑𝑘𝑘 = 𝜖𝜖 

 



For HIT, we can prove it as 

𝜖𝜖 = 𝜈𝜈 〈
𝜕𝜕𝑢𝑢!
𝜕𝜕𝑥𝑥#

𝜕𝜕𝑢𝑢!
𝜕𝜕𝑥𝑥#

〉 = 𝐴𝐴Ç𝜈𝜈|𝒌𝒌|"〈𝑢𝑢Í!𝑢𝑢Í!∗〉𝑑𝑑*𝒌𝒌
𝒌𝒌

= Ç 2𝜈𝜈|𝒌𝒌|"
𝜕𝜕!!(𝒌𝒌)

2 𝑑𝑑*𝒌𝒌
𝒌𝒌

= T2𝜈𝜈|𝒌𝒌|"𝑆𝑆(𝑘𝑘)𝑑𝑑𝑘𝑘 

Integrate the governing equation of	𝑆𝑆(𝑘𝑘)	over the wavenumber domain gives 
𝜕𝜕TKE
𝜕𝜕𝜕𝜕 = −𝜖𝜖 

The integral of	𝑇𝑇(𝑘𝑘)	over wavenumber domain is zero. It has a strong sink at large scale and 

a strong gain at Kolmogorov scale. The transfer	𝑇𝑇(𝑘𝑘)	can be written as a divergence of flux  

Π~(𝑘𝑘) = −T 𝑇𝑇(𝑘𝑘?)𝑑𝑑𝑘𝑘?
I

$
, 𝑇𝑇(𝑘𝑘) = −

𝜕𝜕Π~(𝑘𝑘)
𝜕𝜕𝑘𝑘  

  



Lecture 22. k-ε model 

Ø Recap Lecture 9 

RANS equation with Boussinesq approximation 

𝐷𝐷ñ𝑢𝑢P!
𝐷𝐷𝜕𝜕 = −

1
𝜌𝜌

𝜕𝜕�̅�𝜕
𝜕𝜕𝑥𝑥!

+
𝜕𝜕
𝜕𝜕𝑥𝑥#

ü2(𝜈𝜈 + 𝜈𝜈')𝑆𝑆!̅#†, −𝑢𝑢C?𝑢𝑢B?PPPPPP = 2𝜈𝜈'𝑆𝑆!̅# −
1
3𝑢𝑢I? 𝑢𝑢I?PPPPPPP𝛿𝛿!# 

 Turbulence models try to give an expression of	𝜈𝜈' = 𝜈𝜈'(𝒙𝒙, 𝜕𝜕) 

 

Ø k-ε model (Jones & Launder 1972, Launder & Sharma 1974) 

From mixing length model	𝜈𝜈' ∼ 𝑢𝑢?𝑢𝑢, express these quantities with observations 

𝑘𝑘 = TKE ∼ 𝑢𝑢?", 𝜖𝜖 ∼
𝑢𝑢?*

𝑢𝑢 , 𝜈𝜈' = 𝜕𝜕�
𝑘𝑘"

𝜖𝜖 , 𝜕𝜕� = 0.09 

 

¨ TKE equation (k-equation) 

𝐷𝐷ñ𝑘𝑘
𝐷𝐷𝜕𝜕 =

𝜕𝜕
𝜕𝜕𝑥𝑥#

〈−
𝜕𝜕?𝑢𝑢#?

𝜌𝜌 −
𝑢𝑢#?𝑢𝑢!?𝑢𝑢!?

2 + 2𝜈𝜈	𝑢𝑢!?𝑆𝑆!#? 〉 + 𝑃𝑃 − 𝜖𝜖, 𝑃𝑃 = −𝑢𝑢C?𝑢𝑢B?PPPPPP ⋅ 𝑆𝑆!̅# 

 The diffusion flux can be written as 

2𝜈𝜈	𝑢𝑢!?𝑆𝑆!#? = 𝜈𝜈
𝜕𝜕
𝜕𝜕𝑥𝑥#

õ
𝑢𝑢!?𝑢𝑢!?

2 ú + 𝜈𝜈	𝑢𝑢!?
𝜕𝜕𝑢𝑢#?

𝜕𝜕𝑥𝑥!
 

 The second term is small compared with	𝜖𝜖, so the model neglect it. Final k-equation is 

𝐷𝐷ñ𝑘𝑘
𝐷𝐷𝜕𝜕 = 𝛁𝛁 ⋅ ¥æ𝜈𝜈 +

𝜈𝜈'
𝜎𝜎I

ø 𝛁𝛁𝑘𝑘µ + 𝑃𝑃 − 𝜖𝜖, 𝜎𝜎I = 1 

 𝜎𝜎I 	denotes ratio between turbulent momentum and TKE mixing, which is suggested as 1 

 

¨ Dissipation equation (ε-equation) 

𝐷𝐷ñ𝜖𝜖
𝐷𝐷𝜕𝜕 = 	Turbulent	transport	 + 	Production	of	𝜖𝜖	 − 	Dissipation	of	𝜖𝜖 

 From empirical comparison with k-equation, and dimensional analysis 

𝐷𝐷ñ𝜖𝜖
𝐷𝐷𝜕𝜕 = 𝛁𝛁 ⋅ ¥æ𝜈𝜈 +

𝜈𝜈'
𝜎𝜎Ä

ø 𝛁𝛁𝜖𝜖µ + 𝜕𝜕/
𝑃𝑃𝜖𝜖
𝑘𝑘 − 𝜕𝜕"

𝜖𝜖"

𝑘𝑘  

 With the following constants 

𝜕𝜕� = 0.09, 𝜎𝜎I = 1, 𝜎𝜎Ä = 1.3, 𝜕𝜕/ = 1.44, 𝜕𝜕" = 1.92 



Ø Homogeneous & isotropic turbulence 

𝑘𝑘 = 𝐴𝐴 ⋅ 𝜕𝜕60, 1.15 < 𝑛𝑛 < 1.45, 𝑛𝑛 ∼ 1.3 

k-ε model for HIT is (using zero mean quantities) 

𝑑𝑑𝑘𝑘
𝑑𝑑𝜕𝜕 = −𝜖𝜖,

𝑑𝑑𝜖𝜖
𝑑𝑑𝜕𝜕 = −𝜕𝜕"

𝜖𝜖"

𝑘𝑘  

Model predictions are thus 

𝜖𝜖 = 𝐴𝐴𝑛𝑛 ⋅ 𝜕𝜕606/, 𝜕𝜕" =
𝑛𝑛 + 1

𝑛𝑛 , 𝑛𝑛 =
1

𝜕𝜕" − 1 = 1.08 

 k-ε model results in a slightly slower decaying HIT than typical observation 

 

Ø Homogeneous shear flow 
𝑃𝑃
𝜖𝜖 = 1.7, 〈𝑢𝑢?𝑢𝑢?〉 = −0.28𝑘𝑘, 𝑆𝑆 =

𝜕𝜕𝑢𝑢P
𝜕𝜕𝑥𝑥 = const., 𝑃𝑃 ∼ exp	(0.12𝑆𝑆𝜕𝜕) 

 k-ε model for homogeneous shear flow is 

		𝑃𝑃 = 𝜕𝜕�
𝑘𝑘"

𝜖𝜖 𝑆𝑆",
𝑑𝑑𝑘𝑘
𝑑𝑑𝜕𝜕 = 𝜕𝜕�

𝑘𝑘"𝑆𝑆"

𝜖𝜖 − 𝜖𝜖,
𝑑𝑑𝜖𝜖
𝑑𝑑𝜕𝜕 = 𝜕𝜕/𝜕𝜕�𝑘𝑘𝑆𝑆" − 𝜕𝜕"

𝜖𝜖"

𝑘𝑘  

 Consider a test solution	𝑘𝑘 = 𝑘𝑘$𝑒𝑒|-	and	𝜖𝜖 = 𝜖𝜖$𝑒𝑒|- 
𝛼𝛼
𝑆𝑆 = 𝜕𝜕�

𝑘𝑘$𝑆𝑆
𝜖𝜖$

−
𝜖𝜖$
𝑘𝑘$𝑆𝑆

,
𝛼𝛼
𝑆𝑆 = 𝜕𝜕/𝜕𝜕�

𝑘𝑘$𝑆𝑆
𝜖𝜖$

− 𝜕𝜕"
𝜖𝜖$
𝑘𝑘$𝑆𝑆

 

Model predictions are thus 

𝜕𝜕� ¥
𝑘𝑘$𝑆𝑆
𝜖𝜖$

µ
"

(𝜕𝜕/ − 1) = 𝜕𝜕" − 1,
𝑃𝑃
𝜖𝜖 =

𝜕𝜕" − 1
𝜕𝜕/ − 1 = 2.1 ≠ 1.7,

𝛼𝛼
𝑆𝑆 = 0.23 ≠ 0.12 

 

Ø Log-law in wall-bounded flows 

𝑢𝑢?𝑢𝑢?PPPPPP
𝑘𝑘 = −0.28,

𝑃𝑃
𝜖𝜖 = 0.9 

 For k-ε model to satisfy the reported values 

𝑢𝑢?𝑢𝑢?PPPPPP = 𝜕𝜕�
𝑘𝑘"

𝜖𝜖 𝑆𝑆, õ
𝑢𝑢?𝑢𝑢?PPPPPP
𝑘𝑘 ú

"

= 𝜕𝜕�
𝑃𝑃
𝜖𝜖 , 𝜕𝜕� = 0.09 

 This is the same as the suggested value of	𝜕𝜕�. The implied Karman’s constant is 0.43 

 

 For experiment and DNS data, we have Karman’s constant	𝜅𝜅	(might not be constant in 

reality) and the following scaling 

𝑆𝑆 ∝ 𝑥𝑥6/, 𝜖𝜖 ∝ 𝑥𝑥6/, 𝑃𝑃 ∝ 𝑥𝑥6/ 



k-ε model for log-layer 

𝑃𝑃 = 𝜖𝜖,
𝜕𝜕
𝜕𝜕𝑥𝑥 ¥

𝜈𝜈'
𝜎𝜎Ä

𝜕𝜕𝜖𝜖
𝜕𝜕𝑥𝑥µ + 𝜕𝜕/

𝑃𝑃𝜖𝜖
𝑘𝑘 − 𝜕𝜕"

𝜖𝜖"

𝑘𝑘 = 0 

These equations satisfy all the reported scaling relations above 

 

Ø Major issues of k-ε model 

1. Realizability issue 

〈𝑢𝑢/?𝑢𝑢"? 〉"

〈𝑢𝑢/?𝑢𝑢/? 〉〈𝑢𝑢"? 𝑢𝑢"? 〉
< 1 

2. Problematic prediction of turbulent B.L. separation over smooth surfaces 

3. Need damping of diffusion and production for buffer layer 

 

Ø Boundary conditions of k-ε model 

On the wall, 𝑘𝑘	should be 0. Near the wall surface, special treatment (damping) is needed 

to obtain finite	𝜖𝜖	without divergence of dissipation term	𝜕𝜕"𝜖𝜖"/𝑘𝑘 

  



Lecture 23. Large eddy simulation (LES) 

 

 

 

 

 

Ø Idea of LES 

Resolve large eddies directly, and model the effects of unresolved eddies (subgrid-scale 

model, SGS model) 

In wavenumber space, we have DNS mesh	∼ 𝜂𝜂, while for LES, we will choose 

𝜂𝜂 < Δ𝑥𝑥o~= ≪ 𝑢𝑢 

Energy containing eddies are resolved by LES, dissipation is not resolved.  

When increasing Reynolds number by 1000 times, DNS needs to have 1000 times finer 

mesh, but for LES to obtain same percentage of resolved TKE, we barely need to change the 

mesh size, as the contribution of TKE at Kolmogorov scales is diminishingly small. However, 

we lose the process of dissipation and cannot resolve	𝐷𝐷(𝑘𝑘) 

 

 

 

 

 

 

 

 

Ø Filter operator 

𝑢𝑢∞(𝑥𝑥) = T𝑢𝑢(𝒙𝒙?)	𝐺𝐺(𝒙𝒙 − 𝒙𝒙?)	𝑑𝑑*𝒙𝒙?
5

, 𝑢𝑢∞&(𝑘𝑘) = 𝑢𝑢Í(𝑘𝑘) ⋅ 𝐺𝐺&(𝑘𝑘) 

 Kernel	𝐺𝐺(𝒙𝒙? − 𝒙𝒙)	can be a Gaussian, and the width is the filter width	∼ Δ 

 

 



 LES criterion: To capture 80% of TKE, the mesh size should be 

Δ(LES) ≃
1
12 𝑢𝑢 =

1
6 𝜌𝜌// 

This criterion is independent of	𝜂𝜂	or Re. For example, with	𝑢𝑢 = 2	cm and	𝜂𝜂 = 100	𝜇𝜇m 
𝑢𝑢
𝜂𝜂 = 200, Δ(LES) ∼

𝑢𝑢
10 = 2	mm, Δ(DNS) = 100	𝜇𝜇m 

The mesh saving is	20* = 8000 

 

Ø LES equations 

Start by filtering Navier-Stokes equations with	𝑢𝑢! = 𝑢𝑢∞! + 𝑢𝑢!? 

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑢𝑢∞! +

𝜕𝜕
𝜕𝜕𝑥𝑥#

𝑢𝑢∞#𝑢𝑢∞! = −
1
𝜌𝜌

𝜕𝜕𝜕𝜕∞
𝜕𝜕𝑥𝑥!

+ 𝜈𝜈∇"𝑢𝑢∞! −
𝜕𝜕
𝜕𝜕𝑥𝑥#

4𝑢𝑢∞#𝑢𝑢∞! − 𝑢𝑢B𝑢𝑢C( 5,
𝜕𝜕𝑢𝑢∞!
𝜕𝜕𝑥𝑥!

= 0 

Note that unlike Reynolds-averaging, we now have 

𝑢𝑢∞#𝑢𝑢∞! − 𝑢𝑢B𝑢𝑢C( ≠ 𝑢𝑢B?𝑢𝑢C?)  

The final divergence term physically represents the effects of unresolved eddies on filtered 

momentum transport (mixing) 

 

Ø Smagorinsky model (1963, MWR) 

Effect of small eddies → Mixing → Diffusion of momentum 

LES viscosity should scale as 

𝑢𝑢p ∼ 𝑢𝑢G 	¥
Δ
𝑢𝑢 µ

/
*
, 𝜈𝜈o~= ∼ Δ ⋅ 𝑢𝑢p ∼ Δ"Ó𝑆𝑆ÁÓ, 𝜈𝜈o~= = 𝜕𝜕="Δ"Ó𝑆𝑆ÁÓ 

This expression is analogous to Prandtl mixing length model, but applied at LES grid scale 

 

Ø Advantage of LES over RANS 

1. Most of TKE is directly resolved by LES. For RANS none is resolved, but modelled 

2. Effect of model error is smaller, confined to smallest scales. Smallest scale eddies are 

more isotropic, and it is more likely to have isotropic mixing at small scales. Boussinesq 

type models are thus appropriate 

 

 



Ø Parameter	𝜕𝜕=	for LES 

For free shear flows, 𝜕𝜕= = 0.1 ∼ 1 

Near the wall,	𝜕𝜕= = 0	as	𝑢𝑢? → 0. Damping is applied to	𝜕𝜕=	near the wall 

 

Ø Dynamic Smagorinsky model (Germano et al., Physics of Fluids, 1991) 

The quantity we want to model is 

𝜏𝜏!# = 𝑢𝑢C𝑢𝑢B( − 𝑢𝑢∞!𝑢𝑢∞# = −2𝜈𝜈o~=𝑆𝑆Á!# 

Introduce a filter of filter (coarser filter) with	Δ* > Δ	(which is often	Δ* = 2Δ) 

𝑇𝑇!# = 𝑢𝑢C𝑢𝑢B() − 𝑢𝑢∞+!𝑢𝑢∞+# = −2𝜕𝜕="	Δ*" ˚𝑆𝑆ÁÁ˚ 𝑆𝑆ÁÁ!# 

Criterion to choose	𝜕𝜕=	is to satisfy 

𝜌𝜌!# = 𝑇𝑇!# − �̃�𝜏!# = 𝑢𝑢∞C𝑢𝑢∞B) − 𝑢𝑢∞+!𝑢𝑢∞+# = −2𝜕𝜕=" ÀΔ*" ˚𝑆𝑆ÁÁ˚ 𝑆𝑆ÁÁ!# − Δ"Ó𝑆𝑆ÁÓ𝑆𝑆ÁCB- Ã 

Here we have 6 equations and 1 unknown, Lilly (1992) use least squares to choose	𝜕𝜕=	which 

is spatially dependent. Ensemble averaging or selection based on homogeneous directions can 

be applied further. 


