
ME 340    Mechanics: Elasticity & Inelasticity 

Instructor: Wei Cai 
Topics to be covered: 
1. Fundamental variables and equations of elasticity 

¨ Stress, strain, tensor transformation 

¨ Stress-strain behavior of materials, Hooke’s law 

¨ Equilibrium and compatibility conditions, Boundary value problem 

2. Stress function method for 2D problems / Green’s function in 3D 
¨ Plane strain and plane stress formulations, Airy stress function 

¨ Polynomial solution of beam, Weak/Strong boundary condition 

¨ Fourier method of solution, Elastic half space, Contact problem (2D/3D) 

¨ Elasticity in polar coordinates, Void, Pressurized tube, Wedge 

¨ Crack dislocation, Line force loading 

3. Plasticity 
¨ Fundamental equations and their graphical representation 

¨ Beam bending, internal stress, rod torsion, pressure vessel 

¨ Hardening laws, plastic instability 

¨ Finite element model for plasticity 

4. Fracture 
¨ Linear elastic fracture mechanics (LEFM) 

¨ Stress intensity factor, energy release rate, J-integral 

¨ Plastic zone in ductile fracture, Dugdale-Barrenblatt model 

¨ Cohesive zone model, Finite element model for fracture 

¨ Microscopic mechanisms of plasticity and fracture 

¨ Fatigue crack initiation and growth 

 

Textbooks: 
• J. R. Barber, Elasticity, 3rd edition 
• T. L. Anderson, Fracture Mechanics, 3rd edition 

  



Lecture 1. Stress, Strain, Elasticity 
Ø Vectors & Vector transformation 
Vectors have magnitudes and directions. Under a specific coordinate	{𝒆𝒆!, 𝒆𝒆", 𝒆𝒆#}, we have 
one representation	𝑢𝑢$ 	of the vector	𝒖𝒖. We also have another coordinate	{𝒆𝒆!% , 𝒆𝒆"% , 𝒆𝒆#% } with 
another representation	𝑢𝑢$%. We have 

𝒖𝒖 = 𝑢𝑢$𝒆𝒆$ = 𝑢𝑢$%𝒆𝒆$% , 𝑢𝑢$ = )
𝑢𝑢!
𝑢𝑢"
𝑢𝑢#
* , 𝑢𝑢$% = +

𝑢𝑢!%
𝑢𝑢"%
𝑢𝑢#%
, 

 
The transformation matrix	𝑄𝑄	is orthogonal with	𝑄𝑄&! = 𝑄𝑄' 	and is defined as 

𝑄𝑄$( = 〈𝒆𝒆$% , 𝒆𝒆(〉, 𝑢𝑢$% = 𝑄𝑄$(𝑢𝑢( , +
𝑢𝑢!%
𝑢𝑢"%
𝑢𝑢#%
, = )

𝑄𝑄!! 𝑄𝑄!" 𝑄𝑄!#
𝑄𝑄"! 𝑄𝑄"" 𝑄𝑄"#
𝑄𝑄#! 𝑄𝑄#" 𝑄𝑄##

* )
𝑢𝑢!
𝑢𝑢"
𝑢𝑢#
* 

 
Ø Displacement, Strain, Stress, Generalized Hooke’s law 
For linear infinitesimal elasticity, the displacement and strain are 

𝒖𝒖(𝒙𝒙) ≈ 𝒖𝒖(𝑿𝑿) = 𝒙𝒙 − 𝑿𝑿 

𝜀𝜀$( = 𝜀𝜀($ =
1
2 9𝑢𝑢$,( + 𝑢𝑢(,$;, 𝑢𝑢$,( ≡

𝜕𝜕𝑢𝑢$
𝜕𝜕𝑥𝑥(

 

The strain tensor is symmetric. The rotation tensor does not contribute to deformation 

𝜔𝜔$( =
1
2 9𝑢𝑢$,( − 𝑢𝑢(,$;, 𝜀𝜀$( + 𝜔𝜔$( = 𝑢𝑢$,( 

Given the stress cube, the stress tensor is symmetric and is defined as 

𝜎𝜎$( = 𝜎𝜎($ =
Force	in	j-th	direction
Unit	area	in	i-th	face  

The traction becomes 
𝑇𝑇( = 𝜎𝜎$(𝑛𝑛$ 

The generalized Hooke’s law is 
𝜎𝜎$( = 𝐶𝐶$(*+𝜀𝜀*+ , 𝜀𝜀$( = 𝑆𝑆$(*+𝜎𝜎*+ 

 
Ø Tensor transformation 

𝜀𝜀$(% = 𝑄𝑄$,𝑄𝑄(-𝜀𝜀,- , 𝜀𝜀% = 𝑄𝑄𝜀𝜀𝑄𝑄' 

  



Lecture 2. Anisotropy, Equation for elasticity 
Ø Anisotropic & Isotropic elasticity 
For a tensile test, what we really describe is the relationship 
between	𝜎𝜎..	and	𝜀𝜀.. 
 
Voigt notation 

⎣
⎢
⎢
⎢
⎢
⎡
𝜎𝜎!!
𝜎𝜎""
𝜎𝜎##
𝜎𝜎"#
𝜎𝜎#!
𝜎𝜎!"⎦

⎥
⎥
⎥
⎥
⎤

→

⎣
⎢
⎢
⎢
⎢
⎡
𝜎𝜎!
𝜎𝜎"
𝜎𝜎#
𝜎𝜎$
𝜎𝜎%
𝜎𝜎&⎦
⎥
⎥
⎥
⎥
⎤

,

⎣
⎢
⎢
⎢
⎢
⎡
𝜀𝜀!!
𝜀𝜀""
𝜀𝜀##
2𝜀𝜀"#
2𝜀𝜀#!
2𝜀𝜀!"⎦

⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
𝜀𝜀!!
𝜀𝜀""
𝜀𝜀##
𝛾𝛾"#
𝛾𝛾#!
𝛾𝛾!"⎦

⎥
⎥
⎥
⎥
⎤

→

⎣
⎢
⎢
⎢
⎢
⎡
𝜀𝜀!
𝜀𝜀"
𝜀𝜀#
𝜀𝜀$
𝜀𝜀%
𝜀𝜀&⎦
⎥
⎥
⎥
⎥
⎤

,

⎣
⎢
⎢
⎢
⎢
⎡
𝜎𝜎!
𝜎𝜎"
𝜎𝜎#
𝜎𝜎$
𝜎𝜎%
𝜎𝜎&⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
𝐶𝐶!! 𝐶𝐶!" 𝐶𝐶!# 𝐶𝐶!$ 𝐶𝐶!% 𝐶𝐶!&
⋅ 𝐶𝐶"" 𝐶𝐶"# 𝐶𝐶"$ 𝐶𝐶"% 𝐶𝐶"&
⋅ ⋅ 𝐶𝐶## 𝐶𝐶#$ 𝐶𝐶#% 𝐶𝐶#&
⋅ ⋅ ⋅ 𝐶𝐶$$ 𝐶𝐶$% 𝐶𝐶$&
⋅ sym ⋅ ⋅ 𝐶𝐶%% 𝐶𝐶%&
⋅ ⋅ ⋅ ⋅ ⋅ 𝐶𝐶&&⎦

⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡
𝜀𝜀!
𝜀𝜀"
𝜀𝜀#
𝜀𝜀$
𝜀𝜀%
𝜀𝜀&⎦
⎥
⎥
⎥
⎥
⎤

 

We can now write the Hooke’s law as 
𝜎𝜎/ = 𝐶𝐶/0𝜀𝜀0, 𝜀𝜀/ = 𝑆𝑆/0𝜎𝜎0, 𝐼𝐼, 𝐽𝐽 = 1,2,⋯ ,6 

However, to perform transformation, we still need to apply on the 4th order tensor	𝐶𝐶$(*+ 

 
Independent components of tensors 

 Components Independent components Symmetry 
𝜎𝜎$( 9 6 𝜎𝜎$( = 𝜎𝜎($ 
𝐶𝐶$(*+ 81 21 𝐶𝐶$(*+ = 𝐶𝐶($*+ = 𝐶𝐶$(+* = 𝐶𝐶*+$( 

The major symmetry	𝐶𝐶/0 = 𝐶𝐶0/ is due to the existence of a strain energy density that satisfies 

𝜎𝜎/ =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜀𝜀/

, 𝐶𝐶/0 = 𝐶𝐶0/ =
𝜕𝜕𝜕𝜕

𝜕𝜕𝜀𝜀/𝜕𝜕𝜀𝜀0
 

 
Isotropic material 

𝑆𝑆!! = 𝑆𝑆!!!! = 𝑆𝑆"" = 𝑆𝑆## =
1
𝐸𝐸 𝜀𝜀!! =

𝜎𝜎!!
𝐸𝐸  

𝑆𝑆!" = 𝑆𝑆!!"" = 𝑆𝑆!# = 𝑆𝑆"# = −
𝜈𝜈
𝐸𝐸 𝜀𝜀"" = −𝜈𝜈

𝜎𝜎!!
𝐸𝐸  

𝑆𝑆11 = 𝑆𝑆22 = 𝑆𝑆33 =
1
𝐺𝐺 = 2(𝑆𝑆!! − 𝑆𝑆!") 𝜀𝜀"# =

1
2𝛾𝛾"# =

𝜎𝜎"#
2𝐺𝐺 , 𝐸𝐸 = 2(1 + 𝜈𝜈)𝐺𝐺 

For isotropic elasticity, the Hooke’s law becomes 

𝜎𝜎$( = 𝜆𝜆𝜀𝜀**𝛿𝛿$( + 2𝜇𝜇𝜀𝜀$( , 𝜀𝜀$( = −
𝜈𝜈
𝐸𝐸 𝜎𝜎**𝛿𝛿$( +

1 + 𝜈𝜈
𝐸𝐸 𝜎𝜎$( 

 
 
 



Ø Equation for elasticity 
Compatibility condition 

𝜀𝜀$(,*+ + 𝜀𝜀*+,$( − 𝜀𝜀$*,(+ − 𝜀𝜀(+,$* = 0 

This condition is automatically satisfied if the strain is obtained from the displacement.  
 
Another perspective: 𝜀𝜀$( 	has 6 degrees of freedom, while	𝑢𝑢$ 	has 3 degrees of freedom. We 
require the compatibility condition to make sure we can find	𝑢𝑢$ 	that corresponds to	𝜀𝜀$( 

(Implications: No cracks, gaps, discontinuities, etc.) 
 
Equilibrium condition (static) 

𝜎𝜎$(,$ + 𝐹𝐹( = 0, ∇ ⋅ 𝝈𝝈 + 𝑭𝑭 = 0 

 
Ø General strategies for solution 
1. (3D problem) Start from	𝑢𝑢$ 	and use the Hooke’s law 
For isotropic elasticity, the stress	𝜎𝜎$( can be written as 

𝜎𝜎$( = 𝜆𝜆𝑢𝑢*,*𝛿𝛿$( + 𝜇𝜇9𝑢𝑢$,( + 𝑢𝑢(,$; 

Then, using the equilibrium condition to write PDE for 𝑢𝑢$ 
𝜇𝜇𝑢𝑢$,** + (𝜆𝜆 + 𝜇𝜇)𝑢𝑢*,*$ + 𝐹𝐹$ = 0 

In vector form, we have 
𝜇𝜇∇"𝒖𝒖 + (𝜆𝜆 + 𝜇𝜇)∇(∇ ⋅ 𝒖𝒖) + 𝑭𝑭 = 𝟎𝟎 

 
2. (2D problem) Write out the compatibility condition in terms of stress 
The compatibility condition in 2D plane strain becomes one single equation 

𝜀𝜀..,44 + 𝜀𝜀44,.. − 2𝜀𝜀.4,.4 = 0 

The equilibrium condition gives 
𝜎𝜎..,. + 𝜎𝜎4.,4 + 𝐹𝐹. = 0 
𝜎𝜎.4,. + 𝜎𝜎44,4 + 𝐹𝐹4 = 0 

We begin with a trial solution / ansatz 𝜙𝜙(𝑥𝑥, 𝑦𝑦) with 
𝜎𝜎.. = 𝜙𝜙,44 + 𝑉𝑉								𝜎𝜎44 = 𝜙𝜙,.. + 𝑉𝑉							𝜎𝜎.4 = −𝜙𝜙,.4 , 𝐹𝐹. = −𝑉𝑉,. , 𝐹𝐹4 = −𝑉𝑉,4 

The equilibrium condition is automatically satisfied. Now the compatibility condition gives 
∇"(∇"𝜙𝜙) = ∇1𝜙𝜙 = 0 

  



CA Session 1. Euler-Bernoulli beam theory, Stiffness tensor 
Ø Euler-Bernoulli beam theory 
Assumptions 

1. Plane strain 
2. Newton axis (N.A.) 
3. Small deformation 
4. Plane surfaces are perpendicular to the Newton axis 

 
Flexural stiffness 
The curvature is related to the bending moment divided by the flexural stiffness 

𝐾𝐾 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥 =

𝑑𝑑"𝜕𝜕
𝑑𝑑𝑥𝑥" =

𝑀𝑀
𝐸𝐸𝐼𝐼5

 

The moment of inertia	𝐼𝐼5	and the flexural stiffness are calculated as 

𝐼𝐼5 = n 𝑦𝑦"𝑡𝑡𝑑𝑑𝑦𝑦
6

&6
, 𝐸𝐸𝐼𝐼5 =

2𝐸𝐸𝑡𝑡𝑏𝑏#

3  

 
Force and angular moment balances 

𝑑𝑑𝑉𝑉(𝑥𝑥)
𝑑𝑑𝑥𝑥 = −𝑞𝑞(𝑥𝑥),

𝑑𝑑𝑀𝑀(𝑥𝑥)
𝑑𝑑𝑥𝑥 = 𝑉𝑉(𝑥𝑥) 

 
Beam equation 

𝐸𝐸𝐼𝐼5
𝑑𝑑1𝜕𝜕(𝑥𝑥)
𝑑𝑑𝑥𝑥1 = −𝑞𝑞(𝑥𝑥) 

We need 4 boundary conditions in total 
 
Ø Cantilever beam with load at the free end 
Reaction force and angular moment are 

|𝐹𝐹7| = 𝑃𝑃, |𝑀𝑀7| = 𝑃𝑃𝑃𝑃 
From shear force and bending moment balances, we have 

𝑉𝑉(𝑥𝑥) = 𝑃𝑃, 𝑃𝑃𝑃𝑃 +𝑀𝑀 = 𝑥𝑥𝑉𝑉(𝑥𝑥), 𝑀𝑀 = 𝑃𝑃(𝑥𝑥 − 𝑃𝑃) 
The bending moment is contributed by normal stress	𝜎𝜎.., which is 

𝜎𝜎..(𝑥𝑥, 𝑦𝑦) = −
𝑀𝑀(𝑥𝑥)𝑦𝑦
𝐼𝐼5

, 𝑀𝑀(𝑥𝑥) = n 𝜎𝜎..(𝑥𝑥, 𝑦𝑦)𝑡𝑡𝑦𝑦	d𝑦𝑦
6

&6
 

The shear force is contributed by the shear stress	𝜎𝜎.4, which is 

𝜎𝜎.4(𝑥𝑥, 𝑦𝑦) =
3𝑉𝑉(𝑥𝑥)
2𝐴𝐴 w1 − x

𝑦𝑦
𝑏𝑏y
"
z , 𝑉𝑉(𝑥𝑥) = n 𝜎𝜎.4(𝑥𝑥, 𝑦𝑦)𝑡𝑡	d𝑦𝑦

6

&6
 



Ø Beam supported at both ends with a central load 
At the left half, reaction force at the pin support is 

𝑉𝑉(0) =
𝑃𝑃
2 

From shear force and bending moment balances, we have 

𝑉𝑉(𝑥𝑥) =
𝑃𝑃
2 , 𝑀𝑀(𝑥𝑥) =

𝑃𝑃𝑥𝑥
2 , 0 < 𝑥𝑥 <

𝑃𝑃
2 

For the right half, we similarly have 

𝑉𝑉(𝑥𝑥) = −
𝑃𝑃
2 , 𝑀𝑀(𝑥𝑥) =

𝑃𝑃
2
(𝑃𝑃 − 𝑥𝑥),

𝑃𝑃
2 < 𝑥𝑥 < 𝑃𝑃 

 
Ø Cantilever beam with a linear load 
Reaction force and angular moment are 

𝑞𝑞(𝑥𝑥) =
𝑘𝑘𝑥𝑥
𝑃𝑃 , |𝐹𝐹7| = n 𝑞𝑞(𝑥𝑥)𝑑𝑑𝑥𝑥

8

9
=
𝑘𝑘𝑃𝑃
2 , |𝑀𝑀7| = n 𝑥𝑥𝑞𝑞(𝑥𝑥)	d𝑥𝑥

8

9
=
𝑘𝑘𝑃𝑃"

3  

From shear force and bending moment balances, we have 

𝑉𝑉(𝑥𝑥) = |𝐹𝐹7| − n 𝑞𝑞(𝑥𝑥)	d𝑥𝑥
.

9
, 𝑀𝑀(𝑥𝑥) = 𝑥𝑥𝑉𝑉(𝑥𝑥) + n 𝑥𝑥𝑞𝑞(𝑥𝑥)	d𝑥𝑥

.

9
− |𝑀𝑀7| 

Directly from the ODEs, we have 
𝑑𝑑𝑉𝑉
𝑑𝑑𝑥𝑥 = −

𝑘𝑘𝑥𝑥
𝑃𝑃 , 𝑉𝑉(𝑃𝑃) = 0, 𝑉𝑉(𝑥𝑥) =

𝑘𝑘
2𝑃𝑃 (𝑃𝑃

" − 𝑥𝑥") 

𝑑𝑑𝑀𝑀
𝑑𝑑𝑥𝑥 =

𝑘𝑘
2𝑃𝑃

(𝑃𝑃" − 𝑥𝑥"), 𝑀𝑀(𝑃𝑃) = 0, 𝑀𝑀(𝑥𝑥) =
𝑘𝑘𝑃𝑃𝑥𝑥
2 −

𝑘𝑘𝑥𝑥#

6𝑃𝑃 −
𝑘𝑘𝑃𝑃"

3  

  



Lecture 3. 2D Elasticity, Airy stress function 
Ø Types of 2D elasticity problem 
Antiplane shear: Only	𝑢𝑢5(𝑥𝑥, 𝑦𝑦) 
 
Plane strain 

𝑢𝑢.(𝑥𝑥, 𝑦𝑦), 𝑢𝑢4(𝑥𝑥, 𝑦𝑦), 𝑢𝑢5 = 0,
𝜕𝜕
𝜕𝜕𝜕𝜕 = 0 

𝜀𝜀.5 = 𝜀𝜀45 = 𝜀𝜀55 = 0, 𝜎𝜎.5 = 𝜎𝜎45 = 0, 𝜎𝜎55 = 𝜈𝜈(𝜎𝜎.. + 𝜎𝜎44) ≠ 0 

Stress-strain relations 

𝜀𝜀.. =
1
𝐸𝐸 𝜎𝜎.. −

𝜈𝜈
𝐸𝐸 𝜎𝜎44 −

𝜈𝜈
𝐸𝐸 𝜎𝜎55 =

1 − 𝜈𝜈"

𝐸𝐸 𝜎𝜎.. −
𝜈𝜈(1 + 𝜈𝜈)

𝐸𝐸 𝜎𝜎44 

𝜀𝜀44 = −
𝜈𝜈
𝐸𝐸 𝜎𝜎.. +

1
𝐸𝐸 𝜎𝜎44 −

𝜈𝜈
𝐸𝐸 𝜎𝜎55 = −

𝜈𝜈(1 + 𝜈𝜈)
𝐸𝐸 𝜎𝜎.. +

1 − 𝜈𝜈"

𝐸𝐸 𝜎𝜎44 

𝜀𝜀.4 =
1
2𝜇𝜇 𝜎𝜎.4 

We can define the effective	𝐸𝐸%	and	𝜈𝜈′ 
1
𝐸𝐸% =

1 − 𝜈𝜈"

𝐸𝐸 , 𝜈𝜈% =
𝜈𝜈

1 − 𝜈𝜈 ,
𝜈𝜈%

𝐸𝐸% =
𝜈𝜈(1 + 𝜈𝜈)

𝐸𝐸  

 
Plane stress 
The material is free to expand in	𝜕𝜕-direction 

𝜎𝜎.5 = 𝜎𝜎45 = 𝜎𝜎55 = 0, 𝜀𝜀.5 = 𝜀𝜀45 = 0, 𝜀𝜀55 ≠ 0 

Stress-strain relations 

𝜀𝜀.. =
1
𝐸𝐸 𝜎𝜎.. −

𝜈𝜈
𝐸𝐸 𝜎𝜎44 , 𝜀𝜀44 = −

𝜈𝜈
𝐸𝐸 𝜎𝜎.. +

1
𝐸𝐸 𝜎𝜎44 , 𝜀𝜀.4 =

1
2𝜇𝜇 𝜎𝜎.4 

However, for plane stress the compatibility condition for	𝜀𝜀55	also needs to be satisfied.  
 
If the material expands in	𝜕𝜕-direction, there will be stress dependence on	𝜕𝜕-direction, since 
the material elements are connected, which breaks down the 2D plane stress assumption. 
 
Kolosov’s constant 

𝜅𝜅 = 3 − 4𝜈𝜈, 𝜅𝜅 =
3 − 𝜈𝜈
1 + 𝜈𝜈 

 
Ø Airy stress function 
For plane strain without body force, we begin with a trial solution / ansatz 𝜙𝜙(𝑥𝑥, 𝑦𝑦) with 

𝜎𝜎.. = 𝜙𝜙,44								𝜎𝜎44 = 𝜙𝜙,..							𝜎𝜎.4 = −𝜙𝜙,.4 

The equilibrium condition is automatically satisfied. 



The compatibility condition becomes the bi-harmonic equation 
∇"(∇"𝜙𝜙) = ∇1𝜙𝜙 = 0 

Plane stress shares the same equation, but an extra compatibility condition for	𝜀𝜀55	needs to be 
considered (but usually ignored) 
 
Examples 

𝜙𝜙(𝑥𝑥, 𝑦𝑦) = 𝛼𝛼𝑥𝑥 + 𝛽𝛽𝑦𝑦 + 𝛾𝛾 𝜎𝜎.. = 𝜎𝜎44 = 𝜎𝜎.4 = 0  

𝜙𝜙(𝑥𝑥, 𝑦𝑦) =
1
2𝐴𝐴𝑥𝑥

" +
1
2𝐵𝐵𝑦𝑦

" − 𝐶𝐶𝑥𝑥𝑦𝑦 𝜎𝜎.. = 𝐵𝐵,			𝜎𝜎44 = 𝐴𝐴,			𝜎𝜎.4 = 𝐶𝐶  

𝜙𝜙(𝑥𝑥, 𝑦𝑦) =
1
2𝜎𝜎9𝑦𝑦

" 𝜎𝜎.. = 𝜎𝜎9  

𝜙𝜙(𝑥𝑥, 𝑦𝑦) = −
𝑀𝑀
6𝐼𝐼5

𝑦𝑦# 𝜎𝜎.. = −
𝑀𝑀𝑦𝑦
𝐼𝐼5

  

 
Ø Rectangular beam: Boundary value problem (BVP) 
Boundary conditions 
Top & Bottom (Traction free): Strong boundary conditions 

𝑇𝑇. = 𝜎𝜎.4 = 0, 𝑇𝑇4 = 𝜎𝜎44 = 0, 𝑎𝑎𝑡𝑡		𝑦𝑦 = ±𝑏𝑏 

Left side: Weak boundary conditions (consider thickness	𝑡𝑡 = 1) 

n 𝜎𝜎.4	d𝑦𝑦
6

&6
= 𝐹𝐹, n 𝜎𝜎..	d𝑦𝑦

6

&6
= 0, n 𝜎𝜎..𝑦𝑦	d𝑦𝑦

6

&6
= 0, 𝑎𝑎𝑡𝑡		𝑥𝑥 = 0 

Right side: Weak boundary conditions for stress are automatically satisfied since the 
equilibrium condition is satisfied at every point during the solution.  
 
However, the strong boundary conditions for displacement	𝑢𝑢. = 𝑢𝑢4 = 0	at	𝑥𝑥 = 𝑃𝑃	still need to 

be considered after obtaining the strain field. But in practice, only the weak conditions for 
displacement can be satisfied by the solution. 
 
Solution 
In this problem the moment	𝑀𝑀 ∝ 𝑥𝑥, so we first choose 

𝜙𝜙(𝑥𝑥, 𝑦𝑦) = 𝐶𝐶!𝑥𝑥𝑦𝑦#, 𝜎𝜎.. = 6𝐶𝐶!𝑥𝑥𝑦𝑦, 𝜎𝜎44 = 0, 𝜎𝜎.4 = −3𝐶𝐶!𝑦𝑦" 

However, to satisfy	𝜎𝜎.4 = 0	at	𝑦𝑦 = ±𝑏𝑏, we need to fix this component as 

𝜎𝜎.4 = −3𝐶𝐶!𝑦𝑦" + 3𝐶𝐶!𝑏𝑏", 𝜙𝜙 = 𝐶𝐶!𝑥𝑥𝑦𝑦# − 3𝐶𝐶!𝑏𝑏"𝑥𝑥𝑦𝑦, ∇1𝜙𝜙 = 0 

The other stress components are unchanged.  



The weak boundary conditions at	𝑥𝑥 = 0	gives 

n 𝜎𝜎.4	d𝑦𝑦
6

&6
= 3𝐶𝐶!n (𝑏𝑏" − 𝑦𝑦")	d𝑦𝑦

6

&6
= 4𝑏𝑏#𝐶𝐶! = 𝐹𝐹, 𝐶𝐶! =

𝐹𝐹
4𝑏𝑏# 

The stress field solutions become 

𝜎𝜎.. =
3𝐹𝐹
2𝑏𝑏# 𝑥𝑥𝑦𝑦, 𝜎𝜎.4 =

3𝐹𝐹
4𝑏𝑏# (𝑏𝑏

" − 𝑦𝑦"), 𝜎𝜎44 = 0 

We can obtain the strain fields from the Hooke’s law (under plane stress) 

𝜀𝜀.. =
3𝐹𝐹
2𝐸𝐸𝑏𝑏# 𝑥𝑥𝑦𝑦, 𝜀𝜀44 = −

3𝐹𝐹𝜈𝜈
2𝐸𝐸𝑏𝑏# 𝑥𝑥𝑦𝑦, 𝜀𝜀.4 =

3𝐹𝐹(1 + 𝜈𝜈)
4𝐸𝐸𝑏𝑏#

(𝑏𝑏" − 𝑦𝑦") 

Integration leads to the displacement fields 

𝑢𝑢. =
3𝐹𝐹
4𝐸𝐸𝑏𝑏# 𝑥𝑥

"𝑦𝑦 + 𝑓𝑓(𝑦𝑦), 𝑢𝑢4 = −
3𝐹𝐹𝜈𝜈
4𝐸𝐸𝑏𝑏# 𝑥𝑥𝑦𝑦

" + 𝑔𝑔(𝑥𝑥) 

To satisfy	𝜀𝜀.4	we need 

𝜀𝜀.4 =
1
2ä

𝜕𝜕𝑢𝑢.
𝜕𝜕𝑦𝑦 +

𝜕𝜕𝑢𝑢4
𝜕𝜕𝑥𝑥 ã,			

3𝐹𝐹(1 + 𝜈𝜈)
2𝐸𝐸𝑏𝑏#

(𝑏𝑏" − 𝑦𝑦") =
3𝐹𝐹
4𝐸𝐸𝑏𝑏# 𝑥𝑥

" + 𝑓𝑓%(𝑦𝑦) −
3𝐹𝐹𝜈𝜈
4𝐸𝐸𝑏𝑏# 𝑦𝑦

" + 𝑔𝑔%(𝑥𝑥) 

Because the equality holds for any	𝑥𝑥	and	𝑦𝑦, separation of variables leads to 
3𝐹𝐹
4𝐸𝐸𝑏𝑏# 𝑥𝑥

" + 𝑔𝑔%(𝑥𝑥) =
3𝐹𝐹(1 + 𝜈𝜈)
2𝐸𝐸𝑏𝑏#

(𝑏𝑏" − 𝑦𝑦") +
3𝐹𝐹𝜈𝜈
4𝐸𝐸𝑏𝑏# 𝑦𝑦

" − 𝑓𝑓%(𝑦𝑦) = 𝐶𝐶 

We finally have 

𝑔𝑔(𝑥𝑥) = −
𝐹𝐹

4𝐸𝐸𝑏𝑏# 𝑥𝑥
# + 𝐶𝐶𝑥𝑥 + 𝐷𝐷,			𝑓𝑓(𝑦𝑦) =

𝐹𝐹(1 + 𝜈𝜈)
2𝐸𝐸𝑏𝑏#

(3𝑏𝑏"𝑦𝑦 − 𝑦𝑦#) +
𝐹𝐹𝜈𝜈
4𝐸𝐸𝑏𝑏# 𝑦𝑦

# − 𝐶𝐶𝑦𝑦 + 𝐸𝐸 

The constants	𝐷𝐷	and	𝐸𝐸	denote rigid body translation, while	𝐶𝐶	denotes rotation 
 
 
  



Lecture 4. Saint-Venant’s principle, General solution in rectangular domain 
Ø Saint-Venant’s principle 
Saint-Venant’s principle justifies the usage of weak boundary conditions.  
 
It states that the stress field in a rod or beam sufficiently far away from its end produced by 
some traction forces applied to the end is independent of the detailed distribution of the 
traction on the cross section, as long as the total force and total moment applied to the end 
surface remain the same. 
 
In other words, the correction term is localized (decays exponentially), and the characteristic 
length scale is about the beam height	2𝑏𝑏. 
 
We also want to apply strong boundary conditions to the longer dimension. 
 
Ø General solution in rectangular domain 
From Euler-Bernoulli beam theory, for polynomial loads we have 

𝑞𝑞(𝑥𝑥) ∼ 𝑥𝑥:, 𝑉𝑉(𝑥𝑥) ∼ 𝑥𝑥:;!, 𝑀𝑀(𝑥𝑥) ∼ 𝑥𝑥:;" 
Then we can suppose the stress function	𝜙𝜙	has a maximum order of	𝑛𝑛 + 5 

𝜎𝜎.. ∼ 𝑥𝑥:;"𝑦𝑦, 𝜙𝜙 ∼ 𝑥𝑥:;"𝑦𝑦# 
All we need to do is solve the coefficients of the polynomial, using the biharmonic equation 
and boundary conditions. 
  



Lecture 5. Fourier solution 
Ø Independent solutions of biharmonic equation 
For a rectangular domain	[−𝑎𝑎, 𝑎𝑎] × [−𝑏𝑏, 𝑏𝑏], we describe the strong boundary conditions 

𝜎𝜎44(𝑥𝑥, 𝑦𝑦 = 𝑏𝑏) = 𝑡𝑡4;(𝑥𝑥), 𝜎𝜎44(𝑥𝑥, 𝑦𝑦 = −𝑏𝑏) = −𝑡𝑡4&(𝑥𝑥) 
𝜎𝜎.4(𝑥𝑥, 𝑦𝑦 = 𝑏𝑏) = 𝑡𝑡.;(𝑥𝑥), 𝜎𝜎.4(𝑥𝑥, 𝑦𝑦 = −𝑏𝑏) = −𝑡𝑡.&(𝑥𝑥) 

Consider the trial solution 

𝜙𝜙(𝑥𝑥, 𝑦𝑦) = 𝑒𝑒<.𝑒𝑒=4 
If the harmonic equation	∇"𝜙𝜙 = 0	is satisfied, then we have 

∇"𝜙𝜙 = (𝛼𝛼" + 𝛽𝛽")𝜙𝜙 = 0, 𝛼𝛼" + 𝛽𝛽" = 0 
Then the stress function has the form 

𝜙𝜙(𝑥𝑥, 𝑦𝑦) = 𝑒𝑒±$?.𝑒𝑒±?4 , 𝜆𝜆 ∈ ℝ 
 
Now for the biharmonic equation	∇1𝜙𝜙 = 0, the four independent solutions are 

𝑒𝑒$?.𝑒𝑒?4 , 𝑒𝑒$?.𝑒𝑒&?4 , 𝑒𝑒$?. ⋅ 𝑦𝑦𝑒𝑒?4 , 𝑒𝑒$?. ⋅ 𝑦𝑦𝑒𝑒&?4 
Then the stress function has the general form 

𝜙𝜙(𝑥𝑥, 𝑦𝑦) = 𝑒𝑒$?.ï(𝑐𝑐! + 𝑐𝑐"𝑦𝑦)𝑒𝑒?4 + (𝑐𝑐# + 𝑐𝑐1𝑦𝑦)𝑒𝑒&?4ó 

 
Symmetric solutions 
The general form can be decomposed into even and odd functions 

𝜙𝜙(𝑥𝑥, 𝑦𝑦) = ò
cos 𝜆𝜆𝑥𝑥
sin 𝜆𝜆𝑥𝑥ö × ä

𝐴𝐴% cosh 𝜆𝜆𝑦𝑦 + 𝐷𝐷%𝑦𝑦 sinh 𝜆𝜆𝑦𝑦
𝐵𝐵%𝑦𝑦 cosh 𝜆𝜆𝑦𝑦 + 𝐶𝐶% sinh 𝜆𝜆𝑦𝑦ã 

 
Ø Sinusoidal loading on the rectangular beam 
Consider the rectangular beam with loading 

𝑝𝑝4(𝑥𝑥) = 𝑝𝑝9 cos x
𝜋𝜋𝑥𝑥
2𝑎𝑎y 

The two ends are simply supported, both sides having equal forces to balance the loading. 
The strong boundary conditions are 

𝜎𝜎44(𝑥𝑥, 𝑦𝑦 = 𝑏𝑏) = −𝑝𝑝9 cos x
𝜋𝜋𝑥𝑥
2𝑎𝑎y , 𝜎𝜎.4(𝑥𝑥, 𝑦𝑦 = 𝑏𝑏) = 0 

𝜎𝜎44(𝑥𝑥, 𝑦𝑦 = −𝑏𝑏) = 0, 𝜎𝜎.4(𝑥𝑥, 𝑦𝑦 = −𝑏𝑏) = 0 

We can decompose the problem into two simple scenarios 
 
 
 



Problem (a): 𝜎𝜎44	even in	𝑥𝑥, odd in	𝑦𝑦 

𝜎𝜎44(𝑥𝑥, 𝑦𝑦 = 𝑏𝑏) = −
𝑝𝑝9
2 cos x

𝜋𝜋𝑥𝑥
2𝑎𝑎y , 𝜎𝜎44(𝑥𝑥, 𝑦𝑦 = −𝑏𝑏) =

𝑝𝑝9
2 cos x

𝜋𝜋𝑥𝑥
2𝑎𝑎y 

Problem (b):	𝜎𝜎44	even in	𝑥𝑥, even in	𝑦𝑦 

𝜎𝜎44(𝑥𝑥, 𝑦𝑦 = 𝑏𝑏) = −
𝑝𝑝9
2 cos x

𝜋𝜋𝑥𝑥
2𝑎𝑎y , 𝜎𝜎44(𝑥𝑥, 𝑦𝑦 = −𝑏𝑏) = −

𝑝𝑝9
2 cos x

𝜋𝜋𝑥𝑥
2𝑎𝑎y 

 
For problem (a), we have 

𝜙𝜙(𝑥𝑥, 𝑦𝑦) = cos 𝜆𝜆𝑥𝑥 ⋅ (𝐵𝐵𝑦𝑦 cosh 𝜆𝜆𝑦𝑦 + 𝐶𝐶 sinh 𝜆𝜆𝑦𝑦), 𝜆𝜆 =
𝜋𝜋
2𝑎𝑎 

The top boundary conditions give 

𝜎𝜎44(𝑦𝑦 = 𝑏𝑏) = −𝜆𝜆" cos 𝜆𝜆𝑥𝑥 ⋅ (𝐵𝐵𝑏𝑏 cosh 𝜆𝜆𝑏𝑏 + 𝐶𝐶 sinh 𝜆𝜆𝑏𝑏) = −
𝑝𝑝9
2 cos 𝜆𝜆𝑥𝑥 

𝜎𝜎.4(𝑦𝑦 = 𝑏𝑏) = 𝜆𝜆 sin 𝜆𝜆𝑥𝑥 ⋅ [𝜆𝜆𝐵𝐵𝑏𝑏 sinh 𝜆𝜆𝑏𝑏 + (𝐵𝐵 + 𝜆𝜆𝐶𝐶) cosh 𝜆𝜆𝑏𝑏] = 0 

  



Lecture 6. Elastic halfspace 
Ø Issues to solve halfspace problem 

Euler-Bernoulli beam theory: Proportional to	1/𝐼𝐼, for halfspace all fields go to 0 
Airy stress function: Solution is very tedious, and we only focus on displacement at the 

top. However, we need to use the general procedure to solve the Green’s function 
 
Ø 2D elastic halfspace problem 
Find displacement at	𝑥𝑥	due to a force at	𝑥𝑥%	using the Green’s function 

𝑢𝑢$(𝑥𝑥) = n𝐺𝐺$(@ (𝑥𝑥 − 𝑥𝑥%)𝑇𝑇((𝑥𝑥%)	d𝑥𝑥%
A

, 𝑖𝑖, 𝑗𝑗 = 𝑥𝑥, 𝑦𝑦 

 
Single Fourier mode 
For a sinusoidal loading with wavenumber	𝑘𝑘, we have 

𝑇𝑇4(𝑥𝑥) = 𝑒𝑒$*. , 𝑢𝑢4(𝑥𝑥) = n 𝐺𝐺@(𝑥𝑥 − 𝑥𝑥%)𝑒𝑒$*.! 	d𝑥𝑥%
;B

&B
 

A change of variable leads to 

𝑢𝑢4(𝑥𝑥) = 𝑒𝑒$*.n 𝐺𝐺@(𝑥𝑥%)𝑒𝑒&$*.
! 	d𝑥𝑥%

;B

&B
= 𝐺𝐺†@(𝑘𝑘)𝑒𝑒$*. = 𝐺𝐺†@(𝑘𝑘)𝑇𝑇4(𝑥𝑥) 

For a single Fourier mode	𝑘𝑘, displacement is proportional to surface loading. The factor is the 
Fourier domain Green’s function at wavenumber	𝑘𝑘. 
 
Green’s function for a normal loading 
Consider the surface load 

𝑇𝑇4(𝑥𝑥) = 𝑇𝑇9 cos 𝑘𝑘𝑥𝑥 

Surface boundary conditions 
𝜎𝜎44(𝑥𝑥, 𝑦𝑦 = 0) = 𝑇𝑇4(𝑥𝑥), 𝜎𝜎.4(𝑥𝑥, 𝑦𝑦 = 0) = 0 

We choose the Airy stress function that converges at	𝑦𝑦 → −∞ 
𝜙𝜙(𝑥𝑥, 𝑦𝑦) = cos 𝑘𝑘𝑥𝑥 (𝐴𝐴 + 𝐵𝐵𝑦𝑦)𝑒𝑒*4 

Stress fields become 

𝜎𝜎44 = −𝑘𝑘" cos 𝑘𝑘𝑥𝑥 (𝐴𝐴 + 𝐵𝐵𝑦𝑦)𝑒𝑒*4 , 𝜎𝜎.4 = 𝑘𝑘 sin 𝑘𝑘𝑥𝑥 (𝑘𝑘𝐴𝐴 + 𝐵𝐵 + 𝐵𝐵𝑘𝑘𝑦𝑦)𝑒𝑒*4 

The boundary conditions give 

−𝑘𝑘"𝐴𝐴 = 𝑇𝑇9, 𝑘𝑘"𝐴𝐴 + 𝑘𝑘𝐵𝐵 = 0, 𝐴𝐴 = −
𝑇𝑇9
𝑘𝑘" , 𝐵𝐵 =

𝑇𝑇9
𝑘𝑘  

Finally, the solutions are 
𝜎𝜎.. = 𝑇𝑇9 cos 𝑘𝑘𝑥𝑥 ⋅ (1 + 𝑘𝑘𝑦𝑦)𝑒𝑒*4 



𝜎𝜎44 = 𝑇𝑇9 cos 𝑘𝑘𝑥𝑥 ⋅ (1 − 𝑘𝑘𝑦𝑦)𝑒𝑒*4 

𝜎𝜎.4 = 𝑇𝑇9 sin 𝑘𝑘𝑥𝑥 ⋅ 𝑘𝑘𝑦𝑦𝑒𝑒*4 

Under plane strain assumption, we can further obtain the strain and displacement fields 

𝑢𝑢.(𝑥𝑥, 𝑦𝑦) =
𝑇𝑇9
𝑘𝑘𝐸𝐸 sin 𝑘𝑘𝑥𝑥

[(1 − 𝜈𝜈 − 2𝜈𝜈") + (1 + 𝜈𝜈)𝑘𝑘𝑦𝑦]𝑒𝑒*4 + 𝐶𝐶 

𝑢𝑢4(𝑥𝑥, 𝑦𝑦) =
𝑇𝑇9
𝑘𝑘𝐸𝐸 cos 𝑘𝑘𝑥𝑥

[(2 − 2𝜈𝜈") − (1 + 𝜈𝜈)𝑘𝑘𝑦𝑦]𝑒𝑒*4 + 𝐷𝐷 

At the surface	𝑦𝑦 = 0, the displacement fields are 

𝑢𝑢.(𝑥𝑥, 𝑦𝑦 = 0) = 𝑢𝑢£.(𝑥𝑥) =
𝑇𝑇9
𝑘𝑘𝐸𝐸 sin 𝑘𝑘𝑥𝑥 ⋅

(1 − 𝜈𝜈 − 2𝜈𝜈") 

𝑢𝑢4(𝑥𝑥, 𝑦𝑦 = 0) = 𝑢𝑢£4(𝑥𝑥) =
𝑇𝑇9
𝑘𝑘𝐸𝐸 cos 𝑘𝑘𝑥𝑥 ⋅

(2 − 2𝜈𝜈") 

We can identify the Green’s function	𝐺𝐺44@  as the following 

𝐺𝐺44@ (𝑘𝑘) =
2(1 − 𝜈𝜈")

|𝑘𝑘|𝐸𝐸 =
1 − 𝜈𝜈
|𝑘𝑘|𝜇𝜇  

In the spatial domain, the inverse FT results in 

𝐺𝐺44@ (𝑥𝑥) = −
1 − 𝜈𝜈
𝜋𝜋𝜇𝜇 ln|𝑥𝑥| = −

𝜅𝜅 + 1
4𝜋𝜋𝜇𝜇 ln|𝑥𝑥| 

 
For displacement	𝑢𝑢., we can identify a phase shift in the Green’s function 

𝐺𝐺.4@ (𝑘𝑘) = −𝑖𝑖
1 − 𝜈𝜈 − 2𝜈𝜈"

𝑘𝑘𝐸𝐸 = −𝑖𝑖
1 − 2𝜈𝜈
2𝑘𝑘𝜇𝜇  

In the spatial domain, we have 

𝐺𝐺.4@ (𝑥𝑥) =
1 − 2𝜈𝜈
4𝜇𝜇 sgn(𝑥𝑥) =

𝜅𝜅 − 1
8𝜇𝜇 sgn(𝑥𝑥) 

 
Ø Green’s function for 2D elastic halfspace 

𝑦𝑦-loading 
𝐺𝐺44@  

𝜅𝜅 + 1
4𝜇𝜇 ⋅

1
|𝑘𝑘| −

𝜅𝜅 + 1
4𝜋𝜋𝜇𝜇 ln|𝑥𝑥| 

𝐺𝐺.4@  −
𝜅𝜅 − 1
4𝜇𝜇 ⋅

𝑖𝑖
𝑘𝑘 

𝜅𝜅 − 1
8𝜇𝜇 sgn(𝑥𝑥) 

𝑥𝑥-loading 
𝐺𝐺..@  

𝜅𝜅 + 1
4𝜇𝜇 ⋅

1
|𝑘𝑘| −

𝜅𝜅 + 1
4𝜋𝜋𝜇𝜇 ln|𝑥𝑥| 

𝐺𝐺4.@  
𝜅𝜅 − 1
4𝜇𝜇 ⋅

𝑖𝑖
𝑘𝑘 −

𝜅𝜅 − 1
8𝜇𝜇 sgn(𝑥𝑥) 

Note: This matrix is anti-symmetric 
  



Lecture 7. Polar coordinates 
Ø Elasticity equations in polar coordinates 

𝑥𝑥 = 𝑟𝑟 cos 𝑑𝑑 , 𝑦𝑦 = 𝑟𝑟 sin 𝑑𝑑 

𝑟𝑟 = ®𝑥𝑥" + 𝑦𝑦", 𝑑𝑑 = arctan
𝑦𝑦
𝑥𝑥 

Gradient operator 

𝛁𝛁 = 𝒆𝒆.
𝜕𝜕
𝜕𝜕𝑥𝑥 + 𝒆𝒆4

𝜕𝜕
𝜕𝜕𝑦𝑦 = 𝒆𝒆C

𝜕𝜕
𝜕𝜕𝑟𝑟 + 𝒆𝒆D

1
𝑟𝑟
𝜕𝜕
𝜕𝜕𝑑𝑑 

Derivatives of unit vectors 
𝜕𝜕𝒆𝒆C
𝜕𝜕𝑑𝑑 = 𝒆𝒆D ,

𝜕𝜕𝒆𝒆D
𝜕𝜕𝑑𝑑 = −𝒆𝒆C ,

𝜕𝜕𝒆𝒆C
𝜕𝜕𝑟𝑟 =

𝜕𝜕𝒆𝒆D
𝜕𝜕𝑟𝑟 = 0 

 
In tensor form, the stress tensor can be written as 

𝝈𝝈 = (𝛁𝛁E ⊗𝛁𝛁E)𝜙𝜙, 𝛁𝛁E = 𝛁𝛁 × 𝒆𝒆5 
The new gradient operator is 

𝛁𝛁E = −𝒆𝒆4
𝜕𝜕
𝜕𝜕𝑥𝑥 + 𝒆𝒆.

𝜕𝜕
𝜕𝜕𝑦𝑦 = −𝒆𝒆D

𝜕𝜕
𝜕𝜕𝑟𝑟 + 𝒆𝒆C

1
𝑟𝑟
𝜕𝜕
𝜕𝜕𝑑𝑑 

Stress field from the stress function	𝜙𝜙(𝑟𝑟, 𝑑𝑑) now becomes 

𝜎𝜎CC =
1
𝑟𝑟
𝜕𝜕𝜙𝜙
𝜕𝜕𝑟𝑟 +

1
𝑟𝑟"

𝜕𝜕"𝜙𝜙
𝜕𝜕𝑑𝑑" , 𝜎𝜎DD =

𝜕𝜕"𝜙𝜙
𝜕𝜕𝑟𝑟" , 𝜎𝜎CD = −

𝜕𝜕
𝜕𝜕𝑟𝑟 ò

1
𝑟𝑟
𝜕𝜕𝜙𝜙
𝜕𝜕𝑑𝑑ö 

 
Biharmonic equation 

∇1𝜙𝜙 = ä
𝜕𝜕"

𝜕𝜕𝑟𝑟" +
1
𝑟𝑟
𝜕𝜕
𝜕𝜕𝑟𝑟 +

1
𝑟𝑟"

𝜕𝜕"

𝜕𝜕𝑑𝑑"ãä
𝜕𝜕"

𝜕𝜕𝑟𝑟" +
1
𝑟𝑟
𝜕𝜕
𝜕𝜕𝑟𝑟 +

1
𝑟𝑟"

𝜕𝜕"

𝜕𝜕𝑑𝑑"ã𝜙𝜙 = 0 

 
In tensor form, the strain tensor can be written as 

𝜺𝜺 =
1
2
[(𝛁𝛁⊗ 𝒖𝒖) + (𝛁𝛁⊗ 𝒖𝒖)'] 

Strain field from displacement 

𝜀𝜀CC =
𝜕𝜕𝑢𝑢C
𝜕𝜕𝑟𝑟 , 𝜀𝜀DD =

1
𝑟𝑟
𝜕𝜕𝑢𝑢D
𝜕𝜕𝑑𝑑 +

𝑢𝑢C
𝑟𝑟 , 𝜀𝜀CD =

1
2 ò

1
𝑟𝑟
𝜕𝜕𝑢𝑢C
𝜕𝜕𝑑𝑑 −

𝑢𝑢D
𝑟𝑟 +

𝜕𝜕𝑢𝑢D
𝜕𝜕𝑟𝑟 ö 

 
Generalized Hooke’s law 

𝝈𝝈 = 𝜆𝜆	Tr(𝜺𝜺)𝑰𝑰 + 2𝜇𝜇	𝜺𝜺 
Traction force 

𝑻𝑻 = 𝒏𝒏 ⋅ 𝝈𝝈, 𝑇𝑇C = 𝜎𝜎CC𝑛𝑛C + 𝜎𝜎DC𝑛𝑛D , 𝑇𝑇D = 𝜎𝜎CD𝑛𝑛C + 𝜎𝜎DD𝑛𝑛D 
Equilibrium condition 

𝛁𝛁 ⋅ 𝝈𝝈 + 𝑭𝑭 = 𝟎𝟎 



Ø Michell solutions to biharmonic equation in polar coordinates 
We expect a periodic function in	𝑑𝑑 

𝜙𝜙(𝑟𝑟, 𝑑𝑑) = 𝜙𝜙(𝑟𝑟, 𝑑𝑑 + 2𝜋𝜋) 
Consider the form of stress function 

𝜙𝜙(𝑟𝑟, 𝑑𝑑) = 𝑓𝑓(𝑟𝑟)	𝑒𝑒$:D , 𝑛𝑛 = 0,1,2,⋯ 
The biharmonic equation becomes 

∇1𝜙𝜙 = 0		 ⟺		 ä
𝜕𝜕"

𝜕𝜕𝑟𝑟" +
1
𝑟𝑟
𝜕𝜕
𝜕𝜕𝑟𝑟 −

𝑛𝑛"

𝑟𝑟"ãä
𝜕𝜕"

𝜕𝜕𝑟𝑟" +
1
𝑟𝑟
𝜕𝜕
𝜕𝜕𝑟𝑟 −

𝑛𝑛"

𝑟𝑟"ã𝑓𝑓
(𝑟𝑟) = 0 

The polynomial form	𝑓𝑓(𝑟𝑟) = 𝑟𝑟F	gives 
(𝑚𝑚" − 𝑛𝑛")[(𝑚𝑚 − 2)" − 𝑛𝑛"]	𝑟𝑟F&1 = 0 

This indicates the general Michell solutions 

𝜙𝜙(𝑟𝑟, 𝑑𝑑) = (𝐴𝐴:!𝑟𝑟:;" + 𝐴𝐴:"𝑟𝑟&:;" + 𝐴𝐴C#𝑟𝑟: + 𝐴𝐴C1𝑟𝑟&:)𝑒𝑒$:D , 𝑛𝑛 = 2,3,4,⋯ 
For 𝑛𝑛 = 0, we have 

𝑓𝑓9(𝑟𝑟) = 𝐴𝐴9!𝑟𝑟" + 𝐴𝐴9"𝑟𝑟" ln 𝑟𝑟 + 𝐴𝐴9# ln 𝑟𝑟 + 𝐴𝐴91𝑑𝑑 
For 𝑛𝑛 = 1, we have 

𝑓𝑓!(𝑟𝑟) = 𝐴𝐴!!𝑟𝑟# + 𝐴𝐴!"𝑟𝑟 ln 𝑟𝑟 + 𝐴𝐴!#𝑟𝑟𝑑𝑑 +
𝐴𝐴!1
𝑟𝑟  

 
Ø Example: Shear loading, circular hole in a plate 
Infinity conditions 

𝜎𝜎.. = 𝜎𝜎44 = 0, 𝜎𝜎.4 = 𝑆𝑆, 𝑟𝑟 → ∞ 

Zero normal traction at the hole 
𝜎𝜎CD = 𝜎𝜎CC = 0, 𝑟𝑟 = 𝑎𝑎 

We decompose the stress function into two parts 

𝜙𝜙 = 𝜙𝜙(9) + 𝜙𝜙(!) 
The uniform shear loading is described by 

𝜙𝜙(9) = −𝑆𝑆𝑥𝑥𝑦𝑦 = −𝑆𝑆𝑟𝑟" sin 𝑑𝑑 cos 𝑑𝑑 = −
1
2𝑆𝑆𝑟𝑟

" sin 2𝑑𝑑 , 𝜎𝜎.4
(9) = 𝑆𝑆 

𝜎𝜎CC
(9) = 𝑆𝑆 sin 2𝑑𝑑 , 𝜎𝜎DD

(9) = −𝑆𝑆 sin 2𝑑𝑑 , 𝜎𝜎CD
(9) = 𝑆𝑆 cos 2𝑑𝑑 

Now we need to cancel the stress at	𝑟𝑟 = 𝑎𝑎. The effect of the circular hole is described by 

𝜙𝜙(!) = 𝑓𝑓"(𝑟𝑟) sin 2𝑑𝑑 = (𝐴𝐴 + 𝐵𝐵𝑟𝑟&") sin 2𝑑𝑑 

𝜎𝜎CC
(!) = −ò

4𝐴𝐴
𝑟𝑟" +

6𝐵𝐵
𝑟𝑟1 ö sin 2𝑑𝑑 , 𝜎𝜎CD

(!) = ò
2𝐴𝐴
𝑟𝑟" +

6𝐵𝐵
𝑟𝑟1 ö cos 2𝑑𝑑 

At	𝑟𝑟 = 𝑎𝑎, the boundary conditions give 
4𝐴𝐴
𝑎𝑎" +

6𝐵𝐵
𝑎𝑎1 = 𝑆𝑆,

2𝐴𝐴
𝑎𝑎" +

6𝐵𝐵
𝑎𝑎1 = −𝑆𝑆, 𝐴𝐴 = 𝑆𝑆𝑎𝑎", 𝐵𝐵 = −

1
2𝑆𝑆𝑎𝑎

1 



The stress fields are obtained as 

𝜎𝜎CC = 𝑆𝑆 ä1 −
4𝑎𝑎"

𝑟𝑟" +
3𝑎𝑎1

𝑟𝑟1 ã sin 2𝑑𝑑 

𝜎𝜎CD = 𝑆𝑆 ä1 +
2𝑎𝑎"

𝑟𝑟" −
3𝑎𝑎1

𝑟𝑟1 ã cos 2𝑑𝑑 

𝜎𝜎DD = −𝑆𝑆 ä1 +
3𝑎𝑎1

𝑟𝑟1 ã sin 2𝑑𝑑 

The maximum shear stress at the hole	𝑟𝑟 = 𝑎𝑎	is 

𝜏𝜏(𝑑𝑑) = ≥x
𝜎𝜎CC − 𝜎𝜎DD

2 y
"
+ 𝜎𝜎CD" =

1
2
|𝜎𝜎DD| = 2𝑆𝑆 sin 2𝑑𝑑 

Therefore, the stress-concentration factor is 2, as we have	𝜏𝜏FE. = 2𝑆𝑆 
 
  



Lecture 8. Polar coordinates 
Ø Example: Tensile loading, circular hole in a plate 
Infinity conditions 

𝜎𝜎.4 = 𝜎𝜎44 = 0, 𝜎𝜎.. = 𝑆𝑆, 𝑟𝑟 → ∞ 

The uniform tensile loading in	𝑥𝑥-direction is described by 

𝜙𝜙(9) =
1
2𝑆𝑆𝑦𝑦

" =
1
2𝑆𝑆𝑟𝑟

" sin" 𝑑𝑑 =
1
4𝑆𝑆𝑟𝑟

"(1 − cos 2𝑑𝑑), 𝜎𝜎..
(9) = 𝑆𝑆 

The effect of the circular hole is described by	𝑛𝑛 = 0	and	𝑛𝑛 = 2	solutions 

𝜙𝜙(!) = 𝑓𝑓9(𝑟𝑟) + 𝑓𝑓"(𝑟𝑟) sin 2𝑑𝑑 = 𝐴𝐴 ln 𝑟𝑟 + 𝐵𝐵𝑑𝑑 + (𝐶𝐶 + 𝐷𝐷𝑟𝑟&") cos 2𝑑𝑑 
At	𝑟𝑟 = 𝑎𝑎, the boundary conditions give 

𝐴𝐴 = −
𝑆𝑆𝑎𝑎"

2 , 𝐵𝐵 = 0, 𝐶𝐶 =
𝑆𝑆𝑎𝑎"

2 , 𝐷𝐷 = −
𝑆𝑆𝑎𝑎"

4  

The stress fields are obtained as 

𝜎𝜎CC =
𝑆𝑆
2ä1 −

𝑎𝑎"

𝑟𝑟"ã +
𝑆𝑆
2ä1 −

4𝑎𝑎"

𝑟𝑟" +
3𝑎𝑎1

𝑟𝑟1 ã cos 2𝑑𝑑 

𝜎𝜎CD = −
𝑆𝑆
2ä1 +

2𝑎𝑎"

𝑟𝑟" −
3𝑎𝑎1

𝑟𝑟1 ã sin 2𝑑𝑑 

𝜎𝜎DD =
𝑆𝑆
2ä1 +

𝑎𝑎"

𝑟𝑟"ã −
𝑆𝑆
2ä1 +

3𝑎𝑎1

𝑟𝑟1 ã cos 2𝑑𝑑 

The maximum normal stress at the hole	𝑟𝑟 = 𝑎𝑎	is 
𝜎𝜎(𝑑𝑑) = |𝜎𝜎DD| = 𝑆𝑆 − 2𝑆𝑆 cos 2𝑑𝑑 

Therefore, the stress-concentration factor is 3, as we have	𝜎𝜎FE. = 3𝑆𝑆 
 
Ø Example: Rotated tensile loading, circular hole in a plate 
For anti-clockwise and clockwise rotation, the new angle becomes 

𝑑𝑑% = 𝑑𝑑 ±
𝜋𝜋
4 , 2𝑑𝑑% = 2𝑑𝑑 ±

𝜋𝜋
2 

Therefore, the solution of the rotated tensile loading is 

𝜎𝜎CC =
𝑆𝑆
2ä1 −

𝑎𝑎"

𝑟𝑟"ã ±
𝑆𝑆
2ä1 −

4𝑎𝑎"

𝑟𝑟" +
3𝑎𝑎1

𝑟𝑟1 ã sin 2𝑑𝑑 

𝜎𝜎CD = ∓
𝑆𝑆
2ä1 +

2𝑎𝑎"

𝑟𝑟" −
3𝑎𝑎1

𝑟𝑟1 ã cos 2𝑑𝑑 

𝜎𝜎DD =
𝑆𝑆
2 ä1 +

𝑎𝑎"

𝑟𝑟@ã ±
𝑆𝑆
2ä1 +

3𝑎𝑎1

𝑟𝑟1 ã sin 2𝑑𝑑 



We add these two scenarios together, and obtain the biaxial tensile loading case 

𝜎𝜎CC = 𝑆𝑆 ä1 −
𝑎𝑎"

𝑟𝑟"ã , 𝜎𝜎CD = 0, 𝜎𝜎DD = 𝑆𝑆 ä1 +
𝑎𝑎"

𝑟𝑟"ã 

We subtract these two scenarios, and obtain the shear loading case 
 
Ø Example: Infinite pressure vessel 
The problem is decomposed into: Compression + Biaxial tensile loading 

𝜎𝜎CC = −𝑝𝑝9 +	𝑝𝑝9 ä1 −
𝑎𝑎"

𝑟𝑟"ã = −𝑝𝑝9
𝑎𝑎"

𝑟𝑟" , 𝜎𝜎DD = −𝑝𝑝9 + 𝑝𝑝9 ä1 +
𝑎𝑎"

𝑟𝑟"ã = 𝑝𝑝9
𝑎𝑎"

𝑟𝑟" , 𝜎𝜎CD = 0 

 
Ø Example: Thick-walled pressure vessel 
The trial solution can be constructed from the infinite pressure vessel solution 

𝜎𝜎CC = 𝐴𝐴 −
𝐵𝐵
𝑟𝑟" , 𝜎𝜎DD = 𝐴𝐴 +

𝐵𝐵
𝑟𝑟" , 𝜎𝜎CD = 0 

The boundary conditions at	𝑟𝑟 = 𝑟𝑟!	and	𝑟𝑟 = 𝑟𝑟"	give 

𝜎𝜎CC(𝑟𝑟!) = 𝐴𝐴 −
𝐵𝐵
𝑟𝑟!"

= −𝑝𝑝!, 𝜎𝜎CC(𝑟𝑟") = 𝐴𝐴 −
𝐵𝐵
𝑟𝑟""

= −𝑝𝑝" 

We eventually have the solution 

𝐴𝐴 =
𝑝𝑝!𝑟𝑟!" − 𝑝𝑝"𝑟𝑟""

𝑟𝑟"" − 𝑟𝑟!"
, 𝐵𝐵 =

𝑝𝑝" − 𝑝𝑝!
1
𝑟𝑟!"

− 1
𝑟𝑟""

 

When	𝑝𝑝" = 0, the solution becomes 

𝜎𝜎CC =
𝑝𝑝!𝑟𝑟!"

𝑟𝑟"" − 𝑟𝑟!"
ä1 −

𝑟𝑟""

𝑟𝑟"ã , 𝜎𝜎DD =
𝑝𝑝!𝑟𝑟!"

𝑟𝑟"" − 𝑟𝑟!"
ä1 +

𝑟𝑟""

𝑟𝑟"ã 

In the thin wall limit, we have 
𝑟𝑟" = 𝑟𝑟! + 𝑡𝑡, 𝑟𝑟"" − 𝑟𝑟!" ≈ 2𝑟𝑟!𝑡𝑡, 𝑡𝑡 ≪ 𝑟𝑟! 

The maximum stress then becomes 

𝜎𝜎DD(𝑟𝑟 = 𝑟𝑟!) = 𝑝𝑝!
𝑟𝑟"" + 𝑟𝑟!"

𝑟𝑟"" − 𝑟𝑟!"
≈
𝑝𝑝!𝑟𝑟!
𝑡𝑡  

  



Lecture 9. Contact problem 
Ø Displacement from arbitrary surface loading 

𝑢𝑢£.(𝑥𝑥) = n ï𝐺𝐺..@ (𝑥𝑥 − 𝑥𝑥%)	𝑇𝑇.(𝑥𝑥%) + 𝐺𝐺.4@ (𝑥𝑥 − 𝑥𝑥%)	𝑇𝑇4(𝑥𝑥%)ó	d𝑥𝑥%
;B

&B
 

𝑢𝑢£4(𝑥𝑥) = n ï𝐺𝐺4.@ (𝑥𝑥 − 𝑥𝑥%)	𝑇𝑇.(𝑥𝑥%) + 𝐺𝐺44@ (𝑥𝑥 − 𝑥𝑥%)	𝑇𝑇4(𝑥𝑥%)ó	d𝑥𝑥%
;B

&B
 

 
Ø Frictionless contact problem: Formulation 
We will mostly work with normal forces for contact problems 

𝐺𝐺44@ (𝑥𝑥) = −
𝜅𝜅 + 1
4𝜋𝜋𝜇𝜇 ln|𝑥𝑥| 

The compressive surface pressure loading is	𝑝𝑝4(𝑥𝑥)	and the vertical displacement is 

𝑢𝑢£4(𝑥𝑥) = −n 𝐺𝐺44@ (𝑥𝑥 − 𝑥𝑥%)	𝑝𝑝4(𝑥𝑥%)	d𝑥𝑥%
;B

&B
=
𝜅𝜅 + 1
4𝜋𝜋𝜇𝜇 n 𝑝𝑝4(𝑥𝑥%) ln|𝑥𝑥 − 𝑥𝑥%| d𝑥𝑥%

;B

&B
 

 
Consider the indenter is rigid and its shape is	𝑢𝑢9(𝑥𝑥). The contact region is	𝑥𝑥 ∈ [−𝑐𝑐, 𝑐𝑐]. After 
the contact, the indenter goes down by	𝑑𝑑. In the contact area, we know the displacement 

𝑢𝑢£4(𝑥𝑥) = 𝑢𝑢9(𝑥𝑥) − 𝑑𝑑, −𝑐𝑐 < 𝑥𝑥 < 𝑐𝑐 

For infinitesimal elasticity, we consider the material at	𝑥𝑥	match the shape	𝑢𝑢9(𝑥𝑥)	even with 
non-zero horizontal displacement. Within the contact, we have 

𝑢𝑢9(𝑥𝑥) − 𝑑𝑑 =
𝜅𝜅 + 1
4𝜋𝜋𝜇𝜇 n 𝑝𝑝4(𝑥𝑥%) ln|𝑥𝑥 − 𝑥𝑥%| d𝑥𝑥%

J

&J
, −𝑐𝑐 < 𝑥𝑥 < 𝑐𝑐 

The total downward normal force is 

𝐹𝐹 = n 𝑝𝑝4(𝑥𝑥%)	d𝑥𝑥%
J

&J
 

The force	𝐹𝐹	as a function of indentation	𝑑𝑑	and contact region	𝑐𝑐 is useful in practice 
 
As a summary, the boundary conditions are 

𝑢𝑢£4(𝑥𝑥) = 𝑢𝑢9(𝑥𝑥) − 𝑑𝑑, 𝜎𝜎44(𝑥𝑥) = −𝑝𝑝4(𝑥𝑥) < 0, 𝜎𝜎.4(𝑥𝑥) = 0, −𝑐𝑐 < 𝑥𝑥 < 𝑐𝑐 
𝑢𝑢£4(𝑥𝑥) < 𝑢𝑢9(𝑥𝑥) − 𝑑𝑑, 𝜎𝜎44(𝑥𝑥) = 0, 𝜎𝜎.4(𝑥𝑥) = 0, |𝑥𝑥| > 𝑐𝑐 

The contact problem is essentially an inverse problem 
  



Ø General solution approach 
First taking the derivative of the integral equation 

4𝜋𝜋𝜇𝜇
𝜅𝜅 + 1 ⋅

d𝑢𝑢9(𝑥𝑥)
d𝑥𝑥 = n

𝑝𝑝4(𝑥𝑥%)
𝑥𝑥 − 𝑥𝑥′ 	d𝑥𝑥

%
J

&J
, −𝑐𝑐 < 𝑥𝑥 < 𝑐𝑐 

We have the following form of the (singular) integral equation 

𝑔𝑔(𝑥𝑥) = n
𝑓𝑓(𝑥𝑥%)
𝑥𝑥 − 𝑥𝑥% 	d𝑥𝑥

%
J

&J
, −𝑐𝑐 < 𝑥𝑥 < 𝑐𝑐 

To properly define the integral equation, the Cauchy principal value is considered 

P. V. ∫n
𝑓𝑓(𝑥𝑥%)
𝑥𝑥 − 𝑥𝑥% 	d𝑥𝑥

%
J

&J
ª = lim

K→9
∫n

𝑓𝑓(𝑥𝑥%)
𝑥𝑥 − 𝑥𝑥% 	d𝑥𝑥

%
.&K

&J
+n

𝑓𝑓(𝑥𝑥%)
𝑥𝑥 − 𝑥𝑥% 	d𝑥𝑥

%
J

.;K
ª 

If the contact region is infinity, we can directly refer to the Hilbert transform. The contact 
problem is difficult due to the fact that we only know the displacement for some regions 
 
The general solution of the integral equation is 

𝑓𝑓(𝑥𝑥) = −
1

𝜋𝜋"√𝑐𝑐" − 𝑥𝑥"
n

®𝑐𝑐" − 𝑥𝑥%"𝑔𝑔(𝑥𝑥%)
𝑥𝑥 − 𝑥𝑥% 	d𝑥𝑥%

J

&J
+

𝐹𝐹
𝜋𝜋√𝑐𝑐" − 𝑥𝑥"

 

The second term corresponds to the flat punch solution 
 
Ø Example: Flat punch 
For a flat punch, we directly know the contact region, and the shape is flat with	𝑢𝑢9% (𝑥𝑥) = 0 

𝑝𝑝4(𝑥𝑥) =
𝐹𝐹

𝜋𝜋√𝑐𝑐" − 𝑥𝑥"
 

There are singularities at the corners	𝑥𝑥 = ±𝑐𝑐. Consider	𝑥𝑥 = 𝑐𝑐 − 𝑟𝑟, the singular behavior is 

𝜎𝜎 ∼
1
√𝑟𝑟

 

Now consider that two elastic half-spaces are glued within a region and pull them apart. This 
is a crack problem, and the stress singularity is the same as the flat punch problem 
 
Ø Example: Cylindrical punch 
We approximate the indenter shape as 

𝑢𝑢9(𝑥𝑥) =
𝑥𝑥"

2𝑅𝑅 ,
d𝑢𝑢9(𝑥𝑥)
d𝑥𝑥 =

𝑥𝑥
𝑅𝑅 

Now the solution becomes 

𝑝𝑝4(𝑥𝑥) =
4𝜇𝜇

(𝜅𝜅 + 1)𝑅𝑅
®𝑐𝑐" − 𝑥𝑥" + ∫

𝐹𝐹
𝜋𝜋 −

2𝜇𝜇𝑐𝑐"

(𝜅𝜅 + 1)𝑅𝑅ª
1

√𝑐𝑐" − 𝑥𝑥"
 



We notice the first term is finite, while the second term is singular. However, the contact 
region	𝑐𝑐	is unknown, and we don’t expect singularities to appear for the cylindrical punch. 
Therefore, we require 

𝐹𝐹
𝜋𝜋 −

2𝜇𝜇𝑐𝑐"

(𝜅𝜅 + 1)𝑅𝑅 = 0, 𝑐𝑐 = ≥
(𝜅𝜅 + 1)𝑅𝑅
2𝜋𝜋𝜇𝜇 𝐹𝐹 

The force distribution over the contact area becomes 

𝑝𝑝4(𝑥𝑥) =
4𝜇𝜇

(𝜅𝜅 + 1)𝑅𝑅
®𝑐𝑐" − 𝑥𝑥" =

2𝐹𝐹
𝜋𝜋𝑐𝑐"

®𝑐𝑐" − 𝑥𝑥" 

 
 
 
  



Lecture 10. Wedge and Notch 
Ø Uniform shear on right-angle wedge 

𝜎𝜎CD = 𝜎𝜎DD = 0, 𝑑𝑑 = 0 

𝜎𝜎CD = 𝑆𝑆, 𝜎𝜎DD = 0, 𝑑𝑑 =
𝜋𝜋
2 

We seek solution whose stress fields are independent of	𝑟𝑟, which requires	𝜙𝜙 ∝ 𝑟𝑟". We can 
find three terms from the Michell table, and the fourth one is	𝑟𝑟"𝑑𝑑. We therefore obtain 

𝜙𝜙 = 𝑟𝑟"(𝐴𝐴! cos 2𝑑𝑑 + 𝐴𝐴" + 𝐴𝐴# sin 2𝑑𝑑 + 𝐴𝐴1𝑑𝑑) 
The boundary conditions give 

𝜙𝜙 = 𝑆𝑆𝑟𝑟" ò−
𝜋𝜋
8 cos 2𝑑𝑑 +

𝜋𝜋
8 +

sin 2𝑑𝑑
4 −

𝑑𝑑
2ö 

In Cartesian coordinate, we have 

𝜙𝜙 = 𝑆𝑆 ∫−
𝜋𝜋
8
(𝑥𝑥" − 𝑦𝑦") +

𝜋𝜋
8
(𝑥𝑥" + 𝑦𝑦") +

𝑥𝑥𝑦𝑦
2 +

𝑥𝑥" + 𝑦𝑦"

2 arctan
𝑦𝑦
𝑥𝑥ª 

𝜎𝜎.4 = −
𝜕𝜕"𝜙𝜙
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦 = −

𝑆𝑆𝑦𝑦"

𝑥𝑥" + 𝑦𝑦" 

The stress is indeterminate at the corner	𝑥𝑥 = 𝑦𝑦 = 0. It is not a singular point, but the stress 
gradients in	𝑑𝑑-direction increases with	𝑟𝑟&!	as	𝑟𝑟 → 0 
 
Ø Notch: Re-entrant corner 
The stress field should be singular at the corner. The boundary 
conditions are stated as 

𝜎𝜎CD = 𝜎𝜎DD = 0, 𝑑𝑑 = ±𝛼𝛼, 𝛼𝛼 >
𝜋𝜋
2 

William’s solution gives 

𝜙𝜙 = 𝑟𝑟?;![𝐴𝐴! cos(𝜆𝜆 + 1)𝑑𝑑 + 𝐴𝐴" cos(𝜆𝜆 − 1)𝑑𝑑 + 𝐴𝐴# sin(𝜆𝜆 + 1)𝑑𝑑 + 𝐴𝐴1 sin(𝜆𝜆 − 1)𝑑𝑑] 
We seek singular stress field solution with	𝜆𝜆 < 1. The boundary conditions lead to a linear 
system and to obtain non-trivial solutions, we need 

w𝑀𝑀! 0
0 𝑀𝑀"

z ø

𝐴𝐴!
𝐴𝐴"
𝐴𝐴#
𝐴𝐴1

¿ = 0, det𝑀𝑀! = 0				or			 det𝑀𝑀" = 0 

We thus obtain the following equations 
𝜆𝜆 sin 2𝛼𝛼 + sin 2𝜆𝜆𝛼𝛼 = 0				or				𝜆𝜆 sin 2𝛼𝛼 − sin 2𝜆𝜆𝛼𝛼 = 0 

With a change of variable, we have 

𝑥𝑥 = 2𝜆𝜆𝛼𝛼,
sin 2𝛼𝛼
2𝛼𝛼 𝑥𝑥 ± sin 𝑥𝑥 = 0 

 



Ø Semi-infinite crack 
When	𝛼𝛼 = 𝜋𝜋, we have	sin 2𝜋𝜋𝜆𝜆 = 0	and the singular solution requires	𝜆𝜆 = 0	or	𝜆𝜆 = 1/2. 
However, when	𝜆𝜆 = 0	the stress field	𝜎𝜎 ∝ 𝑟𝑟&!	and the strain energy is infinite 

𝐸𝐸M+ =
1
2¡𝜎𝜎$(𝜀𝜀$( 	d𝑆𝑆

@
∝ n

1
𝑟𝑟 ⋅

1
𝑟𝑟 ⋅ 𝑟𝑟d𝑟𝑟

E

9
= n

1
𝑟𝑟 d𝑟𝑟

E

9
→ ∞ 

Therefore, the singular stress field for a crack tip is 

𝜆𝜆 =
1
2 , 𝜎𝜎 ∼

1
√𝑟𝑟

 

 
Mode I loading (symmetric solution) 

𝐴𝐴! = 𝐴𝐴(𝜆𝜆 − 1) sin(𝜆𝜆 − 1)𝛼𝛼 , 𝐴𝐴" = −𝐴𝐴(𝜆𝜆 + 1) sin(𝜆𝜆 + 1)𝛼𝛼 
For semi-infinite crack, we have 

𝜎𝜎CC =
𝐾𝐾/

√2𝜋𝜋𝑟𝑟
ò
5
4 cos

𝑑𝑑
2 −

1
4 cos

3𝑑𝑑
2 ö 

𝜎𝜎DD =
𝐾𝐾/

√2𝜋𝜋𝑟𝑟
ò
3
4 cos

𝑑𝑑
2 +

1
4 cos

3𝑑𝑑
2 ö , 𝐾𝐾/ = 3𝐴𝐴¬

𝜋𝜋
2 

𝜎𝜎CD =
𝐾𝐾/

√2𝜋𝜋𝑟𝑟
ò
1
4 sin

𝑑𝑑
2 +

1
4 sin

3𝑑𝑑
2 ö 

 
Mode II loading (antisymmetric solution) 

𝐴𝐴# = 𝐴𝐴(𝜆𝜆 + 1) sin(𝜆𝜆 − 1)𝛼𝛼 , 𝐴𝐴1 = −𝐴𝐴(𝜆𝜆 + 1) sin(𝜆𝜆 + 1)𝛼𝛼 
For semi-infinite crack, we have 

𝜎𝜎CC =
𝐾𝐾//
√2𝜋𝜋𝑟𝑟

ò−
5
4 sin

𝑑𝑑
2 +

3
4 sin

3𝑑𝑑
2 ö 

𝜎𝜎DD =
𝐾𝐾//
√2𝜋𝜋𝑟𝑟

ò−
3
4 sin

𝑑𝑑
2 −

3
4 sin

3𝑑𝑑
2 ö , 𝐾𝐾// = 3𝐴𝐴¬

𝜋𝜋
2 

𝜎𝜎CD =
𝐾𝐾//
√2𝜋𝜋𝑟𝑟

ò
1
4 cos

𝑑𝑑
2 +

3
4 cos

3𝑑𝑑
2 ö 

The constant	𝐾𝐾/ 	and	𝐾𝐾// 	are called stress intensity factor 
 
  



Lecture 11. Plasticity equations I 
Ø Tensile test for a ductile material 
For non-linear elastic material, the unloading curve is exactly the same as the loading one, 
even though the relation is not linear. If the unloading curve is different, then it is plastic 

The real material can be complex, so we idealize elastic-perfectly plastic (EPP) materials 
 
Ø Plasticity equations 
Displacement, strain, stress fields and traction are the same. 
 
Equilibrium condition 

𝜎𝜎$(,$ + 𝐹𝐹( = 0 

 
Compatibility condition for the total strain field 

𝜀𝜀$( = 𝜀𝜀$(M+ + 𝜀𝜀$(
,+ 

In general, both elastic and plastic strain fields are incompatible. Consider plastically deform 
the inclusion and squeeze it back into the elastic matrix. The elastic strain will adapt to the 
inserted inclusion and result in a final compatible total strain field 
 
Constitutive equation 

𝜎𝜎$( = 𝐶𝐶$(*+𝜀𝜀*+M+ , 𝜎𝜎$( = 𝜆𝜆𝜀𝜀**M+ 𝛿𝛿$( + 2𝜇𝜇𝜀𝜀$(M+ , 𝜆𝜆 = 2𝜇𝜇 ⋅
𝜈𝜈

1 − 2𝜈𝜈 

There is a term ‘elastic strain’, but no such term as ‘elastic stress’ 
 
Hydrostatic and deviatoric components 
Hydrostatic stress and strain (first invariant) 

𝜎𝜎√ =
1
3𝜎𝜎** , 𝜀𝜀 ̅ =

1
3 𝜀𝜀** , 𝜎𝜎√ = 3𝐾𝐾𝜀𝜀M̅+ 

 



Deviatoric stress and strain 

𝑠𝑠$( = 𝜎𝜎$( − 𝜎𝜎√𝛿𝛿$( , 𝑒𝑒$( = 𝜀𝜀$( − 𝜀𝜀�̅�𝛿$( , 𝑠𝑠$( = 2𝜇𝜇𝑒𝑒$(M+ 

We can obtain 

𝜀𝜀$(M+ = 𝜀𝜀M̅+𝛿𝛿$( + 𝑒𝑒$(M+ , 𝜎𝜎$( = 3𝐾𝐾𝜀𝜀M̅+𝛿𝛿$( + 2𝜇𝜇𝑒𝑒$(M+ 

 
Yield condition 
Mathematically, the yield surface is described as 

𝑓𝑓9𝜎𝜎$(; = 𝑓𝑓9𝜎𝜎.. , 𝜎𝜎44 , 𝜎𝜎55 , 𝜎𝜎.4 , 𝜎𝜎.5 , 𝜎𝜎45; = 0 

We already idealize the yield surface to be independent of stress rate, strain rate, etc. We also 
consider isotropic material, so coordinate transformation does not change the yield surface. 
Therefore, we need the stress invariants, with expressions in the principal axes 

𝐼𝐼! = tr9𝜎𝜎$(; = 𝜎𝜎! + 𝜎𝜎" + 𝜎𝜎#	

𝐼𝐼" = −
1
2 9𝜎𝜎$$𝜎𝜎(( − 𝜎𝜎$(𝜎𝜎$(; = −(𝜎𝜎!𝜎𝜎" + 𝜎𝜎"𝜎𝜎# + 𝜎𝜎#𝜎𝜎!)	

𝐼𝐼# = det9𝜎𝜎$(; = 𝜎𝜎!𝜎𝜎"𝜎𝜎# 

Usually, the yield condition is independent of pressure by experiments. For deviatoric stress, 
the stress invariants become 

𝐽𝐽! = tr9𝑠𝑠$(; = 𝑠𝑠! + 𝑠𝑠" + 𝑠𝑠# = 0	

𝐽𝐽" =
1
2 𝑠𝑠$(𝑠𝑠$( = −(𝑠𝑠!𝑠𝑠" + 𝑠𝑠"𝑠𝑠# + 𝑠𝑠#𝑠𝑠!) =

1
2
(𝑠𝑠!" + 𝑠𝑠"" + 𝑠𝑠#")	

𝐽𝐽# = det9𝑠𝑠$(; = 𝑠𝑠!𝑠𝑠"𝑠𝑠# =
1
3
(𝑠𝑠!# + 𝑠𝑠"# + 𝑠𝑠##) 

The yield surface of isotropic material becomes 
𝑓𝑓(𝐽𝐽", 𝐽𝐽#) = 0 

 
Von Mises yield condition 
One widely used yield condition is 𝐽𝐽"-plasticity. The Von Mises criterion is 

𝑓𝑓(𝐽𝐽") = 𝐽𝐽" − 𝑘𝑘" = 0 
 
Tresca yield condition 
The Tresca criterion is based on the maximum shear stress, and it has the form	𝑓𝑓(𝐽𝐽", 𝐽𝐽#) = 0. 
Using the Mohr circle, we write it in terms of the principal stress 

𝜎𝜎! − 𝜎𝜎# = 2𝑘𝑘' 



Lecture 12. Plasticity equations II 
Ø Yield condition & Yield stress 
We usually report the yield stress	𝜎𝜎N	under uniaxial tension case. For Von Mises criterion 

𝑠𝑠$( = diag ò
2
3𝜎𝜎,−

1
3𝜎𝜎,−

1
3𝜎𝜎ö , 𝐽𝐽" =

1
3𝜎𝜎N

" = 𝑘𝑘", 𝑘𝑘 =
𝜎𝜎N
√3

 

For Tresca criterion 

𝜎𝜎! − 𝜎𝜎# = 𝜎𝜎N = 2𝑘𝑘' , 𝑘𝑘' =
𝜎𝜎N
2  

 
Tension & shear (Taylor-Quinney experiment, 1931) 
For Von Mises criterion 

𝐽𝐽" =
1
3𝜎𝜎..

" + 𝜎𝜎.4" = 𝑘𝑘", 𝜏𝜏N =
𝜎𝜎N
√3

 

For Tresca criterion 

𝜎𝜎! − 𝜎𝜎# = ¬𝜎𝜎.." + 4𝜎𝜎.4" = 2𝑘𝑘' , 𝜏𝜏N =
𝜎𝜎N
2  

Based on this experiment, Von Mises criterion seems to fit data better 
 
Ø Flow rule in the plastic regime 
For EPP material and Von Mises criterion, without material hardening, after yielding the 
stress state will always be on the yield surface 

𝐽𝐽" =
1
2 𝑠𝑠$(𝑠𝑠$( = 𝑘𝑘", 𝐽𝐽"̇ = 𝑠𝑠$( �̇�𝑠$( = 0 

It turns out that the plastic strain is history dependent (related to the loading path) and is not a 
function of stress. We thus need the incremental theory, and the form is similar to the fluid 
mechanics. The associative flow rule states that plastic strain rate follows the direction of	𝑠𝑠$( 

𝜀𝜀$(
,+ = n 𝜀𝜀$̇(

,+(𝑡𝑡)	d𝑡𝑡
O

9
, 𝜀𝜀$̇(

,+ =
𝜆𝜆«
2𝜇𝜇 𝑠𝑠$( , 𝑒𝑒$(M+ =

1
2𝜇𝜇 𝑠𝑠$( 

This flow rule implies that the plastic strain (rate) has no volumetric part 

𝜀𝜀*̇*
,+ = 0, 𝜀𝜀**

,+ = 0, 𝜀𝜀$(
,+ = 𝜀𝜀̅,+𝛿𝛿$( + 𝑒𝑒$(

,+ 

The factor	𝜆𝜆«	is related to the rate of work done 

𝜆𝜆« =
2𝜇𝜇
2𝑘𝑘" �̇�𝑊, �̇�𝑊 = 𝑠𝑠$(�̇�𝑒$( , �̇�𝑊PQPRS = 𝜎𝜎√𝜀𝜀̅̇ + �̇�𝑊 

This can be shown as follows, using the yield surface	𝐽𝐽"̇ = 0	for EPP material 

2𝜇𝜇�̇�𝑊 = 𝑠𝑠$( ⋅ 2𝜇𝜇9�̇�𝑒$(M+ + 𝜀𝜀$̇(
,+; = 𝑠𝑠$( �̇�𝑠$( + 𝜆𝜆«𝑠𝑠$(𝑠𝑠$( = 2𝜆𝜆«𝑘𝑘", �̇�𝑊 =

2𝜆𝜆«
2𝜇𝜇 𝑘𝑘

" 



Lecture 13. Graphical representation of plasticity 
Ø Yield surface in principal stress space 
Von Mises criterion 
Yield surface is a circular cylinder along the	(1,1,1)	diagonal direction 

𝐽! =
1
2
(𝑠"! + 𝑠!! + 𝑠#!) =

1
6
[(𝜎" − 𝜎!)! + (𝜎! − 𝜎#)! + (𝜎# − 𝜎")!] 

In plane stress, 𝜎# = 0	and the yield surface is an ellipse 

𝐽! =
1
3
(𝜎"! − 𝜎"𝜎! + 𝜎!!) = 𝑘!, 𝜎"! − 𝜎"𝜎! + 𝜎!! = 𝜎$! 

 
Tresca criterion 
Yield surface is a hexagon inscribed in the Von Mises surface 

|𝜎" − 𝜎!| = 2𝑘% 				or				|𝜎! − 𝜎#| = 2𝑘% 				or				|𝜎# − 𝜎"| = 2𝑘% 
In plane stress, 𝜎# = 0	and the yield surface is a hexagon inscribed in the Von Mises ellipse 

|𝜎" − 𝜎!| = 2𝑘% 				or				|𝜎!| = 2𝑘% 				or				|𝜎"| = 2𝑘% 
 
Ø Flow rule for general ductile materials 
 
 
 
 
 
 
 
 
 
 
 
 
Elastic regime: 𝑠&' 	and	𝑒&' 	are proportional to each other 
Plastic regime: 𝑠&' 	follows the yield surface, 𝑒&' 	is no longer proportional to	𝑠&' 

d𝑒&'() ∥ d𝑠&' , d𝜀&'
*) ∥ 𝑠&' 

 
 
 
 

Plastic strain 

Elastic strain 



Lecture 14. Example plasticity problem: Tension & Shear 
 
 
 
 
 
 
 
 
Assume the EPP material is incompressible 

𝜈𝜈 = 0.5, 𝐸𝐸 = 2𝜇𝜇(1 + 𝜈𝜈) = 3𝜇𝜇 
 
Ø Loading path 1 (Tension + Shear) 
OA section: Elastic regime 

𝜎𝜎.. = 𝐸𝐸𝜀𝜀.. = 3𝜇𝜇𝜀𝜀.. , 𝜎𝜎44 = 𝜎𝜎55 = 𝜎𝜎.4 = 𝜎𝜎.5 = 𝜎𝜎45 = 0 

𝜀𝜀44 = 𝜀𝜀55 = −𝜈𝜈𝜀𝜀.. = −
1
2 𝜀𝜀.. 

AD section: Plastic regime 
Note that instantaneously after A, the plastic flow is in the tension direction. Plasticity strain 
rate satisfies the flow rule, and under incompressible assumption we have 

𝜀𝜀$̇(
,+ =

�̇�𝑊
2𝑘𝑘" 𝑠𝑠$( , �̇�𝑊 = 𝑠𝑠$(�̇�𝑒$( = 𝜎𝜎$(𝜀𝜀$̇( = 2𝜎𝜎.4𝜀𝜀.̇4 

Therefore, we obtain the equation for shear strain and stress 

𝜀𝜀.̇4 =
�̇�𝜎.4
2𝜇𝜇 +

�̇�𝑊
2𝑘𝑘" 𝜎𝜎.4 =

�̇�𝜎.4
2𝜇𝜇 +

𝜀𝜀.̇4
𝑘𝑘" 𝜎𝜎.4

" , 2𝜇𝜇
𝜀𝜀.̇4
𝑘𝑘 =

�̇�𝜎.4
𝑘𝑘

1 − x
𝜎𝜎.4
𝑘𝑘 y

"  

Integration over time gives the solution 

2𝜇𝜇
𝜀𝜀.4(𝑡𝑡)
𝑘𝑘 = arctanh ∫

𝜎𝜎.4(𝑡𝑡)
𝑘𝑘 ª ,

𝜎𝜎.4(𝑡𝑡)
𝑘𝑘 = tanh ∫2𝜇𝜇

𝜀𝜀.4(𝑡𝑡)
𝑘𝑘 ª 

The Von Mises yield surface gives the normal stress history 

𝐽𝐽" =
1
3𝜎𝜎..

" + 𝜎𝜎.4" = 𝑘𝑘",
𝜎𝜎..(𝑡𝑡)
𝑘𝑘 = √3 ⋅ ≥1 − x

𝜎𝜎.4
𝑘𝑘 y

"
=

√3

cosh w2𝜇𝜇
𝜀𝜀.4(𝑡𝑡)
𝑘𝑘 z

 

The stress components at point A and D are 

𝜎𝜎..(𝐴𝐴) = √3𝑘𝑘, 𝜎𝜎.4(𝐴𝐴) = 0, 𝜎𝜎..(𝐷𝐷) = 1.12𝑘𝑘, 𝜎𝜎.4(𝐷𝐷) = 0.76𝑘𝑘 



Ø Loading path 2 (Shear + Tension) 
OB section: Elastic regime 

𝜎𝜎.. = 2𝜇𝜇𝜀𝜀.4 , 𝜎𝜎44 = 𝜎𝜎55 = 𝜎𝜎.4 = 𝜎𝜎.5 = 𝜎𝜎45 = 0 
𝜀𝜀.. = 𝜀𝜀44 = 𝜀𝜀55 = 𝜀𝜀.4 = 𝜀𝜀.5 = 𝜀𝜀45 = 0 

BD section: Plastic regime 
Note that instantaneously after B, the plastic flow is in the shear direction 

𝜀𝜀$̇(
,+ =

�̇�𝑊
2𝑘𝑘" 𝑠𝑠$( , �̇�𝑊 = 𝑠𝑠$(�̇�𝑒$( = 𝜎𝜎$(𝜀𝜀$̇( = 𝜎𝜎..𝜀𝜀.̇. 

Therefore, we obtain the equation for normal strain and stress 

𝜀𝜀.̇. =
�̇�𝜎..
𝐸𝐸 +

�̇�𝑊
2𝑘𝑘" 𝑠𝑠.. =

�̇�𝜎..
𝐸𝐸 +

𝜀𝜀.̇.
3𝑘𝑘" 𝜎𝜎..

" , 𝐸𝐸
𝜀𝜀.̇.
√3𝑘𝑘

=

�̇�𝜎..
√3𝑘𝑘

1 − ò 𝜎𝜎..
√3𝑘𝑘

ö
"  

Integration over time gives the solution 

𝐸𝐸
𝜀𝜀..(𝑡𝑡)
√3𝑘𝑘

= arctanh ∫
𝜎𝜎..(𝑡𝑡)
√3𝑘𝑘

ª ,
𝜎𝜎..(𝑡𝑡)
√3𝑘𝑘

= tanh ∫𝐸𝐸
𝜀𝜀..(𝑡𝑡)
√3𝑘𝑘

ª 

The Von Mises yield surface gives the shear stress history 

𝐽𝐽" =
1
3𝜎𝜎..

" + 𝜎𝜎.4" = 𝑘𝑘",
𝜎𝜎.4(𝑡𝑡)
𝑘𝑘 = ≥1 − ò

𝜎𝜎..
√3𝑘𝑘

ö
"
=

1

cosh w√3𝜇𝜇 𝜀𝜀..
(𝑡𝑡)
𝑘𝑘 z

 

The stress components at point B and D are 
𝜎𝜎..(𝐵𝐵) = 0, 𝜎𝜎.4(𝐵𝐵) = 𝑘𝑘, 𝜎𝜎..(𝐷𝐷) = 1.31𝑘𝑘, 𝜎𝜎.4(𝐷𝐷) = 0.64𝑘𝑘 

 
  



Lecture 15. Linear elastic fracture mechanics (LEFM) 
Ø Slit-like cracks 

The undeformed crack has a length of	2𝑎𝑎. The applied tensile loading is 𝜎𝜎44T = 𝑆𝑆. The crack 

opens with displacement	𝑑𝑑(𝑥𝑥)	and stress singularity appears at	𝑥𝑥 = ±𝑎𝑎. For	𝑥𝑥 > 𝑎𝑎	we have 

𝜎𝜎44(𝑥𝑥, 𝑦𝑦 = 0) ∼
𝐾𝐾/

√2𝜋𝜋𝑟𝑟
, 𝑟𝑟 = 𝑥𝑥 − 𝑎𝑎 

 
This can be solved as a contact problem with equivalent loading −𝑝𝑝4(𝑥𝑥)	outside the crack 

𝑢𝑢£4(𝑥𝑥) =
𝜅𝜅 + 1
4𝜋𝜋𝜇𝜇 n 𝑝𝑝4(𝑥𝑥%) ln|𝑥𝑥 − 𝑥𝑥%| d𝑥𝑥%

;B

&B
,

d𝑢𝑢£4(𝑥𝑥)
d𝑥𝑥 =

𝜅𝜅 + 1
4𝜋𝜋𝜇𝜇 n

𝑝𝑝4(𝑥𝑥%)
𝑥𝑥 − 𝑥𝑥% 	d𝑥𝑥

%
;B

&B
 

The integral is in fact only over	|𝑥𝑥| > 𝑎𝑎. Within the same domain we have 

𝑔𝑔(𝑥𝑥) =
4𝜋𝜋𝜇𝜇
𝜅𝜅 + 1 ⋅

d𝑢𝑢£4(𝑥𝑥)
d𝑥𝑥 = 0, 𝑝𝑝4(𝑥𝑥) =

𝐴𝐴 + 𝐵𝐵/𝑥𝑥
®1 − (𝑎𝑎/𝑥𝑥)"

 

By symmetry	𝑝𝑝4(𝑥𝑥) = 𝑝𝑝4(−𝑥𝑥)	we have	𝐵𝐵 = 0. The infinity condition gives	𝐴𝐴 = −𝑆𝑆. Then 

the normal stress on the crack plane is 

𝜎𝜎44(𝑥𝑥, 𝑦𝑦 = 0) = −𝑝𝑝4(𝑥𝑥) =
𝑆𝑆|𝑥𝑥|

√𝑥𝑥" − 𝑎𝑎"
, |𝑥𝑥| > 𝑎𝑎 

 
Stress intensity factor 
In the polar coordinate, with the origin at	𝑥𝑥 = 𝑎𝑎	we have 

𝜎𝜎DD(𝑟𝑟, 𝑑𝑑 = 0) =
𝑆𝑆(𝑎𝑎 + 𝑟𝑟)

®(𝑎𝑎 + 𝑟𝑟)" − 𝑎𝑎"
∼ 𝑆𝑆¬

𝑎𝑎
2 ⋅

1
√𝑟𝑟

=
𝐾𝐾/

√2𝜋𝜋𝑟𝑟
, as		𝑟𝑟 → 0 

The stress intensity factor for Mode I opening crack is 

𝐾𝐾/ = 𝑆𝑆√𝜋𝜋𝑎𝑎, unit	is	ïPa ⋅ m!/"ó 

It is proportional to the applied loading	𝑆𝑆 and the square root of crack half-length	√𝑎𝑎. 
 
 



Crack opening displacement 
From the contact problem, we can obtain 

𝑢𝑢£4(𝑥𝑥) = −
𝜅𝜅 + 1
4𝜋𝜋𝜇𝜇 𝑆𝑆𝑎𝑎®1 − (𝑥𝑥/𝑎𝑎)", |𝑥𝑥| < 𝑎𝑎, 𝑦𝑦 = 0& 

The crack opening displacement, under plane strain assumption, is shown as 

𝑑𝑑(𝑥𝑥) = −2𝑢𝑢£4(𝑥𝑥), 𝑑𝑑(𝑥𝑥) =
2(1 − 𝜈𝜈)

𝜇𝜇 𝑆𝑆𝑎𝑎®1 − (𝑥𝑥/𝑎𝑎)" 

The maximum is proportional to the applied loading	𝑆𝑆 and the crack half-length	𝑎𝑎 
 
Ø Enthalpy of the crack 
A mechanical system under external load will evolve in the direction to reduce enthalpy. 
Enthalpy is the energy minus the work done by the loading mechanism 

𝐻𝐻 = 𝐸𝐸 − Δ𝑊𝑊VW 
As an example, for a spring with external forcing	𝐹𝐹, its enthalpy is 

𝐻𝐻 =
1
2𝑘𝑘𝑥𝑥

" − 𝐹𝐹𝑥𝑥 

Under the loading mechanism, at equilibrium state the enthalpy is minimized 
𝜕𝜕𝐻𝐻
𝜕𝜕𝑥𝑥 = 0, 𝑥𝑥 =

𝐹𝐹
𝑘𝑘 

 
For a linear elastic medium with volume	𝛺𝛺	under traction	𝑇𝑇$ 	on section	𝑆𝑆O, the enthalpy is 

𝐻𝐻 = 𝐸𝐸 − Δ𝑊𝑊VW = n
1
2𝜎𝜎$(𝜀𝜀$( 	d𝑉𝑉X

−n 𝑇𝑇(𝑢𝑢( 	d𝑆𝑆
@"

 

For a body with no pre-existing internal stress, then we have	𝐻𝐻 = −𝐸𝐸	at equilibrium state 
 
When the system contains no crack, the energy and enthalpy are denoted as	𝐸𝐸9	and	𝐻𝐻9. Then 
the crack with length	𝑎𝑎	appears, and they change to	𝐸𝐸!	and	𝐻𝐻!	under plane strain condition. 
Now we can calculate the energy and enthalpy changes	Δ𝐸𝐸	and	Δ𝐻𝐻 

𝐸𝐸9 =
1
2𝜎𝜎$(

T𝜀𝜀$(T𝑉𝑉, Δ𝐸𝐸 =
1 − 𝜈𝜈
2𝜇𝜇 𝑆𝑆"𝜋𝜋𝑎𝑎", Δ𝐻𝐻 = −Δ𝐸𝐸 = −

1 − 𝜈𝜈
2𝜇𝜇 𝑆𝑆"𝜋𝜋𝑎𝑎" 

  



Lecture 16. Griffith criterion 
Ø Derivation of enthalpy of the crack 

When there is no applied load	𝜎𝜎44T = 𝑆𝑆, the energy is 0. At initial state 0, we have 

𝐸𝐸9 =
1
2𝜎𝜎44

T 𝜀𝜀44T 𝑉𝑉, 𝐻𝐻9 = −𝐸𝐸9 = −
1
2𝜎𝜎44

T 𝜀𝜀44T 𝑉𝑉 

Since enthalpy is a state variable, we consider a reversible way to go between state 0 and 
state 1. We gradually reduce the traction force	𝑇𝑇4;	and	𝑇𝑇4&	to zero, and the two surfaces of the 

crack will reach the crack opening displacement 
 
The work done to the system, which is negative as the traction and displacement directions 
are opposite, equals the enthalpy change 

Δ𝐻𝐻 = 2Δ𝑊𝑊; = −
𝑆𝑆
2n 𝑑𝑑(𝑥𝑥)	d𝑥𝑥

E

&E
= −

1 − 𝜈𝜈
2𝜇𝜇 𝑆𝑆"𝜋𝜋𝑎𝑎" 

The enthalpy is lowered by having the crack in the solid, because it allows the applied stress 
to do more work 
 
Ø Griffith criterion (1921) 
The (elastic) driving force for the crack extension is defined as 

𝑓𝑓YS ≡ −
𝜕𝜕(Δ𝐻𝐻)
𝜕𝜕(2𝑎𝑎) =

1 − 𝜈𝜈
2𝜇𝜇 𝑆𝑆"𝜋𝜋𝑎𝑎, 𝑓𝑓YS =

1 − 𝜈𝜈
2𝜇𝜇 𝐾𝐾/" 

It seems that all cracks are unstable as soon as a stress is applied. However, creating a new 
crack or growing an existing crack requires the creation of new surfaces, which costs extra 
energy related to the surface energy (per unit area) of the solid, denoted as	𝛾𝛾Z 
 
The change of Gibbs free energy of the system (per unit length), including both the (elastic) 
enthalpy and the surface energy, is written as 

Δ𝐺𝐺 = Δ𝐻𝐻 + 𝛾𝛾Z ⋅ 2 ⋅ 2𝑎𝑎 = Δ𝐻𝐻 + 4𝛾𝛾Z𝑎𝑎 



The total driving force now becomes 

𝑓𝑓PQP ≡ −
𝜕𝜕(Δ𝐺𝐺)
𝜕𝜕(2𝑎𝑎) =

1 − 𝜈𝜈
2𝜇𝜇 𝑆𝑆"𝜋𝜋𝑎𝑎 − 2𝛾𝛾Z 

The critical crack size is 

2𝑎𝑎J =
8𝜇𝜇

𝜋𝜋(1 − 𝜈𝜈) ⋅
𝛾𝛾Z
𝑆𝑆" 

Under a given applied stress	𝑆𝑆, cracks with length	2𝑎𝑎 < 2𝑎𝑎J 	are stable (i.e., do not grow), and 
cracks with length	2𝑎𝑎 > 2𝑎𝑎J 	are unstable (i.e., lead to fracture) 
 
Similarly, for a given crack size	2𝑎𝑎, the critical stress is 

𝑆𝑆J = ≥
8𝜇𝜇𝛾𝛾Z

𝜋𝜋(1 − 𝜈𝜈)(2𝑎𝑎) 

In general, the critical condition is	𝑓𝑓YS = 2𝛾𝛾Z 
 
Using the Kolosov constant, for Mode I crack opening the results are summarized as 

𝑑𝑑(𝑥𝑥) =
𝜅𝜅 + 1
2𝜇𝜇 𝑆𝑆𝑎𝑎®1 − (𝑥𝑥/𝑎𝑎)" 

Δ𝐻𝐻 = −
𝜅𝜅 + 1
8𝜇𝜇 𝑆𝑆"𝜋𝜋𝑎𝑎" 

𝑓𝑓PQP =
𝜅𝜅 + 1
8𝜇𝜇 𝐾𝐾/" − 2𝛾𝛾Z 

𝑆𝑆J = ≥
16𝜇𝜇𝛾𝛾@

𝜋𝜋(𝜅𝜅 + 1)𝑎𝑎 

  



Lecture 17. Linear Elastic Fracture Mechanics (LEFM) 
Ø Energy release rate 
The Griffith criterion can be written in terms of the relation between energy release 
rate	𝒢𝒢	and the critical energy release rate	𝒢𝒢J. For plane strain Mode I loading, we have 

𝒢𝒢 = 𝑓𝑓YS =
𝜋𝜋(1 − 𝜈𝜈)

2𝜇𝜇 9𝜎𝜎44T ;
"𝑎𝑎, 𝒢𝒢J = 2𝛾𝛾@ 

We can also write it as 

𝒢𝒢 =
𝜋𝜋
𝐸𝐸% 9𝜎𝜎44

T ;"𝑎𝑎 =
𝐾𝐾/"

𝐸𝐸% , 𝐾𝐾/ = 𝜎𝜎44T √𝜋𝜋𝑎𝑎, 𝐸𝐸% =
𝐸𝐸

1 − 𝜈𝜈" 

 
Under plane strain assumption, for general loading the energy release rate is 

𝒢𝒢 =
𝐾𝐾/"

𝐸𝐸% +
𝐾𝐾//"

𝐸𝐸% +
𝐾𝐾///"

2𝜇𝜇 , 𝒢𝒢 ≥ 𝒢𝒢J 

 
Ø J-integral (Eshelby 1951, Rice 1968) 

 
The force on an elastic singularity in the	𝑥𝑥$-direction is 

𝐽𝐽$ = n9𝜕𝜕𝑛𝑛$ − 𝑇𝑇(𝑢𝑢(,$;	d𝑆𝑆
@

 

In the expression, 𝜕𝜕	is the elastic energy density, and the first term is a weighted sum of	𝜕𝜕	on 
the surface. In 2D problem, we have 

𝐽𝐽 = 𝐽𝐽. = n𝜕𝜕d𝑦𝑦
[

− 𝑇𝑇(
𝜕𝜕𝑢𝑢(
𝜕𝜕𝑥𝑥 d𝑠𝑠 

The propagation of the crack tip can be considered as shifting the contour in the opposite 
direction. Although the strain and stress fields are not exactly the same for the two scenarios, 



but the enthalpy change and thus the J-integral are the same 
 
Example 1: J-integral is independent of contours, as long as the singularity is enclosed 

Define the new contour as	Γ = Γ! + 𝐵𝐵; − Γ" + 𝐵𝐵&. The integral on	Γ	is zero as no singularity 
is included. On the lines	𝐵𝐵;	and	𝐵𝐵&, the traction is zero and d𝑦𝑦 = 0. Therefore, the contour 
integrals on	Γ!	and	Γ"	are equal 
 
Example 2: J-integral considered in Rice (1968) 

We can evaluate each segment separately 

𝐽𝐽(𝑆𝑆") = 𝐽𝐽(𝑆𝑆1) = n𝜕𝜕d𝑦𝑦
[

− 𝑻𝑻 ⋅
𝜕𝜕𝒖𝒖
𝜕𝜕𝑥𝑥 d𝑠𝑠 = 0 

𝐽𝐽(𝑆𝑆!) = 𝐽𝐽(𝑆𝑆2) = n𝜕𝜕d𝑦𝑦
[

− 𝑻𝑻 ⋅
𝜕𝜕𝒖𝒖
𝜕𝜕𝑥𝑥 d𝑠𝑠 = 0 

The only non-zero contribution comes from	𝑆𝑆# 

𝐽𝐽 = 𝐽𝐽(𝑆𝑆#) = n𝜕𝜕d𝑦𝑦
[

− 𝑻𝑻 ⋅
𝜕𝜕𝒖𝒖
𝜕𝜕𝑥𝑥 d𝑠𝑠 = 𝜕𝜕ℎ 

The crack propagation converts one unit of strained material ahead of the crack tip, to one 
unit of unstrained material behind the crack tip 
 
  



Lecture 18. Linear Elastic Fracture Mechanics (LEFM) 
Ø J-integral (Eshelby 1951, Rice 1968) 
Example 3: J-integral for Mode I crack 
The singular solution around the crack tip is given as 

𝜎𝜎CC =
𝐾𝐾/

√2𝜋𝜋𝑟𝑟
ò
5
4 cos

𝑑𝑑
2 −

1
4 cos

3𝑑𝑑
2 ö	

𝜎𝜎DD =
𝐾𝐾/

√2𝜋𝜋𝑟𝑟
ò
3
4 cos

𝑑𝑑
2 +

1
4 cos

3𝑑𝑑
2 ö	

𝜎𝜎CD =
𝐾𝐾/

√2𝜋𝜋𝑟𝑟
ò
1
4 sin

𝑑𝑑
2 +

1
4 sin

3𝑑𝑑
2 ö 

We can show that 

𝐽𝐽 = n𝜕𝜕d𝑦𝑦
[

− 𝑻𝑻 ⋅
𝜕𝜕𝒖𝒖
𝜕𝜕𝑥𝑥 d𝑠𝑠 =

1 − 𝜈𝜈
2𝜇𝜇 𝐾𝐾/" =

𝐾𝐾/"

𝐸𝐸%  

 
Example 4: J-integral for a blunted ductile crack tip (no stress singularity) 
The contour is chosen to be very close to the blunted crack tip where	𝑻𝑻 = 𝟎𝟎 

𝐽𝐽 = n𝜕𝜕d𝑦𝑦
[

− 𝑻𝑻 ⋅
𝜕𝜕𝒖𝒖
𝜕𝜕𝑥𝑥 d𝑠𝑠 = n𝜕𝜕d𝑦𝑦

[
 

At the blunted crack tip, the stress state is uniaxial 
 
Ø Fracture criterion & Applicability of LEFM 

𝒢𝒢 ≥ 𝒢𝒢J 			⟺ 				𝐾𝐾/ ≥ 𝐾𝐾/\  
LEFM is applicable when the plastic zone is very limited (inside K-field). The comparison 
between the sizes of K-dominated zone and plastic zone is important 
 
Ø Stress intensity factor under arbitrary loading (Reciprocity theorem; Rice, 1972) 

Under loading 2 with the sample/crack geometry unchanged, the stress intensity factor is 

𝐾𝐾/
(") =

𝐸𝐸%

2𝐾𝐾/
(!)n 𝑇𝑇$

(") 𝜕𝜕𝑢𝑢$
(!)

𝜕𝜕𝑎𝑎 	dΓ
[

 



Example: Slit-like crack 

For slit-like crack, the displacement on the crack surface is 

𝑢𝑢4
(!) = ±

2𝜎𝜎44T

𝐸𝐸% ®𝑥𝑥(2𝑎𝑎 − 𝑥𝑥),
𝜕𝜕𝑢𝑢4

(!)

𝜕𝜕(2𝑎𝑎) = ±
𝜎𝜎44T

𝐸𝐸%
¬

𝑥𝑥
2𝑎𝑎 − 𝑥𝑥 

We can obtain the stress intensity factor under the new loading scenario as 

𝐾𝐾/
(") =

𝐸𝐸%

2𝜎𝜎44T √𝜋𝜋𝑎𝑎
n 2𝑡𝑡(𝑥𝑥)

𝜎𝜎44T

𝐸𝐸%
¬

𝑥𝑥
2𝑎𝑎 − 𝑥𝑥 	d𝑥𝑥

"E

9
=

1
√𝜋𝜋𝑎𝑎

n 𝑡𝑡(𝑥𝑥)¬
𝑥𝑥

2𝑎𝑎 − 𝑥𝑥 	d𝑥𝑥
"E

9
 

 
If the crack is self-consistent, for a uniform normal loading	𝑡𝑡(𝑥𝑥) = 𝑆𝑆	we have the same result 

𝐾𝐾/
(") =

𝑆𝑆
√𝜋𝜋𝑎𝑎

n ¬
𝑥𝑥

2𝑎𝑎 − 𝑥𝑥 	d𝑥𝑥
"E

9
= 𝑆𝑆√𝜋𝜋𝑎𝑎 = 𝐾𝐾/

(!) 

This can be interpreted from the superposition of state 0 and state 1 
 
If the normal loading is a dipole force	𝑡𝑡(𝑥𝑥) = 𝐹𝐹𝛿𝛿(𝑥𝑥 − 𝑎𝑎) 

𝐾𝐾/
(") =

1
√𝜋𝜋𝑎𝑎

n 𝐹𝐹𝛿𝛿(𝑥𝑥 − 𝑎𝑎)¬
𝑥𝑥

2𝑎𝑎 − 𝑥𝑥 	d𝑥𝑥
"E

9
=

𝐹𝐹
√𝜋𝜋𝑎𝑎

 

In this case, the crack is stable as	𝐾𝐾/ 	decreases with the crack length 
  



Lecture 19. Elastic-Plastic Fracture Mechanics (EPFM) 
Ø Size of the plastic zone (Irwin’s approach) 

At the yielding stress	𝜎𝜎N	we have 

𝐾𝐾/
√2𝜋𝜋𝑟𝑟

= 𝜎𝜎N , 𝑟𝑟4 =
1
2𝜋𝜋 ò

𝐾𝐾/
𝜎𝜎N
ö
"

, 𝑟𝑟, = 2𝑟𝑟4 =
1
𝜋𝜋 ò

𝐾𝐾/
𝜎𝜎N
ö
"

 

Now the loading in	𝑟𝑟 < 𝑟𝑟4	is reduced and must be transferred to other region. The estimated 
plastic region is extended to	𝑟𝑟, = 2𝑟𝑟4. This plastic yielding can increase the toughness	𝐾𝐾/J, 

and also changes	𝐾𝐾/. A rough estimate is to consider the effective crack length 

𝐾𝐾/Y]] =
𝑃𝑃

𝐵𝐵√𝑊𝑊
𝑓𝑓 x

𝑎𝑎Y]]
𝑊𝑊 y , 𝐾𝐾/Y]] = 𝜎𝜎44T ®𝜋𝜋𝑎𝑎Y]], 𝑎𝑎Y]] = 𝑎𝑎 + 𝑟𝑟4 

 
Ø HRR solution (Hutchinson 1968, Rice & Rosengren 1968) 
We can approximate a plastic material as a nonlinear elastic material 

𝜀𝜀
𝜀𝜀9

=
𝜎𝜎
𝜎𝜎9

+ 𝛼𝛼 ò
𝜎𝜎
𝜎𝜎9
ö
:

 

The crack tip is completely characterized by the J-integral, and the stress and strain fields are 
given by the HRR singularity 

𝜎𝜎$( = 𝑘𝑘! ò
𝐽𝐽
𝑟𝑟ö

!
:;!

, 𝜀𝜀$( = 𝑘𝑘" ò
𝐽𝐽
𝑟𝑟ö

:
:;!

, 𝜎𝜎 ⋅ 𝜀𝜀 ∝
1
𝑟𝑟 



As the loading increases, the K-dominated zone is the same, while both the J-dominated and 
plastic zones expand. The applicability of LEFM and J-integral is illustrated above 
 
Ø Strip-yield model 

Under yielding, the crack tip at	𝑎𝑎	is blunted. Now we cut the region ahead of the crack tip 
to	𝑎𝑎 + 𝜌𝜌 and close it partially with the yield stress	𝜎𝜎N 
 
At	𝑥𝑥 = 𝑎𝑎 + 𝜌𝜌	the stress field should be non-singular, and we have	𝐾𝐾/PQP = 0. The closure 
force contributes to the stress intensity factor as 

𝐾𝐾^SQ_`aY =
1

√𝜋𝜋𝑎𝑎%
n 𝑡𝑡(𝑥𝑥)≥

𝑎𝑎% + 𝑥𝑥
𝑎𝑎% − 𝑥𝑥 	d𝑥𝑥

E!

&E!
	

= −
𝜎𝜎N

®𝜋𝜋(𝑎𝑎 + 𝜌𝜌)
n ‘≥

𝑎𝑎 + 𝜌𝜌 + 𝑥𝑥
𝑎𝑎 + 𝜌𝜌 − 𝑥𝑥 + ≥

𝑎𝑎 + 𝜌𝜌 − 𝑥𝑥
𝑎𝑎 + 𝜌𝜌 + 𝑥𝑥’ 	d𝑥𝑥

E;b

E
	

= −2𝜎𝜎N≥
𝑎𝑎 + 𝜌𝜌
𝜋𝜋 ⋅ arccos ò

𝑎𝑎
𝑎𝑎 + 𝜌𝜌ö 

Therefore, the non-singular condition gives 

𝜎𝜎44T ®𝜋𝜋(𝑎𝑎 + 𝜌𝜌) = 2𝜎𝜎N≥
𝑎𝑎 + 𝜌𝜌
𝜋𝜋 ⋅ arccos ò

𝑎𝑎
𝑎𝑎 + 𝜌𝜌ö ,

𝑎𝑎
𝑎𝑎 + 𝜌𝜌 = cos ä

𝜋𝜋
2
𝜎𝜎44T

𝜎𝜎N
ã 

Approximately, we have 

𝜌𝜌 ≈
𝜋𝜋"

8 ä
𝜎𝜎44T

𝜎𝜎N
ã
"

𝑎𝑎 =
𝜋𝜋
8 ò

𝐾𝐾/
𝜎𝜎N
ö
"

≈ 0.393 ò
𝐾𝐾/
𝜎𝜎N
ö
"

, 𝐾𝐾/ = 𝜎𝜎44T √𝜋𝜋𝑎𝑎 

As a comparison, Irwin’s approach gives a similar estimation of the plastic zone 

𝑟𝑟, =
1
𝜋𝜋 ò

𝐾𝐾/
𝜎𝜎N
ö
"

≈ 0.318 ò
𝐾𝐾/
𝜎𝜎N
ö
"

 

  



Lecture 20. Fatigue 
Under cyclic loading, crack can grow and structure can fracture even when	𝐾𝐾/FE. < 𝐾𝐾/J 
 
Ø Paris law 
Cyclic loading leads to a cyclic	𝐾𝐾. The amplitude and ratio 
are defined as 

Δ𝐾𝐾 = 𝐾𝐾cRd − 𝐾𝐾cef, 𝑅𝑅 =
𝐾𝐾cef
𝐾𝐾cRd

 

For example, zero-mean sinusoidal loading gives	𝑅𝑅 = −1 
 
When the plastic zone is fully enclosed within the K-field, 
the crack growth rate (per cycle) is found to be 

d𝑎𝑎
d𝑁𝑁 = 𝑓𝑓(Δ𝐾𝐾, 𝑅𝑅) 

Paris law states the power law expression in region II 
d𝑎𝑎
d𝑁𝑁 ≅ 𝐶𝐶(Δ𝐾𝐾)F, 2 ≤ 𝑚𝑚 ≤ 4 

This relation works for crack growth rate in the range of 
10-9 to 10-6 m/cycle in experiments 
 
A more general expression in all three regions is 

d𝑎𝑎
d𝑁𝑁 = 𝐶𝐶(Δ𝐾𝐾)F

(1 − Δ𝐾𝐾Pg/Δ𝐾𝐾),

(1 − 𝐾𝐾cRd/𝐾𝐾J)-
 

where	𝐶𝐶,𝑚𝑚, 𝑝𝑝, 𝑞𝑞, Δ𝐾𝐾Pg, 𝐾𝐾J 	are material constants 
 
Ø Slit-like crack in an infinite plate 
Consider the following setup 

𝐾𝐾 = 𝜎𝜎44T √𝜋𝜋𝑎𝑎, 𝐾𝐾cRd = 𝑆𝑆√𝜋𝜋𝑎𝑎 = Δ𝐾𝐾, 𝐾𝐾cef = 0, 𝑅𝑅 = 0 

We want to find the number of cycles until fracture, i.e. before the crack size reaches	𝑎𝑎J 

𝐾𝐾 = 𝑆𝑆®𝜋𝜋𝑎𝑎J = 𝐾𝐾/J , 𝑎𝑎J =
1
𝜋𝜋 ò

𝐾𝐾/J
𝑆𝑆 ö

"

 

Assume the power law expression, we have 
d𝑎𝑎
d𝑁𝑁 = 𝐶𝐶(Δ𝐾𝐾)F = 𝐶𝐶 ⋅ 𝑆𝑆F(𝜋𝜋𝑎𝑎)F/",

d𝑁𝑁
d𝑎𝑎 =

1
𝐶𝐶𝑆𝑆F𝜋𝜋F/" ⋅ 𝑎𝑎

&F/" 

When	𝑚𝑚 > 2	we have the following result 

𝑁𝑁h =
1

x𝑚𝑚2 − 1y𝐶𝐶𝑆𝑆F𝜋𝜋F/"
⋅ ä𝑎𝑎9

&F";! − 𝑎𝑎J
&F";!ã 



Ø Crack on the surface of a hole 

The circular hole leads to a stress concentration factor of 3. The stress intensity factor can be 
obtained in the limit of	𝑊𝑊 → ∞	as a  

𝐾𝐾/ = 1.122	𝜎𝜎√𝜋𝜋𝑎𝑎 = 1.122 × 3𝑆𝑆√𝜋𝜋𝑎𝑎 
Then the maximum loading cycle becomes 

𝑁𝑁h =
1

x𝑚𝑚2 − 1y𝐶𝐶 ⋅ (3.366𝑆𝑆)F𝜋𝜋F/"
⋅ ä𝑎𝑎9

&F";! − 𝑎𝑎J
&F";!ã 

 




