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Figure from:
Hung, S.-H., Dahlen, F. A., & Nolet, G. (2000). Fréchet kernels for finite-frequency
traveltimes—II. Examples. Geophysical Journal International, 141(1), 175-203.
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What is a Kernel?
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Finite-frequency Theory

Elastic wave equation

pu—V-[C:(Vw)]=f




How to compute the banana-doughnut kernels?

Tromp, J., Tape, C., & Liu, Q. (2005). Seismic tomography, adjoint methods, time reversal
and banana-doughnut kernels. Geophysical Journal International.
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dimensional full-wave Fréchet kernels for seismic tomography-I. Theory. Geophysical
Journal International.

Plessix, R.-E. (2006). A review of the adjoint-state method for computing the gradient of a
functional with geophysical applications. Geophysical Journal International.



To compute the kernel, our goal is:

ST = f@]{v(r) - Sv(r) d3r K,(r) = % (r)

Construct the linear relationship between model and data perturbations!

Where does our observation come from? ...... Waveform u(r,t) !
T .
STa(r) = [ J7(re,0) - Sun(rg,©) e At receiver T
0 n-th waveform component
Linear Functional Seismogram ends at T

between data and waveform

Fundamental Goal: Linear relationship between model and waveform perturbations

6m(rQ) _?—’ ou (1‘ R) t) At specific point 7 in the Earth



In reference model: piu—V-[C:(Vuw)]=f
Co

In perturbed model: (p+6p)(it+6it) —V-{(C+5C):[V(u+béuw]}=f

Subtraction:
ou—V-|[C:(Vou)| =|= + V- [6C: (Vu
(With first-order Born) P [C:( )] /579{ [6C: (Vu) |
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Background wavefield: pit—V-[C:(Vu)]=f

Wavefield perturbation: pdu—V-|[C:(Véu)| =V-[6C: (Vu)]
C o0

Using representation theorem and the Green tensor:

t
utr,t) = [ [ 6(rat —5img) [0 80(rq,0)] drdry
@ /0

Scattered wavefield —J k Background wavefield
Using Gauss theorem, free surface condition and reciprocity:

t
utr ) = [ [ [706(rq,t =~ 1r)|:80(rq.) dr dirg
@ /0

Backward wavefield Forward wavefield



Waveform Kernel

ou
Koo (To,t) = 56; (r.t) = —&fj(ro,t) * era(rq.t)

J .

Backward wavefield
(Adjoint wavefield)

Forward wavefield

Corresponding adjoint source: A point source at receiver rp in n direction

From Waveform Kernel to Travel Time Kernel

T T
ST, (rg) = j J™(rg, t) - Su,(rg, t) dt —— KCl]kl (rg) = J I (rg, t) - Ké‘i’]?kl(rq, t)dt
0 0

T
KCTZ-kz(rQ) = —f e;rj(rQ,T —17) - g(ro T)dr

J N\

Backward wavefield Forward wavefield



K-Vs

u(rQ, T — ’l')

Reversed Forward Wavefield /

Adjoint Wavefield  u'(ry,71)
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Rays VS Waves
(A debate between MIT and Princeton)
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Mantle Plumes: Finite frequency tomography gives larger velocity perturbation
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A “Hole” in the Kernel?

signature or origin time. HHOS argue that (1) the evaluation of sensitivity kernels in simple
media has limitations for the interpretation of broad-band signals by means of (linearized)
finite frequency tomography; (i1) finite frequency kernels are (indeed) oscillatory, but in general
heterogeneity their structure will be complex and different from BD features; (ii1) the resolved
length scales of model variations are induced by the spectral scales present in the data, which
makes the notion of ‘hole’ irrelevant; and (iv) with the need for ‘damping’ (regularization) and
without a basis that matches properly the multi-scale aspects of finite frequency sensitivity, ray
theory or finite frequency theory inversions are likely to yield results that are practically the
same.

say that ‘one must be careful with the use of approximate finite-frequency kernels to linearize tomographic inversions, because the kernels
calculated in the starting model (usually simple, with a ‘banana-doughnut’ feature) may well differ significantly from the sensitivity kernels
implied by the heterogeneous model produced by the inversion.” That is of course true—although, given the current generation of mantle
models, we would not expect the updated kernels to differ ‘significantly’—but it is a well-known feature of any non-linear, iterative inversion.

direction. DHN had a more modest goal: to improve the theoretical basis of present-day global inversions that are linearized with respect to
a spherically symmetric starting model, by accounting for finite-frequency diffraction effects upon measured, long-period, cross-correlation

traveltimes.






