ESS 363F Geophysical Fluid Dynamics

Instructor: Leif Thomas
Topics to be covered:
1. Equations of motion in a rotating reference frame
¢ Boussinesq approximation, shallow water equations, Coriolis force
2. Effects of stratification, inertia-gravity waves (IGWs)
¢ Dispersion relations, polarization relation, energy flux
¢ IGWs in inhomogeneous media, WKB approximation
3. Balanced motions
¢ Geostrophic and gradient wind balance, inertial instability
4. Vorticity and potential vorticity
¢ Vorticity equation, Taylor-Proudman effect, thermal wind balance
¢ Potential vorticity in shallow water systems and continuously stratified media
5. Geostrophic theory
¢ Geostrophic adjustment, Poincaré and Kelvin waves
¢ Quasi-geostrophic equations for the shallow water system: Barotropic Rossby waves
¢ Quasi-geostrophic equations for layered systems: Baroclinic Rossby waves
Baroclinic instability
Effects of friction
¢ Ekman layer
¢  Frictional spin-down of geostrophic flows

8. Two-dimensional turbulence

Textbooks:
e Geoffrey K. Vallis, Atmospheric and Oceanic Fluid Dynamics, Fundamentals and Large-
scale Circulation

e Adrian E. Gill, Atmosphere-Ocean Dynamics



Introduction

» Flow dynamics under rotation and stratification

Earth’s rotation

The Earth’s rotation gives an angular velocity = 7.27 x 107> rad/s. Fluid motions that vary
with time scales T longer than a day, or whose inherent spin is less than () are influenced by

the Earth’s rotation.

1
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Stratification
The stably layered ocean has a buoyancy frequency N? = 10™*~107° (rad/s)>. To move a fluid
parcel upward with distance H, the potential energy increases as
AEp, ~ p,N2H - H = p,N2H?
If in this vertical scale H, the flow kinetic energy is less than this amount, the fluid motion is
influenced by stratification.
E, ~ p,U? < AEp, U<NH

Flows constrained by rotation and stratification

Using the (temporal) Rossby number and Froude number, we consider the following flows

i RV o1 w2l
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As an example, geophysical flows that meet these conditions include

Ro¢

¢  Waves with slow temporal evolution: Inertia-gravity, Kelvin, Rossby waves
¢ Balanced motions: Geostrophic and cyclostrophic currents and vortices

¢ Large-scale instabilities: Inertial, symmetric, barotropic, and baroclinic instabilities

»  Characteristics of some geophysical fluid flows

Inertia-gravity waves: Phase and group velocities in different directions

Kelvin waves: Equatorial and coastal waves with monthly time scales

Rossby waves: Propagating to the west with yearly time scales

Geostrophic balance: Coriolis force maintains the strong cross-stream density difference

Two-dimensional turbulence: Inverse cascade, energy transferred from small to large scales



Governing Equations for Oceanic Flows

» Governing equations for an oceanic flow
Variables: u,v,w,p,p,T,S

Equations: EOS, momentumx3, continuity (mass), energy, salinity

Conservation equation

For a scalar quantity C and its corresponding flux F ., the conservation law is
ac

ac R
tV F.=0, LEdV——ngFC-ndS——jVVFCdV

Conservation of mass (continuity equation)
ap Dp
E+V-(pu)—0, D—t+p(V-u)—0
Scaling analysis shows that
Dp/Dtl _8p/T S
lp(V-w)| pU/L  p,

Here we consider the time scale T ~ L/U. We thus neglect the density variation in time and

consider incompressible fluid with V- u = 0.

Conservation of momentum

Du “
pD—t=—Vp+F—pgk, F = uViu

Equation of state
p=poll—a(T-T,)+BE-S)], T,=25°C, S,=35g/kg
The thermal expansion and haline contraction coefficients are
a=26x10"*°C"1, B=74x%x10"*(g/kg)?

Conservation of heat and salinity

The fluxes include convective and diffusive components

DT
F; = p,cyuT — k. VT, i Kk V2T, kr = 1077 m?/s

DS
Fs = uS — VS, D= ksV2S, kg = 107° m?/s



» Boussinesq approximation
Variation of density in the ocean
Denote p = p, + p’ with reference value p, = 1024 kg/m3. Over depth, 6p < 40 kg/m>. At

ocean surface, we have §p < 5 kg/m?. The relative variation of sea water density is very small.

Horizontal momentum equations

Based on the following approximation
1 1 1

P Potp Po
The horizontal momentum equations are

Du 1 dp Dv 1 dp 5
—=———+4+1Wu —=—-——14 VvV
Dt P, 0x Dt Po 0y
The kinematic viscosity is v = u/p, = 107% m?/s.
Vertical momentum equation
We first need the background hydrostatic balance
1 dp,
= ’, O - - -
P=DotD D, 0z g
Keeping the first-order terms, the vertical momentum equation becomes
Dw 1 dp’ !
— = ——i+vV2w—p—g
Dt Po 0z Po
Scaling relations
v UH
= e ~ —
u W~
Du 10dp lop U L
—_— : ——————
Dt p,0x po9z T H

Hydrostatic balance

From scaling analysis, we have

|Dw /Dt| UH/LT (H)Z

\p-19p'/dz|  ULJTH \L

Therefore, when the aspect ratio of the flow H/L <« 1, we can also consider hydrostatic balance

for the perturbed pressure

ap’ .
0="%, P



» Summary of governing equations

Background state

— +l — +’ apo—_
P=PoTPpP, P=Do TP, 9z Po9

Equation of state
p = ,00[1 - CZ(T - To) + ﬂ(s _So)]

Continuity equation

Ju Odv Oow
ox dy 0z
Momentum equations
Du 1 dp
_— == V2
Dt Po 0x vV
Dv 1 0dp
_—=—— V2
Dz 0. 3y +vVev
Dw 1 dp’ '
S Viw — —
DL P +vVew Og
Diffusion equations
DT
- = KT 2 - = KSVZS



Equations of Motion in a Rotating Reference Frame

» Shallow water equations
Consider an inviscid fluid with free surface at z = H + 7 and for shallow water (H/L)? < 1.
The pressure is hydrostatic with p = p,, satisfying
1
P = Patm + Pog(H + 1 — 2), —p—Vnp = —gVnn

o
The pressure gradient force (PGF) is now written in surface height . Horizontal momentum

equations become

Duh _ v
Dt gVl
If the velocity field is initially independent of depth, it will remain so throughout time since

there are no terms in the equations of motion that will generate vertical structure.

»  Uniformly rotating shallow water layer

The horizontal velocity field can be decomposed into

u, = ub + vf, u=u’+Qr=rD—t
The unit vectors (always following the fluid particle) are given as
f=cosfi+sinfj, ©O=-—sinfi+coshj
Therefore, we have
Df u._. DO u
e D 7

—+
Dt r

Uu—+—r~r+
+ + Dt r

Du, Du_. D8 Dv Dff (Du uv)A Dv  u?\ _
Dt Dt Dt "Dt UDt

From the shallow water equation, we have

Dv u? on Du wv gy

ot r_ I Dt r  roé

Angular momentum

The second equation states the evolution of angular momentum. Note that
L K ok F
=1 X u, =ruk —=1rX
4 Dt

For both sides, we have

DL_( Dr+ Du)i(_ (Du_l_uv)k W F - . ani{
Dt \*De " "De) T \pe T )Y TAETTITRURT = T 5,



Governing equations in a rotating frame

We want governing equations for u’ and v. Using u = u’ + Qr, we obtain

Dv u? on Dv u'? 67]+QZ 0w
—_— = - — - —_— = - —

Dt r gar Dt r ‘gar 4 “
Du wuv gon Du’ u'v gon

— =2 —+—=-Z2_—_20

Dt+ r r a0 = Dt + r r 06 v

The Coriolis force (CF) shows up in addition to centrifugal force (CFF). Now decompose 1 as

O%r? on

=n ! n = —g — = —QZ
n=n+n, n=n,+ 2 9%, r
The final equations in the rotating frame become
Dv u'? an’ Du’ u'v gon'
— ——=—g—/— 420U, —+—=-2—-20
Dt r 9 ar et Dt * r r 06

> Inertial oscillations

Consider n’ = 0 and because r is the distance to Earth’s rotation axis, we have

|u'2/r| U
20wl " zar €1 Ro«l
This leads to the oscillation equation
Dv , Du’ D2y’ .
D—t=29u, D—t=—29v = Dt2+4ﬂu=0

With initial conditions u’ = U and v = 0, we have
u' = U cos(20t), v = U sin(20t)

The inertial period is T; = m/Q, and the inertial circle has a radius of R; = U/2() clockwise.

Interpretation of inertial circle
¢ In the rotating frame, Coriolis force (CF) serves lfla' u

=0
as the centripetal force of the oscillation.

A
¢ Inthe inertial frame, the parcel oscillates radially (%o Yo) ’[e

due to the imbalance between PGF and CFF, in N
0

A
r

addition to the overall rotating motion. O

Inertial oscillations excited by hurricanes

It is observed that the cooling wakes and inertial oscillations are stronger to the right of the

hurricane. For an observing point to the right of the storm, the wind evolves in the clockwise

direction, possible to resonate with the inertial oscillation. However, for the point to the left,

the wind evolves in the opposite direction.
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» Transformation to a rotating frame

A
Denote the coordinates of inertial and rotating frames as X;, and X,;. z
The Earth’s rotation gives the angular velocity @ = Qk. The rotating {/{\r ot
frame shares the same z-axis. The time derivatives of the rotating unit g
vectors are A "
DR, o D¥rot . 7,2""' ot
Dt Q X Xyot, Dt = Q X VYot

For an arbitrary vector A, we have

(DA) (DA) L QXA
_ = | — X
Dt in Dt rot

Therefore, the velocity and acceleration are given as
Uip = Uy + X X X, iy = Qrop + 2@ X U + A X QXX
The momentum equation in the rotating frame thus becomes

P(Qror + 20 X Upor + @ X Q X X) = —Vp + uV2u,,, — pgk

» Geopotential

Both the gravitational force and the centrifugal force can be expressed by potentials,

O%r?
b =gz-— 5 VO =—gZ-QXQXT
As an example, for a rotating water tank, the geopotential surfaces are paraboloids defined as
O%r?
z— = const.
29

The water surface 7] is also a geopotential surface in this case, since PGF balances with V®.

For the rotating planet, geopotential surfaces are oblate spheroids. It is convenient to redefine
the horizontal coordinates to be parallel to geopotential surfaces, and then confines the effective

gravitational force to the vertical momentum equation in the new coordinate system.



» Simplified equations of motion on a sphere
At location (lat, lon) = (¢,, 4,), define a local Cartesian coordinate
on a plane tangent to the sphere.

x=Re,cos¢-(A—14,), y=R(p—¢,), z=r—R,

The zonal direction is x, and the meridional direction is y.

The Coriolis parameter is obtained from the projection of 2
f=20=20sinpk+20cospj=rk+fj

Momentum equation

DU vp + v k
Ppe = “VPTHVUTPY
In the rotating frame, the momentum equation under Boussinesq assumption becomes
Du,o; 1_ p' N
D;O +f XU = — Evp + szurot - p_ogeff k

The subscripts and primes will be neglected from now on.

Coriolis parameter

fxu=(fw—fv)i+fuj- fuk
Based on the following approximation

_ Y L<<1
(p goO_Re Re

The Taylor expansion of Coriolis parameter gives
f =2Qsing = 2Qsing, + 2Qcos @, - (¢ — @,)

The beta-plane approximation assumes

2Q
f=/f+By .8=R_C05(po
e
The f-plane approximation assumes
BL
f="f —<«1
° fo
The traditional approximation neglects f, and assumes
(f x u) fW_H to <1
fxu),=—fv, U T cote



Inertia-Gravity Wave (IGW)

»  Static stability in a stratified fluid
Consider the fluid density profile

p(2) =p, +p(z), O0=———"—— g

If a fluid parcel is displaced adiabatically from z = z, to z = z, + h, its density is preserved

as pp = p(2,). The vertical momentum equation, evaluated at parcel location z = z, + h, is
Dw 1dp pp g
=== L[5~ p(z, + )
Dt p,dz p, po[‘” pzo + 1]

For small displacement, we have

_ _ dp
p(zo + h) ~ p(Zo) +E(Zo) h

Now we notice the buoyancy frequency N, and obtain the oscillation equation
op Dw D?h
o 808 Dw D,
P, 0z Dt  Dt?
Stable stratification means N? > 0 with fluid parcels oscillating around equilibrium positions

at buoyancy frequency N. Unstable stratification implies convection, fluid parcels accelerating

away from equilibrium positions.

Energetics
Under stable stratification, an external force is required to move a fluid parcel away from its

original equilibrium position
H 1
Fext=_Fbuoy=N2h; E=] Fextdh=§N2H2
0

Therefore, fluid parcels tend to move along the nearly horizontal density surfaces.

Inertia-gravity oscillation
Consider a fluid parcel moves in the yz-plane with angle a from y-axis. In the slanted direction,

the small displacement is § and the restoring force is Fj.
8§ =hk+Yj=6sinak+ Scosaj, F=FZi(+Fyi=—N2hi(—fui

In x-direction, we obtain the conservation of absolute momentum M

=2 w-fr=0 M % i
Dt fv—Dtu fY) =0, =u— fY = const.

With the initial conditionsu = 0 and Y = 0, we can set u = fY. This gives
F=—-N?hk —f?Yj, Fs=F-86=—6*N?sin?a+ f?cos?a)



The angular frequency of the oscillation is
w? = N?sin?a + f? cos? a
For ocean we have N > f. In the vertical direction wy,,x = N governed by buoyancy. In the

horizontal direction w,;, = f, which is the inertial oscillation.

» Inertia-gravity wave (IGW)
With the following assumptions:
a. Small perturbation caused by waves such that advection terms are neglected

b. Constant buoyancy frequency from the background profile
_ _ g o0p p
=po+p2)+p'(xt), =p,+p+p/, N?2=—=——, b=—-——
P=PoTP P P=PoTpPTPp D, 02 Py g

c. Neglect N-S component of the Coriolis parameter, i.e., f-plane approximation
d. Inviscid and adiabatic fluid: v = 0 and Dp/Dt = 0

From the conservation of density, neglecting second order terms gives

!

Dp ap ap’ ap
D—t—O, E+u-Vp~at+wE—0
This leads to the buoyancy equation, and together with continuity
db
—=—-N*w, V-u=0
ot
the momentum equations become
ou 1 dp’ v 1 dp’ ow 1 dp’
-—— v=——p, —+fu=——p, —=——p+b
Jat Po 0x Jat Po 0y at pPo 0z
Apply =V}, - to the horizontal momentum equation, we have
a(v )+ _6(6w>+ —1V2’ _0v  du

Apply d, to v-component and d,, to u-component, then subtract the two equations, we have

d 0
B O =1

Using this expression, we obtain
02 ow 1 __0dp’

_ 2\ — _VZ
<6t2 tf ) 9z py M 0C

Apply 0, and use the following result
1 02%p’ 0*w db 0%w

P —_ — _— NZ
podtoz oz Tar . oz W
The IGW equation is
02 0%w
2 2 NZ 2 —
atsz+f 622+ Vaw =0
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Dispersion relation
We seek a propagating wave solution w = w, exp[i(k - x — wt)]. Denote the wavenumber as
k= (kI,m), |ky,| = |Kk|cos ¢, m = |k|sin ¢
The dispersion relation of IGW becomes
w?|k|?> — f2m? — N?|k,|?> =0, w? = N?cos? ¢ + f2sin? ¢
It can be also written as

m? N? — w?

[knl? w2 - f?

This shows that at a given frequency, the ratio of the vertical to the horizontal wavenumber is
fixed. Note that for the fluid parcel motion, we previously obtain
w? = N?sin?a + f? cos? a
This shows that k and u are orthogonal to each other, which is also shown by continuity as
V-u=0 = k-u=0, klu

The wavenumber is perpendicular to the particle motion. We see that w € [f, N] in a rotating
fluid, and without rotation the frequency can go to zero. As |k, | << m, the parcel displacements
are nearly horizontal, and gravity provides only a weak restoring force. The limiting case is the

inertial oscillation.

When the forcing frequency w falls out of the range [f, N], the wave is evanescent around the
source which does not freely propagate. As an example, the diurnal tides moving around the

seamount can become sub-inertial for certain latitudes.

Phase and group velocities
_0x _wk _vy _(awaw aw)
=0, TR CeT T \Gk a0 am



From the dispersion relation, we have

N2_f2 NZ_fZ N2_f2
_ 2 y _ 2 __x =7 2
C;—ka, Cg —Wlm, Cg—— w|k|4 mIkhI
The magnitude of the group velocity is thus
NZ _fZ
|Cg| = wlk|? m|ky,|

For IGWs, the group velocity is perpendicular to the phase velocity, as ¢4 - k = 0.

Energy propagation & Group velocity
For a narrow band signal propagating in x-direction with Ak «< k,

ko+Ak

u(x, t) = j A(k —k,) ellkx—w(®)t] qf
ko—Ak
Expand w (k) around k, gives
. Ak ' |
u(x, t) ~ efllox-lko)] j A(k) elxr=ea®oXtl de = A(x — ¢ t)eilkor-wlkolt]
—Ak

The energy of the wave propagates with the group velocity.

Polarization relations

Given the amplitude of the pressure wave, the velocity components have amplitudes
ko +ilf p, _lw—ikf p, -mw P,

oS roT gy T rogr W TNI-u2p,
The buoyancy amplitude is
_imN?  p,
° N2 —w? Po
The phase-averaged energy flux, Reynold stress is defined as
1 Po+m 1 Po+m
(P g = =— pudp, (ww), = —j w;u; de
27 ) po-n ey
As an example, for a real amplitude p, with [ = 0
kw Do
u0=w2—_f2-p—o, u=1u,cosd, p = p, cosd
The wave energy flux is
u 1 ko z
P =52 =5 0

Note that when w — f, the inertial oscillation does not involve pressure perturbation, so we

should use other amplitudes instead of p,,.



The polarization relations give the particle motion, which is a tilted ellipse. The group velocity
points within the plane of particle motion.
¢ Near inertial wave (w — f), more horizontal motion and energy propagation.

¢ Near buoyancy wave (w — N), more vertical motion and energy propagation.

Consider a pressure wave moving in k direction in the horizontal plane

duyy 1 0p N ou,
TR o A e A

The plane wave solution gives

Loy

—iwii, = —fi
fiy, o

Uy
i

This implies that measurement of horizontal velocity components can estimate the frequency.

Kinetic and potential energy of IGW

The kinetic energy and potential energy are

_ Po _Po .y Pob’
KE—?uiui, PE—TN h —?m
To see how potential energy relates to buoyancy, integrate the buoyancy equation

tab t
— dt = —j wnN? dt, b(t) = =N?h(t)
0 at 0

The phase-averaged energy density satisfies

_ KE (w?+ f2N? — 2w f?
E = KE + PE, KE_W+/) f
PE (w? — f2)N?

¢ Near inertial waves with w = f, PE — 0 and energy is in the form of kinetic energy.

¢ Near buoyancy waves with w — N, the energy is equipartitioned with KE = PE.



Energy equation

From the momentum equation, multiply by velocity component gives

Ju u dp Jdv v dp ow w dp
ua—t=fuv—aa, va=—fuv—p—0$, WE=—p—O£+Wb
The kinetic energy is then governed by (using continuity V - u = 0)
JKE
T —(u-Vp) + p,wb = —(V - pu) + p,wb
The kinetic energy density is
OKE — __
7=—V-F5+powb, Fry =pu
For the buoyancy equation, multiply by p,b/N? gives
pob db OPE _

NZ gg = Powb = —powb

From the polarization relations, the energy flux is proportional to the group velocity
_OE V-F F E
= -V . , = U =
ot E E=DP

Qﬁ

> IGW in a non-uniform medium

1

Group velocity
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Consider a layer of high stratification with larger N2(z). From dispersion relation, with fixed w
the particle motion angle @ becomes smaller, the ray path becomes more horizontal. This is

also shown by the group velocity direction (s is the horizontal distance)

WKB approximation

For a vertically varying N?(z), we seek w = G(z) e!***ly=@t) The IGW equation becomes

'@ +mG@) =0, m()= %(1{2 +12)



Consider G(z) = A(z) e!®®, the real and imaginary parts satisfy

(dq>)2 _oe A A
iz) ~™ A AT v
WKB approximation states
5 17 d mo 1/2
»>—, d=t A=A _]
m 1 + j m(z) dz (2) ° lmt2)
From scaling analysis, WKB approximation is justified in large-wavenumber limit
m2H? > 1
This only holds for hydrostatic IGW (near-inertial limit) with
H k
— K1, M <1
L m
In this limit, the approximated dispersion relation becomes
|ken|?
2 o £2 2 2
w = f“+N - &K N

The hydrostatic limit simplifies the buoyancy equation with the Boussinesq approximation

0= 1ap’+b 62+ 2 62W+N2V2 =0
= b \aet ez RW =

For a steady stratification, a propagating wave will conserve its frequency with m « N. For a

steady state wave field, if the medium only varies in z-direction, the energy equation gives
_ d ,_
V-Fg=V-Ec, =0, E(Ecg)=o

The approximated dispersion relation gives

ow w? — f? _

¢=——=—-—"-, Exm«N

om wm

For near-inertial waves, the energy is dominated by the kinetic energy. From continuity, we
have the scaling relation

2A2
luy,|? ~ 2 > w?, E ~ |lu,|? ~m?42 xm
h

This implies the shoaling of IGWs as propagating into regions of enhanced stratification.

Ray tracing equation

For a medium that slowly varies with time or space, consider a solution of the form

. 0P
A(x, t)elq’("'t), w = —E, k=Vd
The local wavenumber and frequency have the relation

ok _d
ot ot

0P



Consider a general dispersion relation given by medium properties A4, -+ 1,
W(k; A4,++,4,) =0

For IGWs, the expression is

LA m?

1% k; NZ, 2y — N2 2
The evolution of wavenumber k thus follows

ok
ot

ow Vk+z VA, Vk Zawm)
ok ax, € a1,
n

For a vertically varying medium, horizontal wavenumbers are conserved. The evolution of w is

= —Vw =—

similarly derived as

00 _ oW Ok oW o, o +Zawa,1n
9t ok ot (08, Ot TV 9, ot

For a medium without temporal variation, the angular frequency is conserved. We define the

material derivative of the wave packet as

Ds 9 e, v
Dt ot 9
The ray equations can be written as
D,k ow D,w ow oA D,x
D A S T =%

Dt oA, ot’ Dt
n



Balanced Flows

»  Geostrophic balance

In a rotating fluid, IGWs with w < f cannot exist. For sub-inertial motion, consider the scales

UH
x,y~L, z~H, t~T, u,v~U, w~—, p ~ p,UfL
The x-momentum equations (rotating frame) become
l1ou _ U_ -_ op o _ = op
f_Tﬁ_v-i_]C_Lu'Vll:_ﬁ’ RoTﬁ—v+Rou-Vu=—%
When the Rossby numbers are small, we obtain the geostrophic balance
_1op _1lop 1
—fvy, = o ox fug =T dy fXu, ——Evhp
The geostrophic flow field can be solved as
u, = f/lJo ZXVyp

Properties of geostrophic flows

¢ Perpendicular to the PGF.

¢ Horizontal divergence is zero. The flow can be described by geostrophic stream function

0y 0y

=3 u, = — E

¢ The geostrophic stream function is proportional to pressure.
dp  10p D
ox o VT of

¢ Isobars are parallel to the streamlines. Counter-clockwise for low pressure center in NH.

Vi -uy =0, Vg

¢ Speed of the geostrophic flow is the magnitude of the gradient of stream function
/ug + vi = |V

» Cyclo-geostrophic (gradient wind) balance in a rotating fluid
In an axisymmetric steady flow with small temporal Rossby number, the gradient wind balance

is the radial momentum balance

1 dp ug
—p—oai'fug +T—O

The cyclo-geostrophic flow is weaker than the geostrophic flow in cyclones (i.e., vorticity is
positive in the direction of Earth’s angular velocity), and stronger in anticyclones. Low pressure

center leads to a cyclonic flow.
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Using the geostrophic flow, we can write

1 dp

+ fug — fug =0, fug=p_6r
o

Define the Rossby numbers as 1
ug = fr (*5 ++\/Ro9 + 1/4)

g 05 -
Ug Uy 1 oJp .
Ro = —, Ro, = —= — Q0 /
fr & fr  fip,ror QVO/(
025} e
The solution to the Rossby number is ANTICYCLONES -
ug HIGH PRESSURES
Ro? + Ro — Rog = 0 Ro=— of
fr ,
-1+ .,/1+4Ro ) CYGLONES
Ro = 2 2 025 v LOW PRESSURES |
We select the positive root because as the |

. i i
radial pressure gradient goes to zero, both e 0% ° 028 0s

. ud 1 op
Rossby numbers should also go to zero. Ro® = f_f = < IE W') ar
At the critical value Rog = —1/4, we have
ug 1 dp 1 Uy 1
Ro, = — = _— =, Ro=—=—-—
& fr fZp,ror 4 fr 2
With the shallow water approximation
1 0dp on’ 1, 02
- = — = —— = —-02 I — _ 2 — _§
P, 0T 95r 4f 4 " 1 Zgr 1

The total water surface n’ + 7 then is flat. The vertical vorticity in this case is

1 10
ug =—5fr,  (Vxw)-2=_-"(ruy) = —f

The criterion for centrifugal (inertial) instability is {, < —f. In other words, balanced motions

with anticyclonic vorticity |{,| > |f| are not possible.



Centrifugal instability (CI)
Consider a jet in x-direction under geostrophic balance. The flow is inviscid and is invariant in

the x-direction. With small perturbation u’, we have
10dp
u=u,(y)+u, fu;=——=-
9 g p ay
The momentum equation in x-direction is (conservation of absolute momentum)
Du D ( o ) —0
Dt fv_Dtug w=fy)=

Att = 0, we have y = y, and u’ = 0. Then it becomes

ug +u' _fy = ug(yo) _fYO' u' = f(y _yo) - [ug(y) - ug(yo)]

Small perturbation indicates that

/ ’ aug
u = [f - ug(YO)]Ay = (f + {g)Ayr Zg = - ay
The momentum equation in y-direction becomes
Dv 1dp D2Ay
P — " = ——— A =
Dt+f(ug+u 3y o +f(f+¢)Ay =0

Instability occurs when the vorticity of the geostrophic flow is anticyclonic and exceeds |f]|.
For NH with f > 0, the condition is {; < —f. The quantity f + {, is the absolute vorticity of

the geostrophic flow.



Vorticity Dynamics
» Vorticity
Consider the perturbation in the velocity field u(x) as
du=ulx+ 6x) —u(x) = Vu - dx
The gradient (Jacobian) can be decomposed into

Wy =5 = 2\ax T ox ) * 2 a—x,.‘a_xl-)”if”if

The vorticity vector w is defined as

w=Vxu= (355 o

We can show that
> (w X 8x); 3 <6xj axi) 0x; = (R - 6x);
The rotation tensor corresponds to a solid body rotation with angular velocity Q = w/2. The

vorticity is equal to twice the local angular velocity.
1

1
R-5x=§w><6x, Rij=EEijkwk

Absolute vorticity
In the Earth’s rotating local coordinate, consider the flow has a vorticity w. In the inertial frame,

the total angular velocity, and the absolute vorticity are

w fk+w
Q=Q+—==

5 5 w, = fk+w =29,

» Vorticity equation

Start with the momentum equation in the rotating frame without Boussinesq approximation
ou
at

Based on the following identities

« 1
+u-Vu+fk><u=—;Vp—VCD+F

V-u=0, V-w, =0
1
u-Vu=§V(u-u)—ux(V><u)=§V(u-u)+w><u
VX (s xuw)=w,(V-u)—u(V-w,) + (u- VY, — (w, - V)u
= (u'v)wa_(wa'v)u

Vx(lv) L U X Vp—2UXVp = =VpxV
— — =— —=—VxVp=—=Vpx
SVp) =5V xVp = p="3VpxVp



Taking the curl of the momentum equation, we have
ow
ot

ow

+ VX (w, Xu) = 5t

+(u - Vo, — (w, - V)u

1 1
=—Vx(/—)Vp)+VxF=?Vprp+VxF
The vorticity equation is
Dw,
Dt
The three terms that contribute to the evolution of vorticity are

1
=(wa-V)u+?Vp><Vp+VxF

Vortex stretching / tilting Baroclinic torque Frictional torque

1
(w, - Vu ?Vprp VXF

Frictional torque
¢ Consider the wind friction F(z) decaying with depth, the frictional torque points in the
horizontal direction, which leads to an overturning flow.

¢ Consider near the coast the friction F(z) decaying towards the ocean. The frictional torque

points in the downward direction, which leads to a horizontal vortex.

S =\ \g
—F 2%
7xF ®

Baroclinic torque
Decompose the density and pressure fields as
p(x,t) =p, +p'(x,t), p=po(2) +p'(x1)
Under Boussinesq assumption, the first-order term is
1 1_ g, s “
—Vp X Vp = —=Vp'XVp, =——Vp' xk=V,b Xk
p Po Po
The baroclinic torque is horizontal and is non-zero only if there are lateral density gradients.

As an example, consider density surfaces tilted upward. The buoyancy gradient V; b points to
the lower density region, and the baroclinic torque points to the other horizontal direction. The

induced flow is consistent with lighter fluids moving on top of the denser fluids.

Vortex stretching / tilting visualized by a line element
Consider a line element 81 within the flow. At a later time t + 6t, the element becomes

Sl =8l +u(x + 8D)6t — u(x)ét = 6l + (81 - V)udt



The evolution of the line element is governed by - D\«
7z

D651
—=(6l-V)u

Dt g’f,T /ét’
2

This shares the same form as the vortex stretching / tilting.

Consider an initial w, = w,k in a flow w = w(z), the vortex stretching is in z-direction

Dw,  dw
Dt Y74z
Now consider a shear flow u = u(z), the vorticity equation leads to vortex tilting
Dw, du Dw,
= w,—, =0
Dt dz Dt
w? >0
T =)
\
N w?z <0 ?
tilting

—stretching—»—{~ | 71
>

|
\ \
wz =20
?

w

e

» Vorticity equation in low Rossby number limit
Taylor-Proudman effect

The Rossby number compares the vertical vorticity { with Coriolis parameter f
( 1/0v OJu U
7o)
With Ro « 1, we have
“ A Dw,
wa'k=f+(zf' wasz' Dt =0

This implies that for an inviscid fluid with no baroclinic torque, the flow does not vary in the

vertical direction in the limit Ro < 1

Dw, Vu ~ 6u~0 Ju Jdv odw
Dt e uNfOZN ’ 0z 0z 0z

This describes the Taylor-Proudman effect, or the gyroscopic rigidity. The effects of rotation

have provided a stiffening of the fluid in the vertical.



Thermal wind balance

Still in the limit of Ro « 1, if there is a baroclinic torque, we have

du “
f& +V,bxk=0
This describes thermal wind balance
db du db v

——+f7-=0, ——+f=—=0

dy f 0z 0z f 0z

The baroclinic torque balances the vortex tilting due to planetary vorticity. For the example of
density surfaces tilted upward, in order to counteract the effect due to baroclinic torque, the

balanced flow should tilt the vorticity vector to the opposite direction.

vb/ ol
A 'v'}bxl’;
. ®

R>f ®WU

» Potential vorticity (PV)
The absolute vorticity w,, is not conserved even with no frictional torque and in a homogeneous

medium, since there exists the vortex stretching term. However, the PV is conserved.

PV in shallow water system
Denote the height of the water column as h. For a vertically uniform velocity field u; (x, y),

the absolute vorticity is

“ ov du
w, = +OKk f=a—@
The momentum equations in the horizontal directions are
du Ju du an
E ua+va—=fv—ga+x
Jdv v v an
§+ua+v@= —fu—g@+Fy

We can combine them and obtain the equation for vorticity {
a¢ N (au N av) B (au 4 av) 4 0F, OF,
e TV tay) T T et oy

The governing equation for absolute vorticity is

PIED . (ra )@ w+ (VX F) &



With the continuity equation
Dh 1Dh
D—t=—h(Vh-u), Vh~u=—ED—t
we can further obtain
ID(f+{) f+¢{Dh (VxF)-k D/f+¢y (VxF)-k
R Dt  h* Dt h 'D_t(h)= h
We can define the potential vorticity for a shallow water system as
f+q Dg (VxF)-k
~"h ' Dt h

Consider a spinning water column, and its angular velocity is « = (f + {)/2. The conservation
of mass states that
m = p,mR?h = const.
Without frictional torque, the angular momentum is conserved, which is
mR? f4+¢ m? f+(
be=la = = 0pmh 2
The conservation of mass and angular momentum lead to
f+¢
h
The water column in a shallow water has higher potential to create vorticity. As it moves to the

= const.

= const.

deeper ocean, the column is stretched and thus spins up.

Ertel PV in stratified fluid
Define the Ertel PV as
q=w, Vb
It describes the component of absolute vorticity in the direction Vb. Since Vb x k is always

perpendicular to Vb, the baroclinic torque does not contribute to q. Note that

Dw, D
Dt + w, - D_t (Vb)

D
D—t(wa'Vb) =Vb-

From the vorticity equation, we first have
Dw,

Dt
From the equation of state, we can obtain the buoyancy equation

Vb - =Vb:(w, -V)u+Vb-(VXF)

b
b=gla(T=T,) =B =5)l, 57 = agkrV?T = BgisV?s =D
where all the diabatic processes are included in D. The gradient of buoyancy equation gives

D
D_t(Vb) =VD—-Vu-Vb



The term —Vu - Vb denotes the generation of Vb by stretching / tilting of isopycnals. Finally,
the governing equation for Ertel PV is

bg _ D Vb) = Vb - (VX F) + @, - VD
Dt _Dt(w“ - ®a

The advective processes such as tilting of isopycnals and vortex stretching do not contribute to

the change of g. Only non-conservative frictional and diabatic processes contribute.

4, L-I- l)- ' b+ L-
o e —
AW w
time
7 ob ob
— q=fk-Vb= — - =
L 9= [ 5, T @y =0

Summary of potential vorticity

¢ For inviscid and adiabatic flows, PV is conserved following fluid parcels, but it is not
necessarily true for vorticity.

¢ PV is advected by the flow as a dynamical tracer. It is not a passive tracer because its
distribution affects the flow.

¢ Invertibility principle: If the flow satisfies a balance relation, then all dynamic variables
(u, h, p, b) can be derived from the PV field. PV plays an analogous role to the vertical

vorticity in an inviscid 2D horizontal flow.



Geostrophic Theory

»  Geostrophic adjustment
The geostrophic adjustment problem describes how an initially unbalanced flow adjusts to a

geostrophically balanced flow. Consider a shallow water system with no frictional torque

_f+¢  Dg_
h ’ Dt
The developed flow is under geostrophic balance

an v du g

J g2

on
—fu—g@, fv—ga, i—a—@ th77

Define the barotropic Rossby radius of deformation as (with mean ocean depth H)

Jof

L, =Y

f

It is the distance traveled over timescale 1/f with the shallow water surface wave speed. From

scaling analysis, consider the amplitude n << H, we have

u-v U U
v~ lu Vgl U _ o ~ Ty, LU
fL |og/ot| fL f?L> H f fL H
This implies that PV is approximately conserved at a fixed location. For a linear flow, we have
f+¢  f C) m™_f, o, , ¢ fn
q_H+n~H(1+f (1 H)_H+q' T=H He

For constant f, we can only focus on the PV anomaly q’ from the background PV g. Given an

initial q, the governing equation for the free surface n becomes

g fn_ n_fH_,
7Vin—g=qu, V;ZM—L—%=?%

From the PV field, we can solve for n and then obtain u from the geostrophic balance.

Green’s function

Consider the PV field is invariant in y-direction. The Green’s function G (x; x") satisfies
d’¢ G _ &( ,)
dx2 12 XX

The continuity of G and discontinuity of dG /dx at x = x’ give the solution

L x—x'
G(x;x’)=—7rexp<—| I l)
T

Geostrophic adjustment for an initial step
Consider an initial step surface n,(x) = —n,sgn(x) with u;, = 0. We need to solve

d’n n _n,

oz L—%sgn(x)



The solution is obtained as

_lxl
n(x) = —nesgn(x) - (1 —e Lr)

) : : : @]

Initial height
)

_9om _ 9N _jun, ) - ; ; !
v = 5oy = L€

The potential vorticity conservation constrains

the influence of the adjustment to within a ° : ‘ ‘ ©
deformation radius L, of the initial disturbance. ¥~ \/( ]

After timescale T, the waves will experience the

Final height
A o o
—
/’

Velocity

Pot. vorticity
c

effect of rotation, generate a Coriolis force that

eventually balances the PGF. _ X/La

Energetics of geostrophic adjustment

The general expression for the total potential energy (per unit length in y) is

H+ oo
Tn dx =pogj (H? + 2Hn +n?) dx

+00
PE=po] gH+n)- >

Since the average of 17 is zero, and the first term denotes the background, the available potential
energy (APE) is

4+
APE = p;gj n? dx

The initial APE and the perturbation after the geostrophic adjustment are calculated as

pPog [~ pod [ 3
‘;] nidx,  AAPE= ;] [nz(x)—nﬁ]dx=—§pogn§Lr

The final kinetic energy is

APEO -

poH 1p,g*Hn;

. 1
AKE = — j_ v () dx =7 L > PogMoLr

Therefore, only 1/3 of AAPE is converted to AKE. The remaining part is radiated away by

Poincaré waves and lost to infinity. On the contrary, in the non-rotating case all APE is released.

» Poincaré wave
The transient geostrophic adjustment of the flow triggered Poincaré waves. In small amplitude

limitn/H « 1, the linearized shallow water equations are
du an v on on du OJv
V9% T 9 Gt (6x+6y)



To obtain an equation for surface height n, take the divergence of the horizontal momentum

equations, and take the time derivative of the continuity equation

d (au N av) 3 (av au) w2 a’n . d (au N av)
ac\ox " ay) =7 \ax " ay) IR G2 T TV g \ax T by
We thus obtain
%n
32 = ~fH¢S + gHVin
The conservation of PV anomaly is
on _C fn o Im
q(x)—ﬁ—m—const., (—qH+H

We thus obtain
621’] 2 2 247
ez~ 9HVRn + £ = —fH%q'(x)
The particular solution 77, (x) represents the free surface of the steady geostrophic flow given

the PV anomaly g’ (x), which satisfies

H
Van, — 77_;9 = M q’
Ly g
The homogeneous part 1(x, t) satisfies the Poincaré wave equation
62

U
5z ~9HVin +f*n =0
Only balanced, geostrophic flow has the PV anomaly, while Poincaré waves have q¢' = 0. The

Poincaré waves adjust the initial surface not under geostrophic balance, i.e., 7o — 7,,.

Dispersion relation of Poincaré wave

Rotating (Poincaré)

— — — Non-rotating

In the Fourier domain, we obtain the dispersion relation

2
w? = f2 + gH(K? + 12), (?) = 1+ [ky|2L2

This is similar to the near-inertial (hydrostatic) IGW, since we

Frequency (w/f)

also assume small aspect ratio H/L <« 1. In short wavelength

limit A < L,., the wave is non-dispersive, with phase velocity

Wavenumber (k x Lg)

the same as the shallow water wave without rotation

|ky|L, > 1, AL L, w = \/gH |ky|, c=./gH
In the long wavelength limit, we recover the inertial oscillation
|ky|L, < 1, AL, w=f

Group velocity of Poincaré wave

x k l
cg=gHZ, ¢, = gH—



Therefore, the short waves radiate most of the energy

¢g =+JgH with 1 <L, ¢g =/ 9H |kp|L, < JgH with 2> L,

Polarization relation of Poincaré wave
B ifw— gHlk ilf — wk

vo - ngz —0)2 uo' T’o - ngz —(1)2 uo

» Kelvin wave
Another type of waves without PV anomaly is the Kelvin wave. It has one component of the
fluid velocity equal to zero:

¢ Equatorial Kelvin wave: No meridional flow, v = 0

¢ Coastal Kelvin wave: No normal flow, u-n =0

Coastal Kelvin wave

Consider a NS coastline at x = 0 which implies u = 0. The governing equations become

an ov an an v
0=/ w9y s My
Similarly, we can obtain the Kelvin wave equation and its phase speed
9%n 0%n

——gH=—=0, =,/ gH
acz 9" gy c=v9
The general wave solution has the following form
NGy, t) =6 Fy,b), F,t)=F(y—ct) +F(y+ct)
This shows that Kelvin waves propagate parallel to the coastline. In the normal direction, the
wave structure is solved from combining the momentum equations as

dv _gad’n 0Oy 0%n on

ot foxae- 93y axac /3y =0

Substituting the solution form, we obtain

dGy Il Gy
a4 = Fsen(f) - Gx = Esen(f) L

For Kelvin waves propagating in +y-direction, we have

10D = G FO =, Go(x) = exp[sgn() ]

N+, y,t) = GL(X)F(y + ct),

1.0 =G F+c), G0 = exp[-sgn(P) ]

Consider the ocean in the region x < 0. The condition at x — —oo implies
¢ Northern Hemisphere: 1, (x, y, t), Kelvin waves propagating with coast to the right.
¢ Southern Hemisphere: n_(x, y, t), Kelvin waves propagating with coast to the left.



The PV anomaly for the Kelvin wave is

, ¢ fn_1ov fn_g<62n ”):o

T=H H2 Hox HZ fH

dx? L2

Kelvin waves do not carry PV anomaly, even though v is geostrophic.

» Barotropic (planetary) Rossby wave

The existence of Rossby waves require a background PV field with spatial gradient

q(x,y, ) =q(x,y) +q'(x,y,t)
In the shallow water system, with no background flow we can write
fQ)
H(x,y)
PV conservation for an inviscid and adiabatic flow gives

Dg Dq Dq' Dg"  Dg _ _
Dt_Dt+Dt_0' Dt Dt u-vq

This implies that q’ is caused by the advection of background g. Consider a fluid parcel with

qlx,y) =

location x,., the PV anomaly equation leads to
Dq’ Dx,
Dt Dt
Displacements of fluid parcels parallel to Vg will induce a PV anomaly q’, which is associated

’ VC_I' q’ ==Xy VC_I

with a flow anomaly ©’ from PV invertibility, and u’ further changes the parcel displacement.

This feedback can give rise to a restoring force that leads to Rossby waves.

\q/"‘ Va
! —x, - !
i _ K —— 9
R
\ -/
- W

q,

Barotropic Rossby wave

Under the -plane approximation with constant H and SL < f,, the background PV field is
__fot+ By
q T

At low Rossby number, the flow is nearly geostrophic with weak amplitudes. For PV anomaly,

__B.
Vq—Hl

taking the first-order terms gives



The first term is the vorticity, while the second term is the thickness anomaly, or the stretching

term. Consider the flow is geostrophic, we have

on on
fou__ga; fov_ga

Introduce the geostrophic stream function 1 and we obtain
Y= 7 u = _ v = W
f’ ay’ ox’

The governing equation for PV anomaly then becomes

q’=l(V2 —E), DI’ _ = VBBV

H L2 Dt H H ox
The barotropic Rossby wave equation, or the QG-PV equation, is
D Y 0y Y
I VZ _ _) _r 0, I — VZ _
Dt ( 12) TP oz 4 12

g' is called the barotropic quasi-geostrophic (QG) PV, although it has a unit of vorticity. The

material derivative of ¢’ can be further denoted as

Dg' 04g' g’ dq' 0dg' 0dYog' oYadqg' 0q' ,
Dt ~at T%ax TVay "ot ayox Taxay o /W)
The Jacobian (A4, B) is used for simple notation, and we can thus write
dqg’ . oY . D 0
i +](¢,%)+ﬁa—0, with D—t—a‘l'](l/h')
Dispersion relation for barotropic Rossby wave Ll i i
Consider the plane wave solution, and with J(4, A) = 0 we have ol | |
1 E ay
%’=V2¢—£2=—(k2+12+—2)¢, J@,q) =0 Lol |
Lz Lz | |
This leads to the dispersion relation S i
Bk e B
w = k=kL,

k2 12+ 1/12
Assume [ = 0, and the non-dimensional frequency and wavenumber are
- ) L k
k=kL,, a:—:—ﬁ Lo
fo fo k*2+1
The maximum frequency of barotropic Rossby waves occurs at the following condition
o BL, (k*+1)—2k?*

- 0, k=+1
ok fo (k2 + 1)2

Consider @ > 0, we choose k = —1 and the maximum frequency is

. _BL _
wmax_y"’
0

0.2, Wmax = 0.2 f,



This shows that barotropic Rossby waves are sub-inertial. This estimation is based on

2Q J9H
f=—cos@p, ~2%x1071 m™1.s71, L, = 97~ 2000 km

R, fo

Phase velocity of Rossby wave

The x-component phase velocity is

< ©0____ P
A YA

This implies that the phase lines of Rossby waves, the streamlines and thus the lines of constant

pressure always propagate to the west (-x-direction). Now consider [ = 0 with no variation

in the y-direction. The ratio of the two terms in the PV anomaly scales as
S/H 1V
[fon/H?| [$/L3|

Under short wave limit, the vorticity term dominates PV anomaly and we have

, 9 f+<

d:>CFO ° : A TB—»(
£ £>0 | I T/)\ Y=Yo
0 I \)/ <0 |

~ k212

F<fo Fuid. Roicle

Under long wave limit, the thickness anomaly (stretching) term dominates and we have

_Jom f fon_ f

w2 1T HTHE T Hiq
In both cases, the induced vorticity or geostrophic flows displace the fluid parcels in such a

Z
[
N.H

Thinnet o Thicker & Y=Yo

|k|L, < 1, q =

way that shifts the whole pattern westward over time.




Group velocity of barotropic Rossby wave

Assume | = 0 with no variation in the y-direction. The group velocity is calculated as
ow L7? — k?
o~ P vy
Under short wave limit, energy propagates eastward and the group velocity is very small.

B
|k|L, > 1, cy = 2 < BLZ

Under long wave limit, energy propagates westward. The long waves are non-dispersive, and

the group velocity is fast with rapid energy transfer.

|k|L, < 1, cy =~ cf ~—PL%

2D Rossby wave

The contour of w in the k-I plane are displaced circles, which leads s/l
to anisotropic behavior. I
Bk o L

w = — 2 2 2 ? 0 Xl

k + l + 1/LT "~ 05 “0.08

For a fixed wavenumber amplitude |k, its frequency w dependson | 'M
azimuth, also for phase and group velocities. In contrast, Poincaré .

waves are isotropic.

Wind-driven long Rossby wave modes

In terms of the spin-up of ocean circulation by winds, the initially generated Rossby waves are
baroclinic with L, replaced by the baroclinic Rossby radius of deformation L2¢ ~ 50 — 100 km
at mid-latitudes. However, the winds setup perturbations with length scale Ly,i,q = 1000 km,
which excites long Rossby wave modes that propagate energy westward towards the western

boundary of the ocean basin.

Western intensification
Near the western boundary, energy is fluxed in by long waves and fluxed out by reflected short
waves. Due to the difference in group velocities, energy piles up on the western boundary and

thus leads to the western intensification of flows in this region.

» Regular perturbation expansion analysis

To derive the QG equation, consider the following small parameters are in the same order



We first obtain the non-dimensional shallow water equation using scales like L,n,, U.
ot - L a1
Ro(—f+1’1~Vﬁ)—f7(1+ﬁ—~) -

F 7)oz
R (aﬁ+’“ V~)+~(1+ﬁL~)— il
0 PY; u-vv u foy = 35
Mo (O7] | Mo .

Based on the following expansions

=190 +ea® + 2@ + ..

1 =70 + e + 2753 + ...
The leading order O (1) equations give the background geostrophic flow

~(0) ~(0)
o7 MO o7 .50 = o

S(0) —
v 0%’ Fik

The first order O (&) equations are

91 (® _ L o
£< 7O .Vﬁ(o)) _ 5@ _'i_oyg(o) — ¢ gf
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0 oy
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Denote the geostrophic and ageostrophic flows as
ug =Ua©®,  p,=Us0, g, =n7®
Ugg = eUTD, vy, =eUBWY,  n,, = en, 4P

Then the dimensional first order O () equations become

Du an
D_l;g_ ﬁyvg - fovag =—g a;g
Dy, 0Mag
D_t + .Byug + fouag =—g dy

Dn,

D—t——HV~uag, D—t—a-l‘ug'v

The vorticity equation can be constructed from the momentum equations

ng auag avag _fo Dng
—+ﬁ”g—‘f°< ox "oy )THDE

Dt



Using the geostrophic stream function i, we have

D oy 2Dy D9

This is now the same as the QG-PV equation

d Y Y 0y
O (v~ ) as (nwg - L)+ 52 =
at(v La)”(‘l’ Yo) TR e
Now consider Rossby waves in a background flow with no variation in y-direction, we have

avg 6ng auag
Ug =0 Gt fotag =0 Fr=—HGE

The acceleration of the geostrophic flow is caused by the Coriolis force from the ageostrophic

flow. The free surface change is caused by the convergence of ageostrophic flow.

Group velocity of barotropic Rossby wave
Recall that the group velocity is in the same direction of the energy flux. In the x-direction, we
need to analyze the correlation pu. Note that
_99ng _
fo 0y
Therefore, the energy flux is determined by the correlation between displacement in the free

P = PodN = Po9MNg, u=ug+uag+"" Ug =

surface and the zonal ageostrophic velocity, which is

pU = pog NgUag

Under short wave limit, PV anomaly is dominated by vorticity. Therefore, we need to analyze

the y-momentum equation, which gives

vy 9, OUgg
o Hotas =0 5 ="l

From the previous pattern of 75, we can obtain the pattern of 0, /dt and thus du,,/dx, which

|k|L, > 1,

leads to the pattern of u, 4. This implies that the change in {; is caused by the convergence of

ageostrophic flow. 7, and u,, share the same sign, giving ¢ > 0 propagating eastward.

E..

33115’40 I . e N.H.
— 1 IiH!o
. ¢ a}fvo

v Uog >0 Uag< O



Under long wave limit, PV anomaly is dominated by thickness anomaly. Therefore, we need

to analyze the continuity equation, which gives

ong gy
g — _H_
IklLy <1, ot ox

Similarly, based on the pattern of 174, we can obtain the pattern of dn,/dt and thus du,,/0x,
which leads to the pattern of u, 4. The change in 7 is due to the convergence of ageostrophic

flow. n4 and u, 4 share opposite signs, giving ¢ < 0 propagating westward.
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» Baroclinic Rossby wave
Two-layer model

Now we include the effects of stratification with a two-layer model. An example is the lighter

and denser fluids separated by the thermocline / pycnocline in the ocean.

2=0 Tn

Hi “h A. W, Vi, R AxR
m

Hz '\f’z P, Uz, Vz,?,_ Pl"P|4<R7

Consider the layers are thin compared to the horizontal length scale of the flow with H; < L.

The pressure is hydrostatic for shallow water layers. In layer 1, the PGF is calculated as

1 p
D1 = Pam + P19 —2),  ——Vupy = —— gV = —gVp1
Po Po

The Boussinesq approximation is applied with p; = p,. In layer 2, we have
P2 = Patm + P19 + Hy = &) + p29(§ — Hy — 2)

Denote the reduced gravity as g'. The PGF in layer 2 is calculated as
1 , P27 P1

——V =—gVyn —g'V;é,
4 D2 Vel — g Vn g o

gy



The momentum equations in both layers become
Du,

D—t+f><u1 =—gVnn

Du, ,
D—t+f><uz =—gVpn — g'Vié

The continuity equations in each layer are

D
D_t(H1+77_f)=—(H1+77_5)V'u1

D
D_t(HZ +8)=—-H,+8) V- u,

For a very thick lower layer with H, > H;, velocity in the lower layer is very weak.
1 D¢

A IO B 0
H,pt %27

Two-layer QG-PV equation

Under the same assumptions as for barotropic Rossby waves

the QG approximation gives the geostrophic balance in each layer as
fxug=—gVyn, XUy =—gVpn—g'Vis

Using the geostrophic stream function in each layer, we have

1!’1:%077: 1/’2=¢1+g_of: f=§(¢2_¢1)

The relation between the displacement of interface ¢ and stream functions are illustrated below.
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The total PV in each layer is

_fo+:8y+(1 _fo+.8y+<2
W H - BT T H+¢
We can decompose it into the background and perturbation PV fields as
=fo+ﬁy — =fo+.8y I} 51 ﬁ)_fl+fof ,_62__5

q1 H, q> H, Q1=H—1—H12 H—lz CIz—H—2 sz



With the geostrophic stream function, the PV anomaly in each layer becomes

,_ 1 Y1 Y2 , 1 Y2 —
a1 = H. V2 — 12 be 2 |’ a; = H. V21, — be \2
1 1 (Lr,l) 2 (LT,Z)
The baroclinic Rossby radii of deformation are defined as
bc g,Hl bc g,HZ
g =¥ g =Y¥"2
fo fo
Now we scale the terms in PV anomaly of layer 1
2 !
|1/)1/L$,1| - E «1 |1/’1/L$,1| N (Ll;,c1 _9 «1
2 2 ’ 2 2
Vel L2 |, —w/(b)| &9
In mid-latitudes, H ~ 4000 km and L,. ~ 1000 km. For most cases we have L < L,., so
) Yo =y , 1 Y2 — s
h =g Vi + =, 92 =4 Vi, ————%
1 Lr,l 2 (Lr,z)

The conservation of total PV gives

Diq; _ dq , B oy
= HWua) = -7

Dt _H_l 0x
D,q; _ 9q; N B oY,
Dt _ ot +J@W2,q2) = H, dx

These two equations are coupled through the interface & « 1, — 14, as the change of interface

leads to opposite changes of g} and g. In the short wave limit L << LPC, the equations become

uncoupled as the coupled term in the PV anomaly is small.

Barotropic and baroclinic modes

For a simple system with H; = H, = H, the linearized two-layer QG-PV equations become

o | Y, — 1/’1— oY, _
a| Y, — 71[’1— Y, _

The equations can be decoupled by analyzing the barotropic (depth-averaged, bt) mode and the

baroclinic (bc) mode separately

+ —_
=y

¢ Wheny; = 1,, we have a flat interface with £ = 0. No baroclinic mode.

¢  Wheny; = —1,, flows are opposite in each layer. No barotropic mode.



The uncoupled two-layer QG-PV equations are

a 0Pt d
— (V2 — — |2 —

2lpbc alpbc
(LEC)ZI T

The original ¥, and Y, are a combination of the barotropic and baroclinic modes.

Long baroclinic Rossby wave

In the long wave limit with L > L€ (n =~ 0), the dispersion relation is
2iw

(L)

Baroclinic modes are non-dispersive, independent of [ wavenumber and propagate westward.

k
+ikB=0, = —%(Lt;c)2

To visualize this westward movement of patterns, note that the geostrophic flow v advects low
PV from the south and high PV from the north. The initial perturbation can be caused by a local

convergence of surface flow that pushes the interface downward.
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Baroclinic Instability

» Two-layer QG system

g  Ha=H
Ly

Consider a two-layer system with H; = H, = H. The interface ¢ is tilted, and is associated with

a background flow (in x-direction) under geostrophic balance, given as

— — - 2 f
¢1=_Uy' lrbz:UyJ {T=g_o,(w2 1:[)) .
Assume |{: | « H with the -plane f = f, + fy. The background PV fields are simplified as

_ f o _fotBy fof _ f o fotBy fof
q1 = +—

H—¢ H B TTyiiTTH Tw?

The gradient of background PV becomes

__ B, f -_B+B ﬁ _ BB, 52U
Vi, =i+ 5V = Vi =——b  F=—
(L)
The perturbed fields are denoted as &, u;, ;. With the similar assumptions, the contribution to

PV anomaly from the free surface n can be neglected, which leads to

¥, 1!)1] 1 ¥~
q = Vzlpl 2 =7 | VP, - 2
ALTT @y AT @
The contribution from 7 is neglected since L < L,.. The conservation of total PV gives
Diq; 0q1 6q1 04,
D24z 6qz a‘b 04,
Dt - +.](lp2' qZ) U a vz ay
Now the advection also includes the background flow. The linearized equations become
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Similarly using the barotropic and baroclinic modes, we have

0
o7 (Vo) + = > ‘/’bt + U— (V*1Pe) = 0

l.l’bt

6 2y Py

Ve — b C]"‘ﬁ 5 -+ —(Vzll)bt)‘l'ﬁ
(L) ¥

With the background baroclinic current, the equations are coupled through:

¢ Advection of background PV gradient from the tilted interface by the barotropic mode

¢ Advection of barotropic / baroclinic vorticity by the background baroclinic flow

Coupling terms
The advection of background PV gradient by the barotropic mode is

s 0pe 4 aq aq
B axt—ﬁvbt Hvp, ayl Hvbta_yz

The advection of barotropic / baroclinic vorticity by the background baroclinic flow is
a 2 a 2
Uy Vo) Uy Vo)
These coupling terms are illustrated below. The barotropic flow advects background PV field

and generates a baroclinic PV anomaly. The background flow advects the vorticity field of one

mode and generates the other mode.
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» Baroclinic instability
Now consider the f-plane with f = 0. For linear stability analysis, we seek wave solution and

this leads to the eigenvalue problem

w|K? +

WPy — Uk = 0, ]‘l)bc UkK 2Py + kP = 0

(L)
The eigenvalues and eigenvectors are solved as

K2 —2/(1k) @
w? =k2U2.K2+2/(L£C)2, wbc=ﬁ¢bt' K? = k% + 2
T




When K? < 2/ (L?C)Z, we have growing modes with imaginary frequency
1/2
2/(1b)* — k2
K2+ 2/(1k°)°
The fastest growing mode occurs at [ = 0 with streamwise wavelength

091 27 be
kthr)C, /1x=?z6.7Lr ~ 67 km

For unstable modes, the baroclinic 1}, lags the barotropic 1y, by 90°. This is essential for the

w = iw; = ikUy, y =

instability mechanism.

lpbt — lp’\bt ei(k.x—a)t)’ lpbc — iylz;bt ei(k-x—wt) — yl/;bt ei(k-x—wt+7't/2)

Instability mechanism

The structure of the fastest growing mode indicates the phase lag between the two modes.

Batotropic Vbt Baroclinic. Vbe (%6° og)
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The instability mechanism can be summarized into two stages:
Stage 1. Barotropic perturbation advects background PV, setting up baroclinic vorticity

Stage 2. Background flow advects baroclinic vorticity, reinforcing barotropic perturbation

Batropic Vot —> PV anomolly PV — Bandinic Ve L5 Aligned Bortropic

O ®% O% Q% Loo® 00 ® 0

O @6 ON ®% TR 00 Q00 88
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Influence of planetary vorticity
When B > B, the PV gradient in both layers have the same sign. Then, a barotropic perturbation
will not create a baroclinic PV anomaly, and thus no growth. An essential criterion for mode

growth is that the PV gradients have opposite signs in the two layers.



»  Energetics of baroclinic instability

Baroclinic instability derives its KE from the release of APE through driving a net overturning
circulation that flattens out the tilted interface. Averaged over the x-direction (N-S), the eddies
drive a net northward transport in the upper layer, and southward transport in the lower layer.

However, the averaged N-S flow is zero. To see this, we have

o= l(awbt 4 all)bc) e = l(awbt 3 all)bc)
172\ ox ox )’ 272\ ox dx
With wave solution, their average over one wavelength is zero. But the release of APE is in

fact governed by the net volume transport in layers, instead of the averaged velocity. The

transport also depends on the layer thickness which is modified by the instability. Note that

— & ’ — 2 ’ _fO _ zfo
hy=H—=¢=¢, hy=H+{+¢, é’—;(wz—wl)——?%c

The net N-S transport in the upper layer is

1 Ax 1 Ax ’ fo A al:bbt al’bbc
Vl—ZL vlhldx——z ; 1213 dx—g,/lxj0 ( o + o )lpbcdx

Consider the solution for a growing mode, which is

Ype = Poef cos(kx),  Pyc = Re {iyoe®r'e™*} = —yih,er’ sin(kx)

It can be shown that the net N-S transport is positive

Ax
vV, = ],C—O/,lkyl,bgez“’ltj [sin(kx) + y cos(kx)] sin(kx) dx = 2@, kyypze?@tt
X 0

From the result, we notice that

Ax
V1 o« — flvbt dx
0

The transport depends on the correlation between the barotropic N-S velocity and the interface
perturbation. In the upper layer, they are negatively correlated, which indicates a net northward
transport. Vice versa, there is a net southward transport in the lower layer with V, = —V;. These

net transports correspond to a net release of APE.



Frictional Effects

» Ekman layer

Frictional force from turbulent momentum flux

The effects of friction are important in boundary layers near the surface or bottom of the ocean.
The flows in the Ekman layers, for example, affect the dynamics of the entire water column.
Friction in the boundary layer is associated with turbulent processes that transport momentum
flux down the gradient. The vertical flux of horizontal momentum by turbulence is proportional

to the vertical shear of mean horizontal flow through eddy viscosity v,, which is

— ou — ov
uw' = —v, — v'w' = —v, —
€9z’ €9z

The lateral friction can be neglected. In practice, v, is not constant and varies with properties

of the mean flow, surface forcing, roughness of the bathymetry, etc., and has to be
parameterized in ocean circulation models. The typical range of v, is
107> m?/s < v, < 0.1 m?/s
The frictional force (per unit mass) generated by these turbulent momentum fluxes is
F=—i(—v a—ﬁ)=v az—ﬁ
oz\ ¢oz ¢ 0z2
Ekman number

For simplicity, consider a constant v,,. The Boussinesq equation becomes

Du 1 . 0*u
D—t+f><u= —p—OVp+bk+veﬁ
Assume the fluid is homogeneous with p = p, and b = 0. The non-dimensional equation is
ot =N op 0%
Rotﬁ+Ro(u-Vu) —P=—+Ek——
av = p %0
Rotﬁ+Ro(u-Vv)+u=—a—y Bk o
~ = 2
Ro; rzaa—vg+ Ro (- Viw) = —%+ Ekrz%
The key non-dimensional parameters are
1 U H Ve
Roo=—7, Ro=zp, T=7, Ek=rp

The Ekman number compares the frictional force to the Coriolis force. In the ocean, we have

Ve 1073 m?/s

~ ~1075« 1
fH?  10=*s~! x 106 m? 0

Ek =

When all these parameters are small, the governing equations describe the geostrophic flow

invariant over depth. However, the solution cannot satisfy the no-slip boundary condition at



the bottom. This implies that a thin boundary layer must develop where the frictional force is

as important as the Coriolis force, and locally the Ekman number is of 0(1).

Ekman boundary layer
We decompose the balanced flow into the interior flow (geostrophic and ageostrophic) and the

Ekman flow as
u=w Ut tu, v=v4v° 4,
The Ekman flow is confined within the vertical scale § of the Ekman layer
Ek=f”§2~1, § ~ v/ f

Away from the boundary, we have

Ue, Ve, = 0, u,v - u,v;, for z> 6
The geostrophic interior flow (not varying with depth) is given by
1 dp 1 dp
—fvi——p—oa' fui——ga

The ageostrophic component is of order 0(\/ Ek) and neglected for the leading order balance,

but it is important for the evolution of Ekman flow. Within the Ekman layer, we have

1 dp 0%u, 1 dp 0%v,
_f(vi-l've):_p_oa‘l'veﬁ; f(ui+ue)=—E@+Veﬁ
Since pressure does not vary through the Ekman layer, subtracting the equations gives
0%u, 02%v,
—fve=Ve?; fue=veﬁ

This is the Ekman balance. The boundary conditions are specified as
u~u; +u, =0, v~v;+v,=0, atz=0
u, - 0, v, = 0, at z »

We can obtain a single governing equation for u, as

v 0%y, (ve)2 0*v, 0*v, N f?
 foazz \f) 0z*’ az*

VZ
We seek solution of the form e?? with Re A < 0, which leads to

e
/14+f—j=o, A=i(—1ii), e = 2e _ 7 VEK-H
Ve 68 f
The length scale §,, is the Ekman layer depth. With the boundary conditions at z = 0, we have
u, = —v; e ?/%esin(z/8,) — u; e %% cos(z/85,)
v, = u; e ?/%esin(z/8,) — v; e ?/% cos(z/6,)

The Ekman flow spirals with depth to the left (Northern Hemisphere) of the geostrophic flow.

U, u, =0



0 ulug 1

To understand this, consider a geostrophic flow with v; = 0. In the Ekman layer, PGF is not
entirely balanced by the Coriolis force, as the Ekman flow u, reduces the total zonal flow to
satisfy the no-slip bottom boundary condition. This unbalanced PGF would drive a flow in the

+y-direction to the left of u;. This tendency is eventually counteracted by the friction.

1 0p 0%v,
T dy flui+ue) +ve oo =0

The Ekman flow is analogous to a pipe flow down pressure gradient. In this case, the N-S
flow v, is governed by the balance between PGF and friction, and its profile is nearly parabolic

with negative curvature. The Ekman layer breaks the rotational constraint set by geostrophy.

» Spin-down of geostrophic flow by Ekman transport
Flows in the Ekman layer transport fluid down pressure gradient. Consider a cyclone setup, the
bottom Ekman flows are convergent and fill in the low pressure region. This process weakens

the PGF and thus the geostrophic flow.

Ekman transport

The Ekman transport is defined as
zZT ZT
M;C:j u, dz, Mey=j v, dz
0 0

The upper bound z; > §, is the height where u,, v, = 0. The turbulent stress is given as

ou, av,
Tx = PoVe 9z Ty = PoVe 9z

Using the Ekman balance, we can evaluate the integrals as

YA y X i
Ve oty __ T W = T3 _kxt,

= z , =—, =
¢ pofly 0z Pof ¢ pof © pof




The Ekman spiral solution evaluates the bottom stress as

ou PoV. av, PoV.
Tp = PoVe aZe 6 = ; = (ui - vi); 713; = PoVe aZe o = (OS = (ui + vi)
zZ= e zZ= e

Therefore, the Ekman transport becomes

Me = %2 [y — v § — g + )

It can also be related to PGF by using the interior geostrophic flow, which leads to

—6‘3( 1v +1v xk)
©T2f\"p, P T, P

This implies that Ekman transport has a component down pressure gradient. For a low pressure

center, the bottom Ekman transport is convergent and generates an upward motion.

Ekman pumping / suction
We similarly decompose w = w; + w,. Note that the geostrophic flow does not have a vertical
component, and w; here is purely ageostrophic. Due to different vertical scales of the interior

(ageostrophic) and Ekman flows, the continuity should be considered separately as

auj‘g+avfg+aw§"g_0 aue+6ve+awe_0
ox = dy oz ox dy 0z

Since there is no normal flow at the bottom, we have
W=Wiag+We=O, atz=0

Integrating the continuity equation gives

o 9 7 Ju, 0
j Ye dz = —w, |,y = _j ( Yoy ve) dz = -V, - M,
0 0

0z ox 0
The Ekman pumping / suction is reflected by the interior flow w; at the boundary, which is

ag _ .
w; |Z=0— Vi - Mg

L

Positive w;|,—¢ > 0 implies Ekman pumping of fluid from the bottom Ekman layer into the

interior. For surface Ekman layer, the terms are flipped. The convergence of Ekman transport
can be evaluated as

v [(avl ou; ) (aui N avi)] _ b,
he ox  ay/)l 2 i
We thus obtain the relation between the Ekman pumping and the vorticity
)
ag _Ye
Wi | z2=0 7 qi
As a summary, Ekman transport tends to fill in low pressure regions, and remove mass from

the high pressure regions.



Spin-down of geostrophic flow
Consider a geostrophic flow between two solid boundaries at z = 0 and z = H. For the top and

bottom Ekman layers, we have

) )
Wilz=n = —7851" Wilz=0 = 7651'
Based on the vortex dynamics, we have
6Ci aWi
FCArT

The vorticity evolves by vortex stretching / squashing of planetary vorticity. For a cyclone, the
geostrophic flow has {; > 0, while the Ekman flow induces a vortex squashing that reduces the
magnitude of {;. For an anticyclone, the geostrophic flow has {; < 0, while the Ekman flow

induces a vortex stretching that also reduces the magnitude of ¢;.

To solve the vorticity equation, note that the barotropic (ageostrophic) flow implies constant
¢; over depth. The continuity also implies that dw; /0z is also constant over depth, which gives
aVVi _ Wilz:H - Wi|z=0 _ _%('
0z H H

From continuity of ageostrophic component, U,g ~ VEK Uy. The vorticity equation becomes

The e-folding time for vorticity spin-down is

H
Tsq = 5_f
e
Note that the Ekman number describes the ratio between the vertical scales, we have
Ve  1/8,\° H 1 1
Fk = —& — _(_e) , = _f 1= __EkV2f1= Ek-1/2T.
sz 2 H TSd 6@ f \/Z f 2\/’27_[ l

For small Ekman number, the spin-down time is much longer than the inertial period.

Effects of rotation

The frictional force does not directly decelerate the geostrophic flow. It is the vortex stretching
or squashing of planetary vorticity that spins down the geostrophic flow. In fact, the rotation
speeds up the spin-down process relative to a non-rotating fluid. Without rotation, the spin-
down timescale is governed by the diffusive time, which is much longer as shown below

ne _ H? Tsd
Toq =V—=Ek‘1f‘1, - 2/Ek > 1

e sd




Two-dimensional Turbulence

Consider a two-dimensional flow invariant in z-direction with no vertical velocity w = 0. The

continuity equation implies that we can describe the flow with a stream function Y
0y 0y
- @ v=—
Physically this could represent a geostrophic flow, as the vertical rigidity imposed by rotation

V-u=V,-u=0, u=

makes the flow nearly invariant in z-direction, as shown by the Taylor-Proudman theorem

- ou
Q-Vu =0, Q=0k = —=0
0z
For inviscid flow, the momentum equations are
Du 1 dp Dv 1 dp
——fr=———, —+fu=———
Dt P, 0x Dt Po 0y
The equation for KE can be obtained as
OKE

u 1
—=—Vh-(uKE+p—)=—Vh-FE, KE = = (u? + v?)
Jat o 2

For a volume V, if the energy flux F is either zero or periodic at the boundaries, we have
0
—jKEdV=—j Fp-ndA=0
at J, v

In the Fourier domain, the KE spectrum is defined as

—

1 .
KE = E(ﬁﬁ* + UD"), u= jﬁ(k, t) etkx A3k
From the Parseval theorem, we have

. 0 [
jKEdV=jKEd3k, —jKEd3k=0
v 7 at Jp

Now we focus on the vertical vorticity component  and its governing equation. Since w = 0,

the vorticity is advected like a tracer
= @ — a_u = 21/) D_C =
ox dy ' Dt
We can define the enstrophy € and obtain its governing equation as

0

1, 0
5=§(. a—t=—vh'(u3)=—vh'F£
If the enstrophy flux F is either zero or periodic at the boundaries, we similarly have

a]smf—a]écﬁk—o é—l“*
ot J, ~at )y - =2

The enstrophy spectrum is related to the KE spectrum. Note that
__ 1 1 -~ 5 -
KE = E(ﬁﬁ* + 00%) = E(k2 + 1) Yy, {=—-(k*+15)Y



The enstrophy spectrum then can be written as

(¢ =-K*J)" =K?KE, K?=k>+1?

The spectrum can be quantified based on the centroid wavenumber Ky and its bandwidth AK

X _ [K-KEdK _ J(K = Kg)*KEdK
F7 [KEdK B [ KE dK

We want to know how Kj evolves with time, which implies the evolution of spatial scale of 2D
turbulence, either forward cascade (Kj increases with time) or inverse cascade (K decreases
with time). A general property of turbulent flows is that they distribute energy to different

wavenumber components, and thus increase the bandwidth with d(AKy)/dt > 0.

From the definition of AK, we have

o — [EdK X d(AKy) 0 [ [EdK 0Ky
FT[REdk ¥ ot  Ot|[REdK E ot
Under the assumption of conservation of € and KE over the total volume V, we obtain
d(AKg) 0Ky 0Ky
= —2Kg— —
ot re 0 ar <"

It implies that the centroid wavenumber K; becomes smaller, moves to larger scales and thus
there is an inverse cascade. In turbulent flows with low Rossby number, the kinetic energy is
transferred from small to large scales, following an inverse cascade. As the eddies grow in size,

they extend deeper in the water column and become more barotropic.

Turbulent motions strongly constrained by Earth’s rotation follow the rules of 2D turbulence:
¢ Vortices that spin in the same direction orbit one another (Fujiwara effect).

¢ Vortices merge and become larger in size.



