
ESS 363F    Geophysical Fluid Dynamics 

Instructor: Leif Thomas 
Topics to be covered: 
1. Equations of motion in a rotating reference frame 

¨ Boussinesq approximation, shallow water equations, Coriolis force 

2. Effects of stratification, inertia-gravity waves (IGWs) 
¨ Dispersion relations, polarization relation, energy flux 

¨ IGWs in inhomogeneous media, WKB approximation 

3. Balanced motions 
¨ Geostrophic and gradient wind balance, inertial instability 

4. Vorticity and potential vorticity 
¨ Vorticity equation, Taylor-Proudman effect, thermal wind balance 

¨ Potential vorticity in shallow water systems and continuously stratified media 

5. Geostrophic theory 
¨ Geostrophic adjustment, Poincaré and Kelvin waves 

¨ Quasi-geostrophic equations for the shallow water system: Barotropic Rossby waves 

¨ Quasi-geostrophic equations for layered systems: Baroclinic Rossby waves 

6. Baroclinic instability 
7. Effects of friction 

¨ Ekman layer 

¨ Frictional spin-down of geostrophic flows 

8. Two-dimensional turbulence 
 
Textbooks: 

• Geoffrey K. Vallis, Atmospheric and Oceanic Fluid Dynamics, Fundamentals and Large-
scale Circulation 

• Adrian E. Gill, Atmosphere-Ocean Dynamics 
  



Introduction 

Ø Flow dynamics under rotation and stratification 
Earth’s rotation 
The Earth’s rotation gives an angular velocity	Ω = 7.27 × 10!" rad/s. Fluid motions that vary 
with time scales	𝑇𝑇	longer than a day, or whose inherent spin is less than	Ω	are influenced by 
the Earth’s rotation. 

𝑇𝑇 ≥
1
Ω , 𝑈𝑈 ≤ Ω𝐿𝐿 

 
Stratification 
The stably layered ocean has a buoyancy frequency	𝑁𝑁# = 10!$~10!%	(rad/s)2. To move a fluid 
parcel upward with distance	𝐻𝐻, the potential energy increases as 

Δ𝐸𝐸& ∼ 𝜌𝜌'𝑁𝑁#𝐻𝐻 ⋅ 𝐻𝐻 = 𝜌𝜌'𝑁𝑁#𝐻𝐻# 
If in this vertical scale	𝐻𝐻, the flow kinetic energy is less than this amount, the fluid motion is 
influenced by stratification. 

𝐸𝐸( ∼ 𝜌𝜌'𝑈𝑈# < Δ𝐸𝐸& , 𝑈𝑈 < 𝑁𝑁𝐻𝐻 
 
Flows constrained by rotation and stratification 
Using the (temporal) Rossby number and Froude number, we consider the following flows 

Ro) =
1

Ω𝑇𝑇 < 1, Ro =
𝑈𝑈
Ω𝐿𝐿 < 1, Fr =

𝑈𝑈
𝑁𝑁𝐻𝐻 < 1 

As an example, geophysical flows that meet these conditions include 
¨ Waves with slow temporal evolution: Inertia-gravity, Kelvin, Rossby waves 
¨ Balanced motions: Geostrophic and cyclostrophic currents and vortices 
¨ Large-scale instabilities: Inertial, symmetric, barotropic, and baroclinic instabilities 
 
Ø Characteristics of some geophysical fluid flows 
Inertia-gravity waves: Phase and group velocities in different directions 
Kelvin waves: Equatorial and coastal waves with monthly time scales 
Rossby waves: Propagating to the west with yearly time scales 
Geostrophic balance: Coriolis force maintains the strong cross-stream density difference 
Two-dimensional turbulence: Inverse cascade, energy transferred from small to large scales 
 
 
  



Governing Equations for Oceanic Flows 

Ø Governing equations for an oceanic flow 
Variables: 𝑢𝑢, 𝑣𝑣, 𝑤𝑤, 𝑝𝑝, 𝜌𝜌, 𝑇𝑇, 𝑆𝑆 
Equations: EOS, momentum×3, continuity (mass), energy, salinity 
 
Conservation equation 
For a scalar quantity	𝐶𝐶	and its corresponding flux	𝑭𝑭*, the conservation law is 

𝜕𝜕𝐶𝐶
𝜕𝜕𝜕𝜕 + 𝛁𝛁 ⋅ 𝑭𝑭* = 0, H

𝜕𝜕𝐶𝐶
𝜕𝜕𝜕𝜕 	d𝑉𝑉

+
= − L𝑭𝑭* ⋅ 𝒏𝒏N	d𝑆𝑆

,
= − H𝛁𝛁 ⋅ 𝑭𝑭* 	d𝑉𝑉

+
 

 
Conservation of mass (continuity equation) 

𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕 + 𝛁𝛁 ⋅ (𝜌𝜌𝒖𝒖) = 0,

D𝜌𝜌
D𝜕𝜕 + 𝜌𝜌(𝛁𝛁 ⋅ 𝒖𝒖) = 0 

Scaling analysis shows that 
|D𝜌𝜌/D𝜕𝜕|

|𝜌𝜌(𝛁𝛁 ⋅ 𝒖𝒖)| ∼
𝛿𝛿𝜌𝜌/𝑇𝑇
𝜌𝜌𝑈𝑈/𝐿𝐿 ∼

𝛿𝛿𝜌𝜌
𝜌𝜌'

≪ 1 

Here we consider the time scale	𝑇𝑇 ∼ 𝐿𝐿/𝑈𝑈. We thus neglect the density variation in time and 
consider incompressible fluid with	𝛁𝛁 ⋅ 𝒖𝒖 = 0. 
 
Conservation of momentum 

𝜌𝜌
D𝒖𝒖
D𝜕𝜕 = −∇𝑝𝑝 + 𝑭𝑭 − 𝜌𝜌𝜌𝜌𝐤𝐤Z , 𝑭𝑭 = 𝜇𝜇∇#𝒖𝒖 

 
Equation of state 

𝜌𝜌 = 𝜌𝜌'[1 − 𝛼𝛼(𝑇𝑇 − 𝑇𝑇') + 𝛽𝛽(𝑆𝑆 − 𝑆𝑆')], 𝑇𝑇' = 25	℃, 𝑆𝑆' = 35	g/kg 
The thermal expansion and haline contraction coefficients are 

𝛼𝛼 = 2.6 × 10!$	℃!-, 𝛽𝛽 = 7.4 × 10!$	(g/kg)!-	 
 
Conservation of heat and salinity 
The fluxes include convective and diffusive components 

𝑭𝑭. = 𝜌𝜌'𝑐𝑐+𝒖𝒖𝑇𝑇 − 𝑘𝑘.∇𝑇𝑇,
D𝑇𝑇
D𝜕𝜕 = 𝜅𝜅.∇#𝑇𝑇, 𝜅𝜅. = 10!/	m#/s 

𝑭𝑭, = 𝒖𝒖𝑆𝑆 − 𝜅𝜅,∇𝑆𝑆,
D𝑆𝑆
D𝜕𝜕 = 𝜅𝜅,∇#𝑆𝑆, 𝜅𝜅, = 10!0	m#/s 

 
 
 



Ø Boussinesq approximation 
Variation of density in the ocean 
Denote	𝜌𝜌 = 𝜌𝜌' + 𝜌𝜌1	with reference value	𝜌𝜌' = 1024	kg/m3. Over depth,	𝛿𝛿𝜌𝜌 < 40	kg/m3. At 
ocean surface, we have 𝛿𝛿𝜌𝜌 < 5	kg/m3. The relative variation of sea water density is very small. 
 
Horizontal momentum equations 
Based on the following approximation 

1
𝜌𝜌 =

1
𝜌𝜌' + 𝜌𝜌1 ≈

1
𝜌𝜌'

 

The horizontal momentum equations are 
D𝑢𝑢
D𝜕𝜕 = −

1
𝜌𝜌'

𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕 + 𝜈𝜈∇#𝑢𝑢,

D𝑣𝑣
D𝜕𝜕 = −

1
𝜌𝜌'

𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕 + 𝜈𝜈∇#𝑣𝑣 

The kinematic viscosity is	𝜈𝜈 = 𝜇𝜇/𝜌𝜌' = 10!%	m2/s. 
 
Vertical momentum equation 
We first need the background hydrostatic balance 

𝑝𝑝 = 𝑝𝑝' + 𝑝𝑝1, 0 = −
1
𝜌𝜌'

𝜕𝜕𝑝𝑝'
𝜕𝜕𝜕𝜕 − 𝜌𝜌 

Keeping the first-order terms, the vertical momentum equation becomes 
D𝑤𝑤
D𝜕𝜕 = −

1
𝜌𝜌'

𝜕𝜕𝑝𝑝1

𝜕𝜕𝜕𝜕 + 𝜈𝜈∇#𝑤𝑤 −
𝜌𝜌1

𝜌𝜌'
𝜌𝜌 

 
Scaling relations 

𝛁𝛁 ⋅ 𝒖𝒖 = 0								 ⟹ 								𝑤𝑤 ∼
𝑈𝑈𝐻𝐻
𝐿𝐿  

D𝑢𝑢
D𝜕𝜕 ∼

1
𝜌𝜌'

𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕 								 ⟹ 							

1
𝜌𝜌'

𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕 ∼

𝑈𝑈
𝑇𝑇 ⋅

𝐿𝐿
𝐻𝐻	 

 
Hydrostatic balance 
From scaling analysis, we have 

|D𝑤𝑤/D𝜕𝜕|
|𝜌𝜌'!-𝜕𝜕𝑝𝑝1/𝜕𝜕𝜕𝜕| ∼

𝑈𝑈𝐻𝐻/𝐿𝐿𝑇𝑇
𝑈𝑈𝐿𝐿/𝑇𝑇𝐻𝐻 ∼ r

𝐻𝐻
𝐿𝐿s

#

 

Therefore, when the aspect ratio of the flow	𝐻𝐻/𝐿𝐿 ≪ 1, we can also consider hydrostatic balance 
for the perturbed pressure 

0 = −
𝜕𝜕𝑝𝑝1

𝜕𝜕𝜕𝜕 − 𝜌𝜌1𝜌𝜌 

 
 



Ø Summary of governing equations 
Background state 

𝜌𝜌 = 𝜌𝜌' + 𝜌𝜌1, 𝑝𝑝 = 𝑝𝑝' + 𝑝𝑝1,
𝜕𝜕𝑝𝑝'
𝜕𝜕𝜕𝜕 = −𝜌𝜌'𝜌𝜌 

 
Equation of state 

𝜌𝜌 = 𝜌𝜌'[1 − 𝛼𝛼(𝑇𝑇 − 𝑇𝑇') + 𝛽𝛽(𝑆𝑆 − 𝑆𝑆')] 
 
Continuity equation 

𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕 +

𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕 +

𝜕𝜕𝑤𝑤
𝜕𝜕𝜕𝜕 = 0 

 
Momentum equations 

D𝑢𝑢
D𝜕𝜕 = −

1
𝜌𝜌'

𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕 + 𝜈𝜈∇#𝑢𝑢 

D𝑣𝑣
D𝜕𝜕 = −

1
𝜌𝜌'

𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕 + 𝜈𝜈∇#𝑣𝑣 

D𝑤𝑤
D𝜕𝜕 = −

1
𝜌𝜌'

𝜕𝜕𝑝𝑝1

𝜕𝜕𝜕𝜕 + 𝜈𝜈∇#𝑤𝑤 −
𝜌𝜌1

𝜌𝜌'
𝜌𝜌 

 
Diffusion equations 

D𝑇𝑇
D𝜕𝜕 = 𝜅𝜅.∇#𝑇𝑇,

D𝑆𝑆
D𝜕𝜕 = 𝜅𝜅,∇#𝑆𝑆 

  



Equations of Motion in a Rotating Reference Frame 

Ø Shallow water equations 
Consider an inviscid fluid with free surface at	𝜕𝜕 = 𝐻𝐻 + 𝜂𝜂 and for shallow water	(𝐻𝐻/𝐿𝐿)# ≪ 1. 
The pressure is hydrostatic with	𝑝𝑝 = 𝑝𝑝'	satisfying 

𝑝𝑝 = 𝑝𝑝2)3 + 𝜌𝜌'𝜌𝜌(𝐻𝐻 + 𝜂𝜂 − 𝜕𝜕), −
1
𝜌𝜌'

∇4𝑝𝑝 = −𝜌𝜌∇4𝜂𝜂 

The pressure gradient force (PGF) is now written in surface height	𝜂𝜂. Horizontal momentum 
equations become 

D𝒖𝒖4

D𝜕𝜕 = −𝜌𝜌∇4𝜂𝜂 

If the velocity field is initially independent of depth, it will remain so throughout time since 
there are no terms in the equations of motion that will generate vertical structure. 
 
Ø Uniformly rotating shallow water layer 
The horizontal velocity field can be decomposed into 

𝒖𝒖4 = 𝑢𝑢𝛉𝛉v + 𝑣𝑣𝐫𝐫x, 𝑢𝑢 = 𝑢𝑢1 + Ω𝑟𝑟 = 𝑟𝑟
D𝜃𝜃
D𝜕𝜕  

The unit vectors (always following the fluid particle) are given as 

𝐫𝐫x = cos 𝜃𝜃 |̂ + sin 𝜃𝜃 Ä̂, 𝛉𝛉v = − sin 𝜃𝜃 |̂ + cos 𝜃𝜃 Ä̂ 
Therefore, we have 

D𝐫𝐫x
D𝜕𝜕 =

𝑢𝑢
𝑟𝑟 𝛉𝛉v,

D𝛉𝛉v
D𝜕𝜕 = −

𝑢𝑢
𝑟𝑟 𝐫𝐫x 

The acceleration now becomes 

D𝒖𝒖4

D𝜕𝜕 =
D𝑢𝑢
D𝜕𝜕 𝛉𝛉v + 𝑢𝑢

D𝛉𝛉v
D𝜕𝜕 +

D𝑣𝑣
D𝜕𝜕 𝐫𝐫x + 𝑣𝑣

D𝐫𝐫x
D𝜕𝜕 = r

D𝑢𝑢
D𝜕𝜕 +

𝑢𝑢𝑣𝑣
𝑟𝑟 s 𝛉𝛉v + Å

D𝑣𝑣
D𝜕𝜕 −

𝑢𝑢#

𝑟𝑟 Ç 𝐫𝐫x 

From the shallow water equation, we have 
D𝑣𝑣
D𝜕𝜕 −

𝑢𝑢#

𝑟𝑟 = −𝜌𝜌
𝜕𝜕𝜂𝜂
𝜕𝜕𝑟𝑟 ,

D𝑢𝑢
D𝜕𝜕 +

𝑢𝑢𝑣𝑣
𝑟𝑟 = −

𝜌𝜌
𝑟𝑟

𝜕𝜕𝜂𝜂
𝜕𝜕𝜃𝜃 

 
Angular momentum 
The second equation states the evolution of angular momentum. Note that 

𝑳𝑳 = 𝒓𝒓 × 𝒖𝒖4 = 𝑟𝑟𝑢𝑢𝐤𝐤Z ,
D𝑳𝑳
D𝜕𝜕 = 𝒓𝒓 × 𝑭𝑭 

For both sides, we have 
D𝑳𝑳
D𝜕𝜕 = r𝑢𝑢

D𝑟𝑟
D𝜕𝜕 + 𝑟𝑟

D𝑢𝑢
D𝜕𝜕s 𝐤𝐤Z = 𝑟𝑟 r

D𝑢𝑢
D𝜕𝜕 +

𝑢𝑢𝑣𝑣
𝑟𝑟 s 𝐤𝐤Z , 𝒓𝒓 × 𝑭𝑭 = −𝜌𝜌𝒓𝒓 × ∇4𝜂𝜂 = −𝜌𝜌

𝜕𝜕𝜂𝜂
𝜕𝜕𝜃𝜃 𝐤𝐤Z  

 



Governing equations in a rotating frame 
We want governing equations for	𝑢𝑢1	and	𝑣𝑣. Using	𝑢𝑢 = 𝑢𝑢1 + Ω𝑟𝑟, we obtain 

D𝑣𝑣
D𝜕𝜕 −

𝑢𝑢#

𝑟𝑟 = −𝜌𝜌
𝜕𝜕𝜂𝜂
𝜕𝜕𝑟𝑟 								 ⟹ 								

D𝑣𝑣
D𝜕𝜕 −

𝑢𝑢1#

𝑟𝑟 = −𝜌𝜌
𝜕𝜕𝜂𝜂
𝜕𝜕𝑟𝑟 + Ω#𝑟𝑟 + 2Ω𝑢𝑢1 

D𝑢𝑢
D𝜕𝜕 +

𝑢𝑢𝑣𝑣
𝑟𝑟 = −

𝜌𝜌
𝑟𝑟

𝜕𝜕𝜂𝜂
𝜕𝜕𝜃𝜃 								 ⟹ 								

D𝑢𝑢1

D𝜕𝜕 +
𝑢𝑢1𝑣𝑣
𝑟𝑟 = −

𝜌𝜌
𝑟𝑟

𝜕𝜕𝜂𝜂
𝜕𝜕𝜃𝜃 − 2Ω𝑣𝑣 

The Coriolis force (CF) shows up in addition to centrifugal force (CFF). Now decompose	𝜂𝜂	as 

𝜂𝜂 = �̅�𝜂 + 𝜂𝜂1, �̅�𝜂 = 𝜂𝜂' +
Ω#𝑟𝑟#

2𝜌𝜌 , −𝜌𝜌
𝜕𝜕�̅�𝜂
𝜕𝜕𝑟𝑟 = −Ω#𝑟𝑟 

The final equations in the rotating frame become 
D𝑣𝑣
D𝜕𝜕 −

𝑢𝑢1#

𝑟𝑟 = −𝜌𝜌
𝜕𝜕𝜂𝜂1

𝜕𝜕𝑟𝑟 + 2Ω𝑢𝑢1,
D𝑢𝑢1

D𝜕𝜕 +
𝑢𝑢1𝑣𝑣
𝑟𝑟 = −

𝜌𝜌
𝑟𝑟

𝜕𝜕𝜂𝜂1

𝜕𝜕𝜃𝜃 − 2Ω𝑣𝑣 

 
 
Ø Inertial oscillations 
Consider	𝜂𝜂1 = 0 and because	𝑟𝑟	is the distance to Earth’s rotation axis, we have 

|𝑢𝑢1#/𝑟𝑟|
|2Ω𝑢𝑢1| ∼

𝑈𝑈
2Ω𝑟𝑟 ≪ 1, Ro ≪ 1 

This leads to the oscillation equation 
D𝑣𝑣
D𝜕𝜕 = 2Ω𝑢𝑢1,

D𝑢𝑢1

D𝜕𝜕 = −2Ω𝑣𝑣								 ⟹ 								
D#𝑢𝑢1

D𝜕𝜕# + 4Ω#𝑢𝑢1 = 0 

With initial conditions	𝑢𝑢1 = 𝑈𝑈	and	𝑣𝑣 = 0, we have 
𝑢𝑢1 = 𝑈𝑈 cos(2Ω𝜕𝜕) , 𝑣𝑣 = 𝑈𝑈 sin(2Ωt) 

The inertial period is	𝑇𝑇5 = 𝜋𝜋/Ω, and the inertial circle has a radius of	𝑅𝑅5 = 𝑈𝑈/2Ω clockwise.  
 
Interpretation of inertial circle 
¨ In the rotating frame, Coriolis force (CF) serves 

as the centripetal force of the oscillation. 
¨ In the inertial frame, the parcel oscillates radially 

due to the imbalance between PGF and CFF, in 
addition to the overall rotating motion. 

 
Inertial oscillations excited by hurricanes 
It is observed that the cooling wakes and inertial oscillations are stronger to the right of the 
hurricane. For an observing point to the right of the storm, the wind evolves in the clockwise 
direction, possible to resonate with the inertial oscillation. However, for the point to the left, 
the wind evolves in the opposite direction. 



 
Ø Transformation to a rotating frame 
Denote the coordinates of inertial and rotating frames as	𝐱𝐱x 67	and	𝐱𝐱x89). 
The Earth’s rotation gives the angular velocity	𝛀𝛀 = Ω𝐤𝐤Z . The rotating 
frame shares the same z-axis. The time derivatives of the rotating unit 
vectors are 

D𝐱𝐱x89)
D𝜕𝜕 = 𝛀𝛀 × 𝐱𝐱x89),

D𝐲𝐲x89)
D𝜕𝜕 = 𝛀𝛀 × 𝐲𝐲x89) 

For an arbitrary vector 𝐀𝐀, we have 

r
D𝐀𝐀
D𝜕𝜕 s

67
= r

D𝐀𝐀
D𝜕𝜕 s

89)
+ 𝛀𝛀 × 𝐀𝐀 

Therefore, the velocity and acceleration are given as 
𝒖𝒖67 = 𝒖𝒖89) + 𝛀𝛀 × 𝑿𝑿, 𝒂𝒂67 = 𝒂𝒂89) + 2𝛀𝛀 × 𝒖𝒖89) + 𝛀𝛀 × 𝛀𝛀 × 𝑿𝑿 

The momentum equation in the rotating frame thus becomes 

𝜌𝜌(𝒂𝒂89) + 2𝛀𝛀 × 𝒖𝒖89) + 𝛀𝛀 × 𝛀𝛀 × 𝑿𝑿) = −∇𝑝𝑝 + 𝜇𝜇∇#𝒖𝒖89) − 𝜌𝜌𝜌𝜌𝐤𝐤Z  
 
Ø Geopotential 
Both the gravitational force and the centrifugal force can be expressed by potentials, 

Φ = 𝜌𝜌𝜕𝜕 −
Ω#𝑟𝑟#

2 , −∇Φ = −𝜌𝜌𝒛𝒛x − 𝛀𝛀 × 𝛀𝛀 × 𝒓𝒓 

As an example, for a rotating water tank, the geopotential surfaces are paraboloids defined as 

𝜕𝜕 −
Ω#𝑟𝑟#

2𝜌𝜌 = const. 

The water surface	�̅�𝜂	is also a geopotential surface in this case, since PGF balances with	∇Φ. 
 
For the rotating planet, geopotential surfaces are oblate spheroids. It is convenient to redefine 
the horizontal coordinates to be parallel to geopotential surfaces, and then confines the effective 
gravitational force to the vertical momentum equation in the new coordinate system. 
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Ø Simplified equations of motion on a sphere 
At location	(lat, lon) = (𝜑𝜑' , 𝜆𝜆'), define a local Cartesian coordinate 
on a plane tangent to the sphere. 

𝜕𝜕 = 𝑅𝑅: cos 𝜑𝜑 ⋅ (𝜆𝜆 − 𝜆𝜆'), 𝜕𝜕 = 𝑅𝑅:(𝜑𝜑 − 𝜑𝜑'), 𝜕𝜕 = 𝑟𝑟 − 𝑅𝑅: 
The zonal direction is 𝜕𝜕, and the meridional direction is	𝜕𝜕. 
 
The Coriolis parameter is obtained from the projection of	2𝛀𝛀 

𝒇𝒇 = 2𝛀𝛀 = 2Ω sin 𝜑𝜑 𝐤𝐤Z + 2Ω cos 𝜑𝜑 Ä̂ = 𝑓𝑓𝐤𝐤Z + 𝑓𝑓∗ Ä̂ 
 
Momentum equation 

𝜌𝜌
D𝒖𝒖
D𝜕𝜕 = −∇𝑝𝑝 + 𝜇𝜇∇#𝒖𝒖 − 𝜌𝜌𝜌𝜌𝒌𝒌v 

In the rotating frame, the momentum equation under Boussinesq assumption becomes 
D𝒖𝒖89)

D𝜕𝜕 + 𝒇𝒇 × 𝒖𝒖89) = −
1
𝜌𝜌'

∇𝑝𝑝1 + 𝜈𝜈∇#𝒖𝒖89) −
𝜌𝜌1

𝜌𝜌'
𝜌𝜌<==	𝐤𝐤Z  

The subscripts and primes will be neglected from now on. 
 
Coriolis parameter 

𝒇𝒇 × 𝒖𝒖 = (𝑓𝑓∗𝑤𝑤 − 𝑓𝑓𝑣𝑣)|̂ + 𝑓𝑓𝑢𝑢Ä̂ − 𝑓𝑓∗𝑢𝑢𝐤𝐤Z  
Based on the following approximation 

𝜑𝜑 − 𝜑𝜑' =
𝜕𝜕
𝑅𝑅:

∼
𝐿𝐿
𝑅𝑅:

≪ 1 

The Taylor expansion of Coriolis parameter gives 
𝑓𝑓 = 2Ω sin 𝜑𝜑 ≈ 2Ω sin 𝜑𝜑' + 2Ω cos 𝜑𝜑' ⋅ (𝜑𝜑 − 𝜑𝜑') 

The beta-plane approximation assumes 

𝑓𝑓 = 𝑓𝑓' + 𝛽𝛽𝜕𝜕, 𝛽𝛽 =
2Ω
𝑅𝑅:

cos 𝜑𝜑' 

The 𝑓𝑓-plane approximation assumes 

𝑓𝑓 = 𝑓𝑓' ,
𝛽𝛽𝐿𝐿
𝑓𝑓'

≪ 1 

The traditional approximation neglects	𝑓𝑓∗	and assumes 

(𝒇𝒇 × 𝒖𝒖)> ≈ −𝑓𝑓𝑣𝑣,
𝑓𝑓∗𝑊𝑊
𝑓𝑓𝑈𝑈 ~

𝐻𝐻
𝐿𝐿 cot 𝜑𝜑 ≪ 1 

  

     
   

           
                           

 

     

               



Inertia-Gravity Wave (IGW) 

Ø Static stability in a stratified fluid 
Consider the fluid density profile 

𝜌𝜌(𝜕𝜕) = 𝜌𝜌' + �̅�𝜌(𝜕𝜕), 0 = −
1
𝜌𝜌'

d�̅�𝑝
d𝜕𝜕 −

�̅�𝜌
𝜌𝜌'

𝜌𝜌 

If a fluid parcel is displaced adiabatically from	𝜕𝜕 = 𝜕𝜕'	to	𝜕𝜕 = 𝜕𝜕' + ℎ, its density is preserved 
as	�̅�𝜌? = �̅�𝜌(𝜕𝜕'). The vertical momentum equation, evaluated at parcel location	𝜕𝜕 = 𝜕𝜕' + ℎ, is 

D𝑤𝑤
D𝜕𝜕 = −

1
𝜌𝜌'

d�̅�𝑝
d𝜕𝜕 −

�̅�𝜌?
𝜌𝜌'

𝜌𝜌 = −
𝜌𝜌
𝜌𝜌'

ö�̅�𝜌? − �̅�𝜌(𝜕𝜕' + ℎ)õ 

For small displacement, we have 

�̅�𝜌(𝜕𝜕' + ℎ) ≈ �̅�𝜌(𝜕𝜕') +
d�̅�𝜌
d𝜕𝜕

(𝜕𝜕')	ℎ 

Now we notice the buoyancy frequency	𝑁𝑁, and obtain the oscillation equation 

𝑁𝑁# = −
𝜌𝜌
𝜌𝜌'

∂�̅�𝜌
∂𝜕𝜕 ,

D𝑤𝑤
D𝜕𝜕 =

D#ℎ
D𝜕𝜕# ≈ −𝑁𝑁#ℎ 

Stable stratification means	𝑁𝑁# > 0	with fluid parcels oscillating around equilibrium positions 
at buoyancy frequency	𝑁𝑁. Unstable stratification implies convection, fluid parcels accelerating 
away from equilibrium positions. 
 
Energetics 
Under stable stratification, an external force is required to move a fluid parcel away from its 
original equilibrium position 

𝐹𝐹:>@ = −𝐹𝐹AB'C = 𝑁𝑁#ℎ, 𝐸𝐸 = H 𝐹𝐹:>@	dℎ
D

E
=

1
2 𝑁𝑁#𝐻𝐻# 

Therefore, fluid parcels tend to move along the nearly horizontal density surfaces. 
 
Inertia-gravity oscillation 
Consider a fluid parcel moves in the	𝜕𝜕𝜕𝜕-plane with angle	𝛼𝛼	from	𝜕𝜕-axis. In the slanted direction, 
the small displacement is	𝛿𝛿	and the restoring force is	𝐹𝐹F. 

𝜹𝜹 = ℎ𝐤𝐤Z + 𝑌𝑌Ä̂ = 𝛿𝛿 sin 𝛼𝛼 𝐤𝐤Z + 𝛿𝛿 cos 𝛼𝛼 Ä̂, 𝑭𝑭 = 𝐹𝐹G𝐤𝐤Z + 𝐹𝐹C Ä̂ = −𝑁𝑁#ℎ𝐤𝐤Z − 𝑓𝑓𝑢𝑢Ä̂ 

In	𝜕𝜕-direction, we obtain the conservation of absolute momentum	𝑀𝑀 
D𝑢𝑢
D𝜕𝜕 − 𝑓𝑓𝑣𝑣 =

D
D𝜕𝜕

(𝑢𝑢 − 𝑓𝑓𝑌𝑌) = 0, 𝑀𝑀 = 𝑢𝑢 − 𝑓𝑓𝑌𝑌 = const. 

With the initial conditions	𝑢𝑢 = 0	and	𝑌𝑌 = 0, we can set	𝑢𝑢 = 𝑓𝑓𝑌𝑌. This gives 

𝑭𝑭 = −𝑁𝑁#ℎ𝐤𝐤Z − 𝑓𝑓#𝑌𝑌Ä̂, 𝐹𝐹F = 𝑭𝑭 ⋅ 𝜹𝜹 = −𝛿𝛿#(𝑁𝑁# sin# 𝛼𝛼 + 𝑓𝑓# cos# 𝛼𝛼) 
 



The angular frequency of the oscillation is 
𝜔𝜔# = 𝑁𝑁# sin# 𝛼𝛼 + 𝑓𝑓# cos# 𝛼𝛼 

For ocean we have	𝑁𝑁 > 𝑓𝑓. In the vertical direction	𝜔𝜔32H = 𝑁𝑁	governed by buoyancy. In the 
horizontal direction	𝜔𝜔367 = 𝑓𝑓, which is the inertial oscillation. 
 
Ø Inertia-gravity wave (IGW) 
With the following assumptions: 

a. Small perturbation caused by waves such that advection terms are neglected 
b. Constant buoyancy frequency from the background profile 

𝜌𝜌 = 𝜌𝜌' + �̅�𝜌(𝜕𝜕) + 𝜌𝜌1(𝒙𝒙, 𝜕𝜕), 𝑝𝑝 = 𝑝𝑝' + �̅�𝑝 + 𝑝𝑝1, 𝑁𝑁# = −
𝜌𝜌
𝜌𝜌'

∂�̅�𝜌
∂𝜕𝜕 , 𝑏𝑏 = −

𝜌𝜌1

𝜌𝜌'
𝜌𝜌 

c. Neglect N-S component of the Coriolis parameter, i.e., 𝑓𝑓-plane approximation 
d. Inviscid and adiabatic fluid: 𝜈𝜈 = 0	and	D𝜌𝜌/D𝜕𝜕 = 0 

From the conservation of density, neglecting second order terms gives 
D𝜌𝜌
D𝜕𝜕 = 0,

𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕 + 𝒖𝒖 ⋅ ∇𝜌𝜌 ≈

𝜕𝜕𝜌𝜌1

𝜕𝜕𝜕𝜕 + 𝑤𝑤
𝜕𝜕�̅�𝜌
𝜕𝜕𝜕𝜕 = 0 

This leads to the buoyancy equation, and together with continuity 
∂𝑏𝑏
∂𝜕𝜕 = −𝑁𝑁#𝑤𝑤, ∇ ⋅ 𝒖𝒖 = 0 

the momentum equations become 
𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕 − 𝑓𝑓𝑣𝑣 = −

1
𝜌𝜌'

𝜕𝜕𝑝𝑝1

𝜕𝜕𝜕𝜕 ,
𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕 + 𝑓𝑓𝑢𝑢 = −

1
𝜌𝜌'

𝜕𝜕𝑝𝑝1

𝜕𝜕𝜕𝜕 ,
𝜕𝜕𝑤𝑤
𝜕𝜕𝜕𝜕 = −

1
𝜌𝜌'

𝜕𝜕𝑝𝑝1

𝜕𝜕𝜕𝜕 + 𝑏𝑏 

Apply	−∇4 ⋅	to the horizontal momentum equation, we have 
𝜕𝜕
𝜕𝜕𝜕𝜕

(−∇4 ⋅ 𝒖𝒖4) + 𝑓𝑓𝑓𝑓 =
𝜕𝜕
𝜕𝜕𝜕𝜕 r

𝜕𝜕𝑤𝑤
𝜕𝜕𝜕𝜕 s + 𝑓𝑓𝑓𝑓 =

1
𝜌𝜌'

∇4
#𝑝𝑝1, 𝑓𝑓 =

𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕 −

𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕 

Apply	𝜕𝜕>	to	𝑣𝑣-component and	𝜕𝜕C	to	𝑢𝑢-component, then subtract the two equations, we have 
𝜕𝜕𝑓𝑓
𝜕𝜕𝜕𝜕 = −𝑓𝑓(∇4 ⋅ 𝒖𝒖4) = 𝑓𝑓

𝜕𝜕𝑤𝑤
𝜕𝜕𝜕𝜕  

Using this expression, we obtain 

Å
𝜕𝜕#

𝜕𝜕𝜕𝜕# + 𝑓𝑓#Ç
𝜕𝜕𝑤𝑤
𝜕𝜕𝜕𝜕 =

1
𝜌𝜌'

∇4
# 𝜕𝜕𝑝𝑝1

𝜕𝜕𝜕𝜕  

Apply	𝜕𝜕G	and use the following result 
1
𝜌𝜌'

𝜕𝜕#𝑝𝑝1

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 = −
𝜕𝜕#𝑤𝑤
𝜕𝜕𝜕𝜕# +

𝜕𝜕𝑏𝑏
𝜕𝜕𝜕𝜕 = −

𝜕𝜕#𝑤𝑤
𝜕𝜕𝜕𝜕# − 𝑁𝑁#𝑤𝑤 

The IGW equation is 
𝜕𝜕#

𝜕𝜕𝜕𝜕# ∇#𝑤𝑤 + 𝑓𝑓# 𝜕𝜕#𝑤𝑤
𝜕𝜕𝜕𝜕# + 𝑁𝑁#∇4

#𝑤𝑤 = 0 

 



 
Dispersion relation 
We seek a propagating wave solution	𝑤𝑤 = 𝑤𝑤' exp[𝑖𝑖(𝒌𝒌 ⋅ 𝒙𝒙 − 𝜔𝜔𝜕𝜕)]. Denote the wavenumber as 

𝒌𝒌 = (𝑘𝑘, 𝑙𝑙, 𝑚𝑚), |𝒌𝒌4| = |𝒌𝒌| cos 𝜙𝜙 , 𝑚𝑚 = |𝒌𝒌| sin 𝜙𝜙 
The dispersion relation of IGW becomes 

𝜔𝜔#|𝒌𝒌|𝟐𝟐 − 𝑓𝑓#𝑚𝑚# − 𝑁𝑁#|𝒌𝒌4|# = 0, 𝜔𝜔# = 𝑁𝑁# cos# 𝜙𝜙 + 𝑓𝑓# sin# 𝜙𝜙 
It can be also written as 

𝑚𝑚#

|𝒌𝒌4|# =
𝑁𝑁# − 𝜔𝜔#

𝜔𝜔# − 𝑓𝑓#  

This shows that at a given frequency, the ratio of the vertical to the horizontal wavenumber is 
fixed. Note that for the fluid parcel motion, we previously obtain 

𝜔𝜔# = 𝑁𝑁# sin# 𝛼𝛼 + 𝑓𝑓# cos# 𝛼𝛼 
This shows that	𝒌𝒌	and	𝒖𝒖	are orthogonal to each other, which is also shown by continuity as 

∇ ⋅ 𝒖𝒖 = 0								 ⟹ 								𝒌𝒌 ⋅ 𝒖𝒖 = 0, 𝒌𝒌 ⊥ 𝒖𝒖 
The wavenumber is perpendicular to the particle motion. We see that	𝜔𝜔 ∈ [𝑓𝑓, 𝑁𝑁]	in a rotating 
fluid, and without rotation the frequency can go to zero. As	|𝒌𝒌4| ≪ 𝑚𝑚, the parcel displacements 
are nearly horizontal, and gravity provides only a weak restoring force. The limiting case is the 
inertial oscillation. 
 
When the forcing frequency	𝜔𝜔	falls out of the range	[𝑓𝑓, 𝑁𝑁], the wave is evanescent around the 
source which does not freely propagate. As an example, the diurnal tides moving around the 
seamount can become sub-inertial for certain latitudes. 
 
Phase and group velocities 

𝒄𝒄? =
𝜕𝜕𝒙𝒙
𝜕𝜕𝜕𝜕∞

J
=

𝜔𝜔
|𝒌𝒌|# 𝒌𝒌, 𝒄𝒄K = ∇𝒌𝒌𝜔𝜔 = r

𝜕𝜕𝜔𝜔
𝜕𝜕𝑘𝑘 ,

𝜕𝜕𝜔𝜔
𝜕𝜕𝑙𝑙 ,

𝜕𝜕𝜔𝜔
𝜕𝜕𝑚𝑚s 
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From the dispersion relation, we have 

𝑐𝑐K> =
𝑁𝑁# − 𝑓𝑓#

𝜔𝜔|𝒌𝒌|$ 𝑘𝑘𝑚𝑚#, 𝑐𝑐K
C =

𝑁𝑁# − 𝑓𝑓#

𝜔𝜔|𝒌𝒌|$ 𝑙𝑙𝑚𝑚#, 𝑐𝑐KG = −
𝑁𝑁# − 𝑓𝑓#

𝜔𝜔|𝒌𝒌|$ 𝑚𝑚|𝒌𝒌4|# 

The magnitude of the group velocity is thus 

±𝒄𝒄K± =
𝑁𝑁# − 𝑓𝑓#

𝜔𝜔|𝒌𝒌|M 𝑚𝑚|𝒌𝒌4| 

For IGWs, the group velocity is perpendicular to the phase velocity, as	𝒄𝒄K ⋅ 𝒌𝒌 = 0. 

 
Energy propagation & Group velocity 
For a narrow band signal propagating in	𝜕𝜕-direction with	Δ𝑘𝑘 ≪ 𝑘𝑘' 

𝑢𝑢(𝜕𝜕, 𝜕𝜕) = H 𝐴𝐴Z(𝑘𝑘 − 𝑘𝑘')	𝑒𝑒5[(>!O(()@]	d𝑘𝑘
(!ST(

(!!T(
 

Expand	𝜔𝜔(𝑘𝑘)	around	𝑘𝑘'	gives 

𝑢𝑢(𝜕𝜕, 𝜕𝜕) ≈ 𝑒𝑒5[(!>!O((!)@] H 𝐴𝐴Z(𝑘𝑘)	𝑒𝑒5(U>!*"((!)@V	d𝑘𝑘
T(

!T(
= 𝐴𝐴¥𝜕𝜕 − 𝑐𝑐K𝜕𝜕µ𝑒𝑒5[(!>!O((!)@] 

The energy of the wave propagates with the group velocity. 
 
Polarization relations 
Given the amplitude of the pressure wave, the velocity components have amplitudes 

𝑢𝑢' =
𝑘𝑘𝜔𝜔 + 𝑖𝑖𝑙𝑙𝑓𝑓
𝜔𝜔# − 𝑓𝑓# ⋅

𝑝𝑝'
𝜌𝜌'

, 𝑣𝑣' =
𝑙𝑙𝜔𝜔 − 𝑖𝑖𝑘𝑘𝑓𝑓
𝜔𝜔# − 𝑓𝑓# ⋅

𝑝𝑝'
𝜌𝜌'

, 𝑤𝑤' =
−𝑚𝑚𝜔𝜔

𝑁𝑁# − 𝜔𝜔# ⋅
𝑝𝑝'
𝜌𝜌'

 

The buoyancy amplitude is 

𝑏𝑏' =
𝑖𝑖𝑚𝑚𝑁𝑁#

𝑁𝑁# − 𝜔𝜔# ⋅
𝑝𝑝'
𝜌𝜌'

 

The phase-averaged energy flux, Reynold stress is defined as 

(𝑝𝑝𝒖𝒖)J =
1

2𝜋𝜋 H 𝑝𝑝𝒖𝒖	d𝜙𝜙
W!SX

W#!X
, ¥𝑢𝑢5𝑢𝑢YµJ =

1
2𝜋𝜋 H 𝑢𝑢5𝑢𝑢Y 	d𝜙𝜙

W!SX

W#!X
 

As an example, for a real amplitude	𝑝𝑝'	with	𝑙𝑙 = 0 

𝑢𝑢' =
𝑘𝑘𝜔𝜔

𝜔𝜔# − 𝑓𝑓# ⋅
𝑝𝑝'
𝜌𝜌'

, 𝑢𝑢 = 𝑢𝑢' cos Φ , 𝑝𝑝 = 𝑝𝑝' cos Φ 

The wave energy flux is 

(𝑝𝑝𝑢𝑢)J =
𝑢𝑢'𝑝𝑝'

2 =
1
2 ⋅

𝑘𝑘𝜔𝜔
𝜔𝜔# − 𝑓𝑓# ⋅

𝑝𝑝'#

𝜌𝜌'
 

Note that when	𝜔𝜔 → 𝑓𝑓, the inertial oscillation does not involve pressure perturbation, so we 
should use other amplitudes instead of	𝑝𝑝'. 
 



 
The polarization relations give the particle motion, which is a tilted ellipse. The group velocity 
points within the plane of particle motion. 
¨ Near inertial wave (𝜔𝜔 → 𝑓𝑓), more horizontal motion and energy propagation. 
¨ Near buoyancy wave (𝜔𝜔 → 𝑁𝑁), more vertical motion and energy propagation. 
 
Consider a pressure wave moving in	𝒌𝒌	direction in the horizontal plane 

𝜕𝜕𝑢𝑢∥

𝜕𝜕𝜕𝜕 = −
1
𝜌𝜌'

𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕∥

+ 𝑓𝑓𝑢𝑢[,
𝜕𝜕𝑢𝑢[

𝜕𝜕𝜕𝜕 = −𝑓𝑓𝑢𝑢∥ 

The plane wave solution gives 

−𝑖𝑖𝜔𝜔𝑢𝑢∑[ = −𝑓𝑓𝑢𝑢∑∥, ∏
𝑢𝑢∑[
𝑢𝑢∑∥

∏ =
𝑓𝑓
𝜔𝜔 < 1 

This implies that measurement of horizontal velocity components can estimate the frequency. 
 
Kinetic and potential energy of IGW 
The kinetic energy and potential energy are 

KE =
𝜌𝜌'
2 𝑢𝑢5𝑢𝑢5 , PE =

𝜌𝜌'
2 𝑁𝑁#ℎ# =

𝜌𝜌'
2

𝑏𝑏#

𝑁𝑁# 

To see how potential energy relates to buoyancy, integrate the buoyancy equation 

H
𝜕𝜕𝑏𝑏
𝜕𝜕𝜕𝜕 	d𝜕𝜕

@

E
= − H 𝑤𝑤𝑁𝑁#	d𝜕𝜕

@

E
, 𝑏𝑏(𝜕𝜕) = −𝑁𝑁#ℎ(𝜕𝜕) 

The phase-averaged energy density satisfies 

Eº = KEΩΩΩΩ + PEΩΩΩΩ,
KEΩΩΩΩ
PEΩΩΩΩ =

(𝜔𝜔# + 𝑓𝑓#)𝑁𝑁# − 2𝜔𝜔#𝑓𝑓#

(𝜔𝜔# − 𝑓𝑓#)𝑁𝑁#  

¨ Near inertial waves with	𝜔𝜔 → 𝑓𝑓,  PEΩΩΩΩ → 0	and energy is in the form of kinetic energy. 
¨ Near buoyancy waves with	𝜔𝜔 → 𝑁𝑁, the energy is equipartitioned with	KEΩΩΩΩ = PEΩΩΩΩ. 
 
 



Energy equation 
From the momentum equation, multiply by velocity component gives 

𝑢𝑢
𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕 = 𝑓𝑓𝑢𝑢𝑣𝑣 −

𝑢𝑢
𝜌𝜌'

𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕 , 𝑣𝑣

𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕 = −𝑓𝑓𝑢𝑢𝑣𝑣 −

𝑣𝑣
𝜌𝜌'

𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕 , 𝑤𝑤

𝜕𝜕𝑤𝑤
𝜕𝜕𝜕𝜕 = −

𝑤𝑤
𝜌𝜌'

𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕 + 𝑤𝑤𝑏𝑏 

The kinetic energy is then governed by (using continuity	∇ ⋅ 𝒖𝒖 = 0) 
𝜕𝜕KE
∂𝜕𝜕 = −(𝒖𝒖 ⋅ ∇𝑝𝑝) + 𝜌𝜌'𝑤𝑤𝑏𝑏 = −(∇ ⋅ 𝑝𝑝𝒖𝒖) + 𝜌𝜌'𝑤𝑤𝑏𝑏 

The kinetic energy density is 
𝜕𝜕KEΩΩΩΩ
∂𝜕𝜕 = −∇ ⋅ 𝑭𝑭\ + 𝜌𝜌'𝑤𝑤𝑏𝑏ΩΩΩΩ, 𝑭𝑭] = 𝑝𝑝𝒖𝒖ΩΩΩΩ 

For the buoyancy equation, multiply by	𝜌𝜌'𝑏𝑏/𝑁𝑁#	gives 
𝜌𝜌'𝑏𝑏
𝑁𝑁#

𝜕𝜕𝑏𝑏
𝜕𝜕𝜕𝜕 = −𝜌𝜌'𝑤𝑤𝑏𝑏,

𝜕𝜕PEΩΩΩΩ
∂𝜕𝜕 = −𝜌𝜌'𝑤𝑤𝑏𝑏ΩΩΩΩ 

From the polarization relations, the energy flux is proportional to the group velocity 
𝜕𝜕Eº
∂𝜕𝜕 = −∇ ⋅ 𝑭𝑭], 𝑭𝑭] = 𝑝𝑝𝒖𝒖ΩΩΩΩ = Eº𝒄𝒄K 

 
Ø IGW in a non-uniform medium 

Consider a layer of high stratification with larger	𝑁𝑁#(𝜕𝜕). From dispersion relation, with fixed	𝜔𝜔 
the particle motion angle	𝛼𝛼	becomes smaller, the ray path becomes more horizontal. This is 
also shown by the group velocity direction (𝑠𝑠	is the horizontal distance) 

d𝜕𝜕
d𝑠𝑠 =

𝑐𝑐KG

𝑐𝑐K4
= −

|𝒌𝒌4|
𝑚𝑚 = −sgn(𝑚𝑚)ø𝜔𝜔# − 𝑓𝑓#

𝑁𝑁# − 𝜔𝜔# 

 
WKB approximation 

For a vertically varying	𝑁𝑁#(𝜕𝜕), we seek	𝑤𝑤 = 𝐺𝐺(𝜕𝜕)	𝑒𝑒5((>S^C!O@). The IGW equation becomes 

𝐺𝐺11(𝜕𝜕) + 𝑚𝑚#𝐺𝐺(𝜕𝜕) = 0, 𝑚𝑚#(𝜕𝜕) =
𝑁𝑁#(𝜕𝜕) − 𝜔𝜔#

𝜔𝜔# − 𝑓𝑓# (𝑘𝑘# + 𝑙𝑙#) 

 

𝑓𝑓 = 0 



Consider	𝐺𝐺(𝜕𝜕) = 𝐴𝐴(𝜕𝜕)	𝑒𝑒5J(G), the real and imaginary parts satisfy 

r
dΦ
d𝜕𝜕 s

#

= 𝑚𝑚# +
𝐴𝐴11

𝐴𝐴 ,
2𝐴𝐴1

𝐴𝐴 = −
Φ11

Φ1  

WKB approximation states 

𝑚𝑚# ≫
𝐴𝐴11

𝐴𝐴 , Φ = ± H 𝑚𝑚(𝜕𝜕)	d𝜕𝜕 , 𝐴𝐴(𝜕𝜕) = 𝐴𝐴' √
𝑚𝑚'

𝑚𝑚(𝜕𝜕)ƒ
-/#

 

From scaling analysis, WKB approximation is justified in large-wavenumber limit 
𝑚𝑚#𝐻𝐻# ≫ 1 

This only holds for hydrostatic IGW (near-inertial limit) with 
𝐻𝐻
𝐿𝐿 ≪ 1,

|𝒌𝒌4|
𝑚𝑚 ≪ 1 

In this limit, the approximated dispersion relation becomes 

𝜔𝜔# ≈ 𝑓𝑓# + 𝑁𝑁# |𝒌𝒌4|#

𝑚𝑚# ≪ 𝑁𝑁# 

The hydrostatic limit simplifies the buoyancy equation with the Boussinesq approximation 

0 = −
1
𝜌𝜌'

𝜕𝜕𝑝𝑝1

𝜕𝜕𝜕𝜕 + 𝑏𝑏, Å
𝜕𝜕#

𝜕𝜕𝜕𝜕# + 𝑓𝑓#Ç
𝜕𝜕#𝑤𝑤
𝜕𝜕𝜕𝜕# + 𝑁𝑁#∇4

#𝑤𝑤 = 0 

For a steady stratification, a propagating wave will conserve its frequency with	𝑚𝑚 ∝ 𝑁𝑁. For a 
steady state wave field, if the medium only varies in	𝜕𝜕-direction, the energy equation gives 

∇ ⋅ 𝑭𝑭] = ∇ ⋅ 𝐸𝐸Ω𝒄𝒄K = 0,
𝜕𝜕
𝜕𝜕𝜕𝜕 ¥𝐸𝐸Ω𝑐𝑐KGµ = 0 

The approximated dispersion relation gives 

𝑐𝑐KG =
𝜕𝜕𝜔𝜔
𝜕𝜕𝑚𝑚 = −

𝜔𝜔# − 𝑓𝑓#

𝜔𝜔𝑚𝑚 , 𝐸𝐸Ω ∝ 𝑚𝑚 ∝ 𝑁𝑁 

For near-inertial waves, the energy is dominated by the kinetic energy. From continuity, we 
have the scaling relation 

|𝒖𝒖4|# ∼
𝑚𝑚#𝐴𝐴#

𝑘𝑘4
# ≫ 𝑤𝑤#, 𝐸𝐸Ω ∼ |𝒖𝒖4|# ∼ 𝑚𝑚#𝐴𝐴# ∝ 𝑚𝑚 

This implies the shoaling of IGWs as propagating into regions of enhanced stratification. 
 
Ray tracing equation 
For a medium that slowly varies with time or space, consider a solution of the form 

𝐴𝐴(𝒙𝒙, 𝜕𝜕)𝑒𝑒5J(𝒙𝒙,@), 𝜔𝜔 = −
𝜕𝜕Φ
𝜕𝜕𝜕𝜕 , 𝒌𝒌 = ∇Φ 

The local wavenumber and frequency have the relation 
𝜕𝜕𝒌𝒌
𝜕𝜕𝜕𝜕 =

𝜕𝜕
𝜕𝜕𝜕𝜕

(∇Φ) = ∇ r
𝜕𝜕Φ
𝜕𝜕𝜕𝜕 s = −∇𝜔𝜔 

 



Consider a general dispersion relation given by medium properties	𝜆𝜆-, ⋯ 𝜆𝜆b 
𝑊𝑊(𝒌𝒌; 𝜆𝜆-, ⋯ , 𝜆𝜆b) = 0 

For IGWs, the expression is 

𝑊𝑊(𝒌𝒌; 𝑁𝑁#, 𝑓𝑓#) = ø𝑁𝑁#
|𝒌𝒌4|#

|𝒌𝒌|# + 𝑓𝑓# 𝑚𝑚#

|𝒌𝒌|# 

The evolution of wavenumber	𝒌𝒌	thus follows 

𝜕𝜕𝒌𝒌
𝜕𝜕𝜕𝜕 = −∇𝜔𝜔 = − »

∂𝑊𝑊
𝜕𝜕𝒌𝒌 ⋅ ∇𝒌𝒌 + …

𝜕𝜕𝑊𝑊
𝜕𝜕𝜆𝜆b

∇𝜆𝜆b
b

  = −𝒄𝒄K ⋅ ∇𝒌𝒌 − …
𝜕𝜕𝑊𝑊
𝜕𝜕𝜆𝜆b

(∇𝜆𝜆b)
b

 

For a vertically varying medium, horizontal wavenumbers are conserved. The evolution of	𝜔𝜔	is 
similarly derived as 

𝜕𝜕𝜔𝜔
𝜕𝜕𝜕𝜕 =

∂𝑊𝑊
𝜕𝜕𝒌𝒌 ⋅

𝜕𝜕𝒌𝒌
𝜕𝜕𝜕𝜕 + …

𝜕𝜕𝑊𝑊
𝜕𝜕𝜆𝜆b

𝜕𝜕𝜆𝜆b
𝜕𝜕𝜕𝜕

b

= −𝒄𝒄K ⋅ ∇𝜔𝜔 + …
𝜕𝜕𝑊𝑊
𝜕𝜕𝜆𝜆b

𝜕𝜕𝜆𝜆b
𝜕𝜕𝜕𝜕

b

 

For a medium without temporal variation, the angular frequency is conserved. We define the 
material derivative of the wave packet as 

DK

D𝜕𝜕 =
𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝒄𝒄K ⋅ ∇ 

The ray equations can be written as 

DK𝒌𝒌
D𝜕𝜕 = − …

𝜕𝜕𝑊𝑊
𝜕𝜕𝜆𝜆b

(∇𝜆𝜆b)
b

,
DK𝜔𝜔
D𝜕𝜕 = …

𝜕𝜕𝑊𝑊
𝜕𝜕𝜆𝜆b

𝜕𝜕𝜆𝜆b
𝜕𝜕𝜕𝜕

b

,
DK𝒙𝒙c

D𝜕𝜕 = 𝒄𝒄K 

  



Balanced Flows 

Ø Geostrophic balance 
In a rotating fluid, IGWs with	𝜔𝜔 < 𝑓𝑓	cannot exist. For sub-inertial motion, consider the scales 

𝜕𝜕, 𝜕𝜕 ∼ 𝐿𝐿, 𝜕𝜕 ∼ 𝐻𝐻, 𝜕𝜕 ∼ 𝑇𝑇, 𝑢𝑢, 𝑣𝑣 ∼ 𝑈𝑈, 𝑤𝑤 ∼
𝑈𝑈𝐻𝐻
𝐿𝐿 , 𝑝𝑝 ∼ 𝜌𝜌'𝑈𝑈𝑓𝑓𝐿𝐿 

The 𝜕𝜕-momentum equations (rotating frame) become 
1

𝑓𝑓𝑇𝑇
𝜕𝜕𝑢𝑢∑
𝜕𝜕�̃�𝜕 − 𝑣𝑣∑ +

𝑈𝑈
𝑓𝑓𝐿𝐿 𝒖𝒖Ã ⋅ ∇Õ𝑢𝑢∑ = −

𝜕𝜕𝑝𝑝∑
𝜕𝜕𝜕𝜕∑ , Rod

𝜕𝜕𝑢𝑢∑
𝜕𝜕�̃�𝜕 − 𝑣𝑣∑ + Ro	𝒖𝒖Ã ⋅ ∇Õ𝑢𝑢∑ = −

𝜕𝜕𝑝𝑝∑
𝜕𝜕𝜕𝜕∑ 

When the Rossby numbers are small, we obtain the geostrophic balance 

−𝑓𝑓𝑣𝑣K = −
1
𝜌𝜌'

𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕 , 𝑓𝑓𝑢𝑢K = −

1
𝜌𝜌'

𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕 , 𝒇𝒇 × 𝒖𝒖K = −

1
𝜌𝜌'

∇4𝑝𝑝 

The geostrophic flow field can be solved as 

𝒖𝒖K =
1

𝑓𝑓𝜌𝜌'
𝐳𝐳x × ∇4𝑝𝑝 

 
Properties of geostrophic flows 

¨ Perpendicular to the PGF. 
¨ Horizontal divergence is zero. The flow can be described by geostrophic stream function 

∇4 ⋅ 𝒖𝒖K = 0, 𝑣𝑣K =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 , 𝑢𝑢K = −

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕  

¨ The geostrophic stream function is proportional to pressure. 

−𝑓𝑓
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = −

1
𝜌𝜌'

𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕 , 𝜕𝜕 =

𝑝𝑝
𝜌𝜌'𝑓𝑓 

¨ Isobars are parallel to the streamlines. Counter-clockwise for low pressure center in NH. 
¨ Speed of the geostrophic flow is the magnitude of the gradient of stream function 

–𝑢𝑢K# + 𝑣𝑣K# = |∇𝜕𝜕| 

 
Ø Cyclo-geostrophic (gradient wind) balance in a rotating fluid 
In an axisymmetric steady flow with small temporal Rossby number, the gradient wind balance 
is the radial momentum balance 

−
1
𝜌𝜌'

𝜕𝜕𝑝𝑝
𝜕𝜕𝑟𝑟 + 𝑓𝑓𝑢𝑢e +

𝑢𝑢e
#

𝑟𝑟 = 0 

The cyclo-geostrophic flow is weaker than the geostrophic flow in cyclones (i.e., vorticity is 
positive in the direction of Earth’s angular velocity), and stronger in anticyclones. Low pressure 
center leads to a cyclonic flow. 



Using the geostrophic flow, we can write 

𝑢𝑢e
#

𝑟𝑟 + 𝑓𝑓𝑢𝑢e − 𝑓𝑓𝑢𝑢e
K = 0, 𝑓𝑓𝑢𝑢e

K =
1
𝜌𝜌'

𝜕𝜕𝑝𝑝
𝜕𝜕𝑟𝑟 

 
Define the Rossby numbers as 

Ro =
𝑢𝑢e

𝑓𝑓𝑟𝑟 , Rof =
𝑢𝑢e
K

𝑓𝑓𝑟𝑟 =
1

𝑓𝑓#𝜌𝜌'𝑟𝑟
𝜕𝜕𝑝𝑝
𝜕𝜕𝑟𝑟 

The solution to the Rossby number is 

Ro# + Ro − Rof = 0 

Ro =
−1 + —1 + 4Rof

2  

We select the positive root because as the 
radial pressure gradient goes to zero, both 
Rossby numbers should also go to zero. 
 

At the critical value Rof = −1/4, we have 

Rof =
𝑢𝑢e
K

𝑓𝑓𝑟𝑟 =
1

𝑓𝑓#𝜌𝜌'𝑟𝑟
𝜕𝜕𝑝𝑝
𝜕𝜕𝑟𝑟 = −

1
4 , Ro =

𝑢𝑢e

𝑓𝑓𝑟𝑟 = −
1
2 

With the shallow water approximation 

1
𝜌𝜌'

𝜕𝜕𝑝𝑝
𝜕𝜕𝑟𝑟 = 𝜌𝜌

𝜕𝜕𝜂𝜂1

𝜕𝜕𝑟𝑟 = −
1
4 𝑓𝑓#𝑟𝑟 = −Ω#𝑟𝑟, 𝜂𝜂1 = −

Ω#

2𝜌𝜌 𝑟𝑟# = −�̅�𝜂 

The total water surface	𝜂𝜂1 + �̅�𝜂 then is flat. The vertical vorticity in this case is 

𝑢𝑢e = −
1
2 𝑓𝑓𝑟𝑟, (∇ × 𝒖𝒖) ⋅ 𝐳𝐳x =

1
𝑟𝑟

𝜕𝜕
𝜕𝜕𝑟𝑟

(𝑟𝑟𝑢𝑢e) = −𝑓𝑓 

The criterion for centrifugal (inertial) instability is 𝑓𝑓G < −𝑓𝑓. In other words, balanced motions 
with anticyclonic vorticity	|𝑓𝑓G| > |𝑓𝑓|	are not possible. 
 
 



Centrifugal instability (CI) 
Consider a jet in	𝜕𝜕-direction under geostrophic balance. The flow is inviscid and is invariant in 
the	𝜕𝜕-direction. With small perturbation	𝑢𝑢1, we have 

𝑢𝑢 = 𝑢𝑢K(𝜕𝜕) + 𝑢𝑢1, 𝑓𝑓𝑢𝑢K = −
1
𝜌𝜌

𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕 

The momentum equation in	𝜕𝜕-direction is (conservation of absolute momentum) 
D𝑢𝑢
D𝜕𝜕 − 𝑓𝑓𝑣𝑣 =

D
D𝜕𝜕 ¥𝑢𝑢K + 𝑢𝑢1 − 𝑓𝑓𝜕𝜕µ = 0 

At	𝜕𝜕 = 0, we have	𝜕𝜕 = 𝜕𝜕'	and	𝑢𝑢1 = 0. Then it becomes 

𝑢𝑢K + 𝑢𝑢1 − 𝑓𝑓𝜕𝜕 = 𝑢𝑢K(𝜕𝜕') − 𝑓𝑓𝜕𝜕' , 𝑢𝑢1 = 𝑓𝑓(𝜕𝜕 − 𝜕𝜕') − ö𝑢𝑢K(𝜕𝜕) − 𝑢𝑢K(𝜕𝜕')õ 

Small perturbation indicates that 

𝑢𝑢1 = ö𝑓𝑓 − 𝑢𝑢K1 (𝜕𝜕E)õΔ𝜕𝜕 = ¥𝑓𝑓 + 𝑓𝑓KµΔ𝜕𝜕, 𝑓𝑓K = −
𝜕𝜕𝑢𝑢K
𝜕𝜕𝜕𝜕  

The momentum equation in	𝜕𝜕-direction becomes 
D𝑣𝑣
D𝜕𝜕 + 𝑓𝑓¥𝑢𝑢K + 𝑢𝑢1µ = −

1
𝜌𝜌

𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕 ,

D#Δ𝜕𝜕
D𝜕𝜕 + 𝑓𝑓¥𝑓𝑓 + 𝑓𝑓KµΔ𝜕𝜕 = 0 

Instability occurs when the vorticity of the geostrophic flow is anticyclonic and exceeds	|𝑓𝑓|. 
For NH with	𝑓𝑓 > 0, the condition is	𝑓𝑓K < −𝑓𝑓. The quantity	𝑓𝑓 + 𝑓𝑓K	is the absolute vorticity of 

the geostrophic flow. 
 
  



Vorticity Dynamics 

Ø Vorticity 
Consider the perturbation in the velocity field	𝒖𝒖(𝒙𝒙) as 

𝛿𝛿𝒖𝒖 = 𝒖𝒖(𝒙𝒙 + 𝛿𝛿𝒙𝒙) − 𝒖𝒖(𝒙𝒙) ≈ ∇𝒖𝒖 ⋅ 𝛿𝛿𝒙𝒙 
The gradient (Jacobian) can be decomposed into 

(∇𝒖𝒖)5Y =
𝜕𝜕𝑢𝑢5

𝜕𝜕𝜕𝜕Y
=

1
2 Å

𝜕𝜕𝑢𝑢5

𝜕𝜕𝜕𝜕Y
+

𝜕𝜕𝑢𝑢Y
𝜕𝜕𝜕𝜕5

Ç +
1
2 Å

𝜕𝜕𝑢𝑢5

𝜕𝜕𝜕𝜕Y
−

𝜕𝜕𝑢𝑢Y
𝜕𝜕𝜕𝜕5

Ç = 𝜀𝜀5̇Y + 𝑅𝑅5Y 

The vorticity vector	𝝎𝝎	is defined as 

𝝎𝝎 = ∇ × 𝒖𝒖 = r
𝜕𝜕𝑤𝑤
𝜕𝜕𝜕𝜕 −

𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕 ,

𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕 −

𝜕𝜕𝑤𝑤
𝜕𝜕𝜕𝜕 ,

𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕 −

𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕s 

We can show that 

1
2

(𝝎𝝎 × 𝛿𝛿𝒙𝒙)5 =
1
2 Å

𝜕𝜕𝑢𝑢5

𝜕𝜕𝜕𝜕Y
−

𝜕𝜕𝑢𝑢Y
𝜕𝜕𝜕𝜕5

Ç 𝛿𝛿𝜕𝜕Y = (𝑹𝑹 ⋅ 𝛿𝛿𝒙𝒙)5 

The rotation tensor corresponds to a solid body rotation with angular velocity	𝛀𝛀 = 𝝎𝝎/2. The 
vorticity is equal to twice the local angular velocity. 

𝑹𝑹 ⋅ 𝛿𝛿𝒙𝒙 =
1
2 𝝎𝝎 × 𝛿𝛿𝒙𝒙, 𝑅𝑅5Y =

1
2 𝜖𝜖5Y(𝜔𝜔( 

 
Absolute vorticity 
In the Earth’s rotating local coordinate, consider the flow has a vorticity	𝝎𝝎. In the inertial frame, 
the total angular velocity, and the absolute vorticity are 

𝛀𝛀g = 𝛀𝛀 +
𝝎𝝎
2 =

𝑓𝑓𝐤𝐤Z + 𝝎𝝎
2 , 𝝎𝝎g = 𝑓𝑓𝐤𝐤Z + 𝝎𝝎 = 2𝛀𝛀g 

 
Ø Vorticity equation 
Start with the momentum equation in the rotating frame without Boussinesq approximation 

𝜕𝜕𝒖𝒖
𝜕𝜕𝜕𝜕 + 𝒖𝒖 ⋅ ∇𝒖𝒖 + 𝑓𝑓𝐤𝐤Z × 𝒖𝒖 = −

1
𝜌𝜌 ∇𝑝𝑝 − ∇Φ + 𝑭𝑭 

Based on the following identities 
∇ ⋅ 𝒖𝒖 = 0, ∇ ⋅ 𝝎𝝎g = 0 

𝒖𝒖 ⋅ ∇𝒖𝒖 =
1
2 ∇(𝒖𝒖 ⋅ 𝒖𝒖) − 𝒖𝒖 × (∇ × 𝒖𝒖) =

1
2 ∇(𝒖𝒖 ⋅ 𝒖𝒖) + 𝝎𝝎 × 𝒖𝒖 

∇ × (𝝎𝝎g × 𝒖𝒖) = 𝝎𝝎g(∇ ⋅ 𝒖𝒖) − 𝒖𝒖(∇ ⋅ 𝝎𝝎g) + (𝒖𝒖 ⋅ ∇)𝝎𝝎g − (𝝎𝝎g ⋅ ∇)𝒖𝒖	
= (𝒖𝒖 ⋅ ∇)𝝎𝝎g − (𝝎𝝎g ⋅ ∇)𝒖𝒖 

−∇ × r
1
𝜌𝜌 ∇𝑝𝑝s =

1
𝜌𝜌# ∇𝜌𝜌 × ∇𝑝𝑝 −

1
𝜌𝜌 ∇ × ∇𝑝𝑝 =

1
𝜌𝜌# ∇𝜌𝜌 × ∇𝑝𝑝 



Taking the curl of the momentum equation, we have 
𝜕𝜕𝝎𝝎
𝜕𝜕𝜕𝜕 + ∇ × (𝝎𝝎g × 𝒖𝒖) =

𝜕𝜕𝝎𝝎
𝜕𝜕𝜕𝜕 + (𝒖𝒖 ⋅ ∇)𝝎𝝎g − (𝝎𝝎g ⋅ ∇)𝒖𝒖 

= −∇ × r
1
𝜌𝜌 ∇𝑝𝑝s + ∇ × 𝑭𝑭 =

1
𝜌𝜌# ∇𝜌𝜌 × ∇𝑝𝑝 + ∇ × 𝑭𝑭 

The vorticity equation is 
D𝝎𝝎g

D𝜕𝜕 = (𝝎𝝎g ⋅ ∇)𝒖𝒖 +
1
𝜌𝜌# ∇𝜌𝜌 × ∇𝑝𝑝 + ∇ × 𝑭𝑭 

The three terms that contribute to the evolution of vorticity are 

Vortex stretching / tilting Baroclinic torque Frictional torque 

(𝝎𝝎g ⋅ ∇)𝒖𝒖 
1
𝜌𝜌# ∇𝜌𝜌 × ∇𝑝𝑝 ∇ × 𝑭𝑭 

 
Frictional torque 
¨ Consider the wind friction	𝑭𝑭(𝜕𝜕)	decaying with depth, the frictional torque points in the 

horizontal direction, which leads to an overturning flow.  
¨ Consider near the coast the friction	𝑭𝑭(𝜕𝜕)	decaying towards the ocean. The frictional torque 

points in the downward direction, which leads to a horizontal vortex.  

 
Baroclinic torque 
Decompose the density and pressure fields as 

𝜌𝜌(𝒙𝒙, 𝜕𝜕) = 𝜌𝜌' + 𝜌𝜌1(𝒙𝒙, 𝜕𝜕), 𝑝𝑝 = 𝑝𝑝'(𝜕𝜕) + 𝑝𝑝1(𝒙𝒙, 𝜕𝜕) 
Under Boussinesq assumption, the first-order term is 

1
𝜌𝜌# ∇𝜌𝜌 × ∇𝑝𝑝 ≈

1
𝜌𝜌'#

∇𝜌𝜌1 × ∇𝑝𝑝' = −
𝜌𝜌
𝜌𝜌'

∇𝜌𝜌1 × 𝐤𝐤Z = ∇4𝑏𝑏 × 𝐤𝐤Z  

The baroclinic torque is horizontal and is non-zero only if there are lateral density gradients. 
As an example, consider density surfaces tilted upward. The buoyancy gradient	∇4𝑏𝑏	points to 
the lower density region, and the baroclinic torque points to the other horizontal direction. The 
induced flow is consistent with lighter fluids moving on top of the denser fluids. 
 
Vortex stretching / tilting visualized by a line element 
Consider a line element	𝛿𝛿𝒍𝒍	within the flow. At a later time	𝜕𝜕 + 𝛿𝛿𝜕𝜕, the element becomes 

𝛿𝛿𝒍𝒍1 = 𝛿𝛿𝒍𝒍 + 𝒖𝒖(𝒙𝒙 + 𝛿𝛿𝒍𝒍)𝛿𝛿𝜕𝜕 − 𝒖𝒖(𝒙𝒙)𝛿𝛿𝜕𝜕 = 𝛿𝛿𝒍𝒍 + (𝛿𝛿𝒍𝒍 ⋅ ∇)𝒖𝒖𝛿𝛿𝜕𝜕 



The evolution of the line element is governed by 
D𝛿𝛿𝒍𝒍
D𝜕𝜕 = (𝛿𝛿𝒍𝒍 ⋅ ∇)𝒖𝒖 

This shares the same form as the vortex stretching / tilting. 
 

Consider an initial	𝝎𝝎g = 𝜔𝜔G𝐤𝐤Z  in a flow	𝑤𝑤 = 𝑤𝑤(𝜕𝜕), the vortex stretching is in 𝜕𝜕-direction 
D𝜔𝜔G

D𝜕𝜕 = 𝜔𝜔G
d𝑤𝑤
d𝜕𝜕  

Now consider a shear flow	𝑢𝑢 = 𝑢𝑢(𝜕𝜕), the vorticity equation leads to vortex tilting 
D𝜔𝜔>

D𝜕𝜕 = 𝜔𝜔G
d𝑢𝑢
d𝜕𝜕 ,

D𝜔𝜔G

D𝜕𝜕 = 0 

 
Ø Vorticity equation in low Rossby number limit 
Taylor-Proudman effect 
The Rossby number compares the vertical vorticity	𝑓𝑓	with Coriolis parameter	𝑓𝑓 

𝑓𝑓
𝑓𝑓 =

1
𝑓𝑓 r

𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕 −

𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕s ∼

𝑈𝑈
𝑓𝑓𝐿𝐿 

With	Ro ≪ 1, we have 

𝝎𝝎g ⋅ 𝐤𝐤Z = 𝑓𝑓 + 𝑓𝑓 ≈ 𝑓𝑓, 𝝎𝝎g ≈ 𝑓𝑓𝐤𝐤Z ,
D𝝎𝝎g

D𝜕𝜕 = 𝟎𝟎 

This implies that for an inviscid fluid with no baroclinic torque, the flow does not vary in the 
vertical direction in the limit	Ro ≪ 1 

D𝝎𝝎g

D𝜕𝜕 = 𝝎𝝎g ⋅ ∇𝒖𝒖 ≈ 𝑓𝑓
𝜕𝜕𝒖𝒖
𝜕𝜕𝜕𝜕 ≈ 𝟎𝟎,

𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕 =

𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕 =

𝜕𝜕𝑤𝑤
𝜕𝜕𝜕𝜕 = 0 

This describes the Taylor-Proudman effect, or the gyroscopic rigidity. The effects of rotation 
have provided a stiffening of the fluid in the vertical. 
 
 



Thermal wind balance 
Still in the limit of	Ro ≪ 1, if there is a baroclinic torque, we have 

𝑓𝑓
𝜕𝜕𝒖𝒖
𝜕𝜕𝜕𝜕 + ∇4𝑏𝑏 × 𝐤𝐤Z = 𝟎𝟎 

This describes thermal wind balance 
𝜕𝜕𝑏𝑏
𝜕𝜕𝜕𝜕 + 𝑓𝑓

𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕 = 0,

𝜕𝜕𝑏𝑏
𝜕𝜕𝜕𝜕 + 𝑓𝑓

𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕 = 0 

The baroclinic torque balances the vortex tilting due to planetary vorticity. For the example of 
density surfaces tilted upward, in order to counteract the effect due to baroclinic torque, the 
balanced flow should tilt the vorticity vector to the opposite direction. 

 
Ø Potential vorticity (PV) 
The absolute vorticity	𝝎𝝎g	is not conserved even with no frictional torque and in a homogeneous 
medium, since there exists the vortex stretching term. However, the PV is conserved. 
 
PV in shallow water system 
Denote the height of the water column as	ℎ. For a vertically uniform velocity field	𝒖𝒖4(𝜕𝜕, 𝜕𝜕), 
the absolute vorticity is 

𝝎𝝎g = (𝑓𝑓 + 𝑓𝑓)	𝐤𝐤Z , 𝑓𝑓 =
𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕 −

𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕 

The momentum equations in the horizontal directions are 
𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕 + 𝑢𝑢

𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕 + 𝑣𝑣

𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕 = 𝑓𝑓𝑣𝑣 − 𝜌𝜌

𝜕𝜕𝜂𝜂
𝜕𝜕𝜕𝜕 + 𝐹𝐹>	

𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕 + 𝑢𝑢

𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕 + 𝑣𝑣

𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕 = −𝑓𝑓𝑢𝑢 − 𝜌𝜌

𝜕𝜕𝜂𝜂
𝜕𝜕𝜕𝜕 + 𝐹𝐹C 

We can combine them and obtain the equation for vorticity	𝑓𝑓 

𝜕𝜕𝑓𝑓
𝜕𝜕𝜕𝜕 + 𝒖𝒖 ⋅ ∇𝑓𝑓 + 𝑓𝑓 r

𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕 +

𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕s = −𝑓𝑓 r

𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕 +

𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕s + Å

𝜕𝜕𝐹𝐹C
𝜕𝜕𝜕𝜕 −

𝜕𝜕𝐹𝐹>
𝜕𝜕𝜕𝜕 Ç 

The governing equation for absolute vorticity is 
D(𝑓𝑓 + 𝑓𝑓)

D𝜕𝜕 = −(𝑓𝑓 + 𝑓𝑓)(∇4 ⋅ 𝒖𝒖) + (∇ × 𝑭𝑭) ⋅ 𝐤𝐤Z  

 



With the continuity equation 
Dℎ
D𝜕𝜕 = −ℎ(∇4 ⋅ 𝒖𝒖), ∇4 ⋅ 𝒖𝒖 = −

1
ℎ

Dℎ
D𝜕𝜕  

we can further obtain 
1
ℎ

D(𝑓𝑓 + 𝑓𝑓)
D𝜕𝜕 −

𝑓𝑓 + 𝑓𝑓
ℎ#

Dℎ
D𝜕𝜕 =

(∇ × 𝑭𝑭) ⋅ 𝐤𝐤Z
ℎ ,

D
D𝜕𝜕 r

𝑓𝑓 + 𝑓𝑓
ℎ s =

(∇ × 𝑭𝑭) ⋅ 𝐤𝐤Z
ℎ  

We can define the potential vorticity for a shallow water system as 

𝑞𝑞 =
𝑓𝑓 + 𝑓𝑓

ℎ ,
D𝑞𝑞
D𝜕𝜕 =

(∇ × 𝑭𝑭) ⋅ 𝐤𝐤Z
ℎ  

 
Consider a spinning water column, and its angular velocity is	𝛼𝛼 = (𝑓𝑓 + 𝑓𝑓)/2. The conservation 
of mass states that 

𝑚𝑚 = 𝜌𝜌'𝜋𝜋𝑅𝑅#ℎ = const. 
Without frictional torque, the angular momentum is conserved, which is 

𝐿𝐿G = 𝐼𝐼𝛼𝛼 =
𝑚𝑚𝑅𝑅#

2 ⋅
𝑓𝑓 + 𝑓𝑓

2 =
𝑚𝑚#

2𝜌𝜌'𝜋𝜋ℎ
𝑓𝑓 + 𝑓𝑓

2 = const. 

The conservation of mass and angular momentum lead to 
𝑓𝑓 + 𝑓𝑓

ℎ = const. 

The water column in a shallow water has higher potential to create vorticity. As it moves to the 
deeper ocean, the column is stretched and thus spins up. 
 
Ertel PV in stratified fluid 
Define the Ertel PV as 

𝑞𝑞 = 𝝎𝝎g ⋅ ∇𝑏𝑏 

It describes the component of absolute vorticity in the direction	∇𝑏𝑏. Since	∇4𝑏𝑏 × 𝐤𝐤Z 	is always 
perpendicular to	∇𝑏𝑏, the baroclinic torque does not contribute to	𝑞𝑞. Note that 

D
D𝜕𝜕

(𝝎𝝎g ⋅ ∇𝑏𝑏) = ∇𝑏𝑏 ⋅
D𝝎𝝎g

D𝜕𝜕 + 𝝎𝝎g ⋅
D
D𝜕𝜕

(∇𝑏𝑏) 

From the vorticity equation, we first have 

∇𝑏𝑏 ⋅
D𝝎𝝎g

D𝜕𝜕 = ∇𝑏𝑏 ⋅ (𝝎𝝎g ⋅ ∇)𝒖𝒖 + ∇𝑏𝑏 ⋅ (∇ × 𝑭𝑭) 

From the equation of state, we can obtain the buoyancy equation 

𝑏𝑏 = 𝜌𝜌[𝛼𝛼(𝑇𝑇 − 𝑇𝑇') − 𝛽𝛽(𝑆𝑆 − 𝑆𝑆')],
D𝑏𝑏
D𝜕𝜕 = 𝛼𝛼K𝜅𝜅.∇#𝑇𝑇 − 𝛽𝛽𝜌𝜌𝜅𝜅,∇#𝑆𝑆 = 𝒟𝒟 

where all the diabatic processes are included in	𝒟𝒟. The gradient of buoyancy equation gives 
D
D𝜕𝜕

(∇𝑏𝑏) = ∇𝒟𝒟 − ∇𝒖𝒖 ⋅ ∇𝑏𝑏 



The term	−∇𝒖𝒖 ⋅ ∇𝑏𝑏	denotes the generation of	∇𝑏𝑏	by stretching / tilting of isopycnals. Finally, 
the governing equation for Ertel PV is 

D𝑞𝑞
D𝜕𝜕 =

D
D𝜕𝜕

(𝝎𝝎g ⋅ ∇𝑏𝑏) = ∇𝑏𝑏 ⋅ (∇ × 𝑭𝑭) + 𝝎𝝎g ⋅ ∇𝒟𝒟 

The advective processes such as tilting of isopycnals and vortex stretching do not contribute to 
the change of	𝑞𝑞. Only non-conservative frictional and diabatic processes contribute. 

 
Summary of potential vorticity 
¨ For inviscid and adiabatic flows, PV is conserved following fluid parcels, but it is not 

necessarily true for vorticity. 
¨ PV is advected by the flow as a dynamical tracer. It is not a passive tracer because its 

distribution affects the flow. 
¨ Invertibility principle: If the flow satisfies a balance relation, then all dynamic variables 

(𝒖𝒖, ℎ,	𝑝𝑝,	𝑏𝑏) can be derived from the PV field. PV plays an analogous role to the vertical 
vorticity in an inviscid 2D horizontal flow. 

  

𝑞𝑞 = 𝑓𝑓𝐤𝐤Z ⋅ ∇𝑏𝑏 = 0 𝑞𝑞 = 𝑓𝑓
𝜕𝜕𝑏𝑏
𝜕𝜕𝜕𝜕 + 𝜔𝜔>

𝜕𝜕𝑏𝑏
𝜕𝜕𝜕𝜕 = 0 



Geostrophic Theory 

Ø Geostrophic adjustment 
The geostrophic adjustment problem describes how an initially unbalanced flow adjusts to a 
geostrophically balanced flow. Consider a shallow water system with no frictional torque 

𝑞𝑞 =
𝑓𝑓 + 𝑓𝑓

ℎ ,
D𝑞𝑞
D𝜕𝜕 = 0 

The developed flow is under geostrophic balance 

−𝑓𝑓𝑢𝑢 = 𝜌𝜌
𝜕𝜕𝜂𝜂
𝜕𝜕𝜕𝜕 , 𝑓𝑓𝑣𝑣 = 𝜌𝜌

𝜕𝜕𝜂𝜂
𝜕𝜕𝜕𝜕 , 𝑓𝑓 =

𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕 −

𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕 =

𝜌𝜌
𝑓𝑓 ∇4

#𝜂𝜂 

Define the barotropic Rossby radius of deformation as (with mean ocean depth	𝐻𝐻) 

𝐿𝐿c =
—𝜌𝜌𝐻𝐻

𝑓𝑓  

It is the distance traveled over timescale	1/𝑓𝑓	with the shallow water surface wave speed. From 
scaling analysis, consider the amplitude	𝜂𝜂 ≪ 𝐻𝐻, we have 

𝑈𝑈 ∼
𝜌𝜌𝜂𝜂
𝑓𝑓𝐿𝐿 ,

|𝒖𝒖 ⋅ ∇𝑞𝑞|
|𝜕𝜕𝑞𝑞/𝜕𝜕𝜕𝜕| ∼

𝑈𝑈
𝑓𝑓𝐿𝐿 ∼

𝜌𝜌𝜂𝜂
𝑓𝑓#𝐿𝐿# ∼

𝜂𝜂
𝐻𝐻 ≪ 1,

𝑓𝑓
𝑓𝑓 ∼

𝑈𝑈
𝑓𝑓𝐿𝐿 ∼

𝜂𝜂
𝐻𝐻 ≪ 1 

This implies that PV is approximately conserved at a fixed location. For a linear flow, we have 

𝑞𝑞 =
𝑓𝑓 + 𝑓𝑓
𝐻𝐻 + 𝜂𝜂 ≈

𝑓𝑓
𝐻𝐻 r1 +

𝑓𝑓
𝑓𝑓s ‹1 −

𝜂𝜂
𝐻𝐻› =

𝑓𝑓
𝐻𝐻 + 𝑞𝑞1, 𝑞𝑞1 =

𝑓𝑓
𝐻𝐻 −

𝑓𝑓𝜂𝜂
𝐻𝐻# 

For constant	𝑓𝑓, we can only focus on the PV anomaly	𝑞𝑞1	from the background PV	𝑞𝑞Ω. Given an 
initial	𝑞𝑞E1 , the governing equation for the free surface	𝜂𝜂	becomes 

𝜌𝜌
𝑓𝑓 ∇4

#𝜂𝜂 −
𝑓𝑓𝜂𝜂
𝐻𝐻 = 𝑞𝑞E1𝐻𝐻, ∇4

#𝜂𝜂 −
𝜂𝜂
𝐿𝐿c#

=
𝑓𝑓𝐻𝐻
𝜌𝜌 𝑞𝑞E1  

From the PV field, we can solve for	𝜂𝜂	and then obtain	𝒖𝒖	from the geostrophic balance. 
 
Green’s function 
Consider the PV field is invariant in	𝜕𝜕-direction. The Green’s function	𝐺𝐺(𝜕𝜕; 𝜕𝜕1)	satisfies 

d#𝐺𝐺
d𝜕𝜕# −

𝐺𝐺
𝐿𝐿c#

= 𝛿𝛿(𝜕𝜕 − 𝜕𝜕1) 

The continuity of	𝐺𝐺	and discontinuity of	d𝐺𝐺/d𝜕𝜕	at	𝜕𝜕 = 𝜕𝜕1	give the solution 

𝐺𝐺(𝜕𝜕; 𝜕𝜕1) = −
𝐿𝐿c
2 exp Å−

|𝜕𝜕 − 𝜕𝜕1|
𝐿𝐿c

Ç 

 
Geostrophic adjustment for an initial step 
Consider an initial step surface	𝜂𝜂'(𝜕𝜕) = −𝜂𝜂'sgn(𝜕𝜕)	with	𝒖𝒖4 = 𝟎𝟎. We need to solve 

d#𝜂𝜂
d𝜕𝜕# −

𝜂𝜂
𝐿𝐿c#

=
𝜂𝜂'
𝐿𝐿c#

sgn(𝜕𝜕) 



The solution is obtained as 

𝜂𝜂(𝜕𝜕) = −𝜂𝜂'sgn(𝜕𝜕) ⋅ Å1 − 𝑒𝑒!|>|i$Ç 

𝑣𝑣(𝜕𝜕) =
𝜌𝜌
𝑓𝑓

𝜕𝜕𝜂𝜂
𝜕𝜕𝜕𝜕 = −

𝜌𝜌𝜂𝜂'
𝑓𝑓𝐿𝐿c

𝑒𝑒!|>|/i$ 

The potential vorticity conservation constrains 
the influence of the adjustment to within a 
deformation radius	𝐿𝐿c of the initial disturbance. 
After timescale	𝑇𝑇, the waves will experience the 
effect of rotation, generate a Coriolis force that 
eventually balances the PGF. 
 
Energetics of geostrophic adjustment 
The general expression for the total potential energy (per unit length in	𝜕𝜕) is 

PE = 𝜌𝜌' H 𝜌𝜌(𝐻𝐻 + 𝜂𝜂) ⋅
𝐻𝐻 + 𝜂𝜂

2 	d𝜕𝜕
Sj

!j
=

𝜌𝜌'𝜌𝜌
2 H (𝐻𝐻# + 2𝐻𝐻𝜂𝜂 + 𝜂𝜂#)	d𝜕𝜕

Sj

!j
 

Since the average of	𝜂𝜂	is zero, and the first term denotes the background, the available potential 
energy (APE) is 

APE =
𝜌𝜌'𝜌𝜌

2 H 𝜂𝜂#	d𝜕𝜕
Sj

!j
 

The initial APE and the perturbation after the geostrophic adjustment are calculated as 

APEE =
𝜌𝜌'𝜌𝜌

2 H 𝜂𝜂'#	d𝜕𝜕
j

!j
, ΔAPE =

𝜌𝜌'𝜌𝜌
2 H [𝜂𝜂#(𝜕𝜕) − 𝜂𝜂'#]	d𝜕𝜕

j

!j
= −

3
2 𝜌𝜌'𝜌𝜌𝜂𝜂'#𝐿𝐿c 

The final kinetic energy is 

ΔKE =
𝜌𝜌'𝐻𝐻

2 H 𝑣𝑣#(𝜕𝜕)	d𝜕𝜕
j

!j
=

1
2

𝜌𝜌'𝜌𝜌#𝐻𝐻𝜂𝜂'#

𝑓𝑓#𝐿𝐿c
=

1
2 𝜌𝜌'𝜌𝜌𝜂𝜂'#𝐿𝐿c 

Therefore, only	1/3	of	ΔAPE	is converted to	ΔKE. The remaining part is radiated away by 
Poincaré waves and lost to infinity. On the contrary, in the non-rotating case all APE is released. 
 
Ø Poincaré wave 
The transient geostrophic adjustment of the flow triggered Poincaré waves. In small amplitude 
limit	𝜂𝜂/𝐻𝐻 ≪ 1, the linearized shallow water equations are 

𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕 = 𝑓𝑓𝑣𝑣 − 𝜌𝜌

𝜕𝜕𝜂𝜂
𝜕𝜕𝜕𝜕 ,

𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕 = −𝑓𝑓𝑢𝑢 − 𝜌𝜌

𝜕𝜕𝜂𝜂
𝜕𝜕𝜕𝜕 ,

𝜕𝜕𝜂𝜂
𝜕𝜕𝜕𝜕 = −𝐻𝐻 r

𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕 +

𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕s 



To obtain an equation for surface height	𝜂𝜂, take the divergence of the horizontal momentum 
equations, and take the time derivative of the continuity equation 

𝜕𝜕
𝜕𝜕𝜕𝜕 r

𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕 +

𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕s = 𝑓𝑓 r

𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕 −

𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕s − 𝜌𝜌∇4

#𝜂𝜂,
𝜕𝜕#𝜂𝜂
𝜕𝜕𝜕𝜕# = −𝐻𝐻

𝜕𝜕
𝜕𝜕𝜕𝜕 r

𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕 +

𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕s 

We thus obtain 
𝜕𝜕#𝜂𝜂
𝜕𝜕𝜕𝜕# = −𝑓𝑓𝐻𝐻𝑓𝑓 + 𝜌𝜌𝐻𝐻∇4

#𝜂𝜂 

The conservation of PV anomaly is 

𝑞𝑞1(𝒙𝒙) =
𝑓𝑓
𝐻𝐻 −

𝑓𝑓𝜂𝜂
𝐻𝐻# = const., 𝑓𝑓 = 𝑞𝑞1𝐻𝐻 +

𝑓𝑓𝜂𝜂
𝐻𝐻  

We thus obtain 
𝜕𝜕#𝜂𝜂
𝜕𝜕𝜕𝜕# − 𝜌𝜌𝐻𝐻∇4

#𝜂𝜂 + 𝑓𝑓#𝜂𝜂 = −𝑓𝑓𝐻𝐻#𝑞𝑞1(𝒙𝒙) 

The particular solution	𝜂𝜂?(𝒙𝒙)	represents the free surface of the steady geostrophic flow given 

the PV anomaly	𝑞𝑞1(𝒙𝒙), which satisfies 

∇4
#𝜂𝜂? −

𝜂𝜂?
𝐿𝐿c#

=
𝑓𝑓𝐻𝐻
𝜌𝜌 𝑞𝑞1 

The homogeneous part	𝜂𝜂(𝒙𝒙, 𝜕𝜕) satisfies the Poincaré wave equation 
𝜕𝜕#𝜂𝜂
𝜕𝜕𝜕𝜕# − 𝜌𝜌𝐻𝐻∇4

#𝜂𝜂 + 𝑓𝑓#𝜂𝜂 = 0 

Only balanced, geostrophic flow has the PV anomaly, while Poincaré waves have	𝑞𝑞1 = 0. The 
Poincaré waves adjust the initial surface not under geostrophic balance, i.e.,	𝜂𝜂E − 𝜂𝜂?. 

 
Dispersion relation of Poincaré wave 
In the Fourier domain, we obtain the dispersion relation 

𝜔𝜔# = 𝑓𝑓# + 𝜌𝜌𝐻𝐻(𝑘𝑘# + 𝑙𝑙#), r
𝜔𝜔
𝑓𝑓s

#
= 1 + |𝒌𝒌4|#𝐿𝐿c#  

This is similar to the near-inertial (hydrostatic) IGW, since we 
also assume small aspect ratio 𝐻𝐻/𝐿𝐿 ≪ 1. In short wavelength 
limit 𝜆𝜆 ≪ 𝐿𝐿c, the wave is non-dispersive, with phase velocity 
the same as the shallow water wave without rotation 

|𝒌𝒌4|𝐿𝐿c ≫ 1, 𝜆𝜆 ≪ 𝐿𝐿c , 𝜔𝜔 = —𝜌𝜌𝐻𝐻	|𝒌𝒌4|, 𝑐𝑐 = —𝜌𝜌𝐻𝐻 

In the long wavelength limit, we recover the inertial oscillation 
|𝒌𝒌4|𝐿𝐿c ≪ 1, 𝜆𝜆 ≫ 𝐿𝐿c , 𝜔𝜔 = 𝑓𝑓 

 
Group velocity of Poincaré wave 

𝑐𝑐K> = 𝜌𝜌𝐻𝐻
𝑘𝑘
𝜔𝜔 , 𝑐𝑐K

C = 𝜌𝜌𝐻𝐻
𝑙𝑙
𝜔𝜔 



Therefore, the short waves radiate most of the energy 

𝑐𝑐K = —𝜌𝜌𝐻𝐻				with		𝜆𝜆 ≪ 𝐿𝐿c , 𝑐𝑐K = —𝜌𝜌𝐻𝐻	|𝒌𝒌4|𝐿𝐿c ≪ —𝜌𝜌𝐻𝐻				with		𝜆𝜆 ≫ 𝐿𝐿c 

 
Polarization relation of Poincaré wave 

𝑣𝑣' =
𝑖𝑖𝑓𝑓𝜔𝜔 − 𝜌𝜌𝐻𝐻𝑙𝑙𝑘𝑘
𝜌𝜌𝐻𝐻𝑙𝑙# − 𝜔𝜔# 𝑢𝑢' , 𝜂𝜂' = 𝐻𝐻

𝑖𝑖𝑙𝑙𝑓𝑓 − 𝜔𝜔𝑘𝑘
𝜌𝜌𝐻𝐻𝑙𝑙# − 𝜔𝜔# 𝑢𝑢' 

 
Ø Kelvin wave 
Another type of waves without PV anomaly is the Kelvin wave. It has one component of the 
fluid velocity equal to zero: 

¨ Equatorial Kelvin wave: No meridional flow,	𝑣𝑣 = 0 
¨ Coastal Kelvin wave: No normal flow,	𝒖𝒖 ⋅ 𝒏𝒏N = 0 

 
Coastal Kelvin wave 
Consider a NS coastline at	𝜕𝜕 = 0	which implies	𝑢𝑢 = 0. The governing equations become 

0 = 𝑓𝑓𝑣𝑣 − 𝜌𝜌
𝜕𝜕𝜂𝜂
𝜕𝜕𝜕𝜕 ,

𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕 = −𝜌𝜌

𝜕𝜕𝜂𝜂
𝜕𝜕𝜕𝜕 ,

𝜕𝜕𝜂𝜂
𝜕𝜕𝜕𝜕 = −𝐻𝐻

𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕 

Similarly, we can obtain the Kelvin wave equation and its phase speed 
𝜕𝜕#𝜂𝜂
𝜕𝜕𝜕𝜕# − 𝜌𝜌𝐻𝐻

𝜕𝜕#𝜂𝜂
𝜕𝜕𝜕𝜕# = 0, 𝑐𝑐 = —𝜌𝜌𝐻𝐻 

The general wave solution has the following form 
𝜂𝜂(𝜕𝜕, 𝜕𝜕, 𝜕𝜕) = 𝐺𝐺(𝜕𝜕)	𝐹𝐹·(𝜕𝜕, 𝜕𝜕), 𝐹𝐹·(𝜕𝜕, 𝜕𝜕) = 𝐹𝐹(𝜕𝜕 − 𝑐𝑐𝜕𝜕) + 𝐹𝐹(𝜕𝜕 + 𝑐𝑐𝜕𝜕) 

This shows that Kelvin waves propagate parallel to the coastline. In the normal direction, the 
wave structure is solved from combining the momentum equations as 

𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕 =

𝜌𝜌
𝑓𝑓

𝜕𝜕#𝜂𝜂
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 = −𝜌𝜌

𝜕𝜕𝜂𝜂
𝜕𝜕𝜕𝜕 ,

𝜕𝜕#𝜂𝜂
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 + 𝑓𝑓

𝜕𝜕𝜂𝜂
𝜕𝜕𝜕𝜕 = 0 

Substituting the solution form, we obtain 

𝜂𝜂±(𝜕𝜕, 𝜕𝜕, 𝜕𝜕) = 𝐺𝐺±(𝜕𝜕)𝐹𝐹(𝜕𝜕 ∓ 𝑐𝑐𝜕𝜕),
d𝐺𝐺±

d𝜕𝜕 = ±sgn(𝑓𝑓)
|𝑓𝑓|
𝑐𝑐 𝐺𝐺± = ±sgn(𝑓𝑓)

𝐺𝐺±

𝐿𝐿c
 

For Kelvin waves propagating in	±𝜕𝜕-direction, we have 

𝜂𝜂S(𝜕𝜕) = 𝐺𝐺S(𝜕𝜕)	𝐹𝐹(𝜕𝜕 − 𝑐𝑐𝜕𝜕), 𝐺𝐺S(𝜕𝜕) = exp √sgn(𝑓𝑓)
𝜕𝜕
𝐿𝐿c

ƒ 

𝜂𝜂!(𝜕𝜕) = 𝐺𝐺!(𝜕𝜕)	𝐹𝐹(𝜕𝜕 + 𝑐𝑐𝜕𝜕), 𝐺𝐺!(𝜕𝜕) = exp √−sgn(𝑓𝑓)
𝜕𝜕
𝐿𝐿c

ƒ 

Consider the ocean in the region	𝜕𝜕 < 0. The condition at	𝜕𝜕 → −∞ implies 
¨ Northern Hemisphere: 𝜂𝜂S(𝜕𝜕, 𝜕𝜕, 𝜕𝜕), Kelvin waves propagating with coast to the right. 
¨ Southern Hemisphere: 𝜂𝜂!(𝜕𝜕, 𝜕𝜕, 𝜕𝜕), Kelvin waves propagating with coast to the left. 



The PV anomaly for the Kelvin wave is 

𝑞𝑞1 =
𝑓𝑓
𝐻𝐻 −

𝑓𝑓𝜂𝜂
𝐻𝐻# =

1
𝐻𝐻

𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕 −

𝑓𝑓𝜂𝜂
𝐻𝐻# =

𝜌𝜌
𝑓𝑓𝐻𝐻 Å

𝜕𝜕#𝜂𝜂
𝜕𝜕𝜕𝜕# −

𝜂𝜂
𝐿𝐿c#

Ç = 0 

Kelvin waves do not carry PV anomaly, even though	𝑣𝑣	is geostrophic. 
 
Ø Barotropic (planetary) Rossby wave 
The existence of Rossby waves require a background PV field with spatial gradient 

𝑞𝑞(𝜕𝜕, 𝜕𝜕, 𝜕𝜕) = 𝑞𝑞Ω(𝜕𝜕, 𝜕𝜕) + 𝑞𝑞1(𝜕𝜕, 𝜕𝜕, 𝜕𝜕) 
In the shallow water system, with no background flow we can write 

𝑞𝑞Ω(𝜕𝜕, 𝜕𝜕) =
𝑓𝑓(𝜕𝜕)

𝐻𝐻(𝜕𝜕, 𝜕𝜕) 

PV conservation for an inviscid and adiabatic flow gives 
D𝑞𝑞
D𝜕𝜕 =

D𝑞𝑞Ω
D𝜕𝜕 +

D𝑞𝑞1

D𝜕𝜕 = 0,
D𝑞𝑞1

D𝜕𝜕 = −
D𝑞𝑞Ω
D𝜕𝜕 = −𝒖𝒖 ⋅ ∇𝑞𝑞Ω 

This implies that	𝑞𝑞1	is caused by the advection of background	𝑞𝑞Ω. Consider a fluid parcel with 
location	𝒙𝒙c, the PV anomaly equation leads to 

D𝑞𝑞1

D𝜕𝜕 = −
D𝒙𝒙c

D𝜕𝜕 ⋅ ∇𝑞𝑞Ω, 𝑞𝑞1 = −𝒙𝒙c ⋅ ∇𝑞𝑞Ω 

Displacements of fluid parcels parallel to	∇𝑞𝑞Ω	will induce a PV anomaly	𝑞𝑞1, which is associated 
with a flow anomaly	𝒖𝒖1	from PV invertibility, and	𝒖𝒖1	further changes the parcel displacement. 
This feedback can give rise to a restoring force that leads to Rossby waves. 

 
Barotropic Rossby wave 
Under the	𝛽𝛽-plane approximation with constant	𝐻𝐻	and	𝛽𝛽𝐿𝐿 ≪ 𝑓𝑓', the background PV field is 

𝑞𝑞Ω =
𝑓𝑓' + 𝛽𝛽𝜕𝜕

𝐻𝐻 , ∇𝑞𝑞Ω =
𝛽𝛽
𝐻𝐻 Ä̂ 

At low Rossby number, the flow is nearly geostrophic with weak amplitudes. For PV anomaly, 
taking the first-order terms gives 

𝑞𝑞1 =
𝑓𝑓
𝐻𝐻 −

𝑓𝑓'𝜂𝜂
𝐻𝐻#  

  

−𝒙𝒙c ⋅ ∇𝑞𝑞Ω 



The first term is the vorticity, while the second term is the thickness anomaly, or the stretching 
term. Consider the flow is geostrophic, we have 

𝑓𝑓'𝑢𝑢 = −𝜌𝜌
𝜕𝜕𝜂𝜂
𝜕𝜕𝜕𝜕 , 𝑓𝑓'𝑣𝑣 = 𝜌𝜌

𝜕𝜕𝜂𝜂
𝜕𝜕𝜕𝜕 

Introduce the geostrophic stream function	𝜕𝜕	and we obtain 

𝜕𝜕 =
𝜌𝜌𝜂𝜂
𝑓𝑓'

, 𝑢𝑢 = −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 , 𝑣𝑣 =

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 , 𝑓𝑓 = ∇#𝜕𝜕 

The governing equation for PV anomaly then becomes 

𝑞𝑞1 =
1
𝐻𝐻 r∇#𝜕𝜕 −

𝜕𝜕
𝐿𝐿c#

s ,
D𝑞𝑞1

D𝜕𝜕 = −𝒖𝒖 ⋅ ∇𝑞𝑞Ω = −
𝑣𝑣𝛽𝛽
𝐻𝐻 = −

𝛽𝛽
𝐻𝐻

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕  

The barotropic Rossby wave equation, or the QG-PV equation, is 
D
D𝜕𝜕 r∇#𝜕𝜕 −

𝜕𝜕
𝐿𝐿c#

s + 𝛽𝛽
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 0, 𝓆𝓆1 = ∇#𝜕𝜕 −

𝜕𝜕
𝐿𝐿c#

 

𝓆𝓆1	is called the barotropic quasi-geostrophic (QG) PV, although it has a unit of vorticity. The 
material derivative of	𝓆𝓆1	can be further denoted as 

D𝓆𝓆1

D𝜕𝜕 =
𝜕𝜕𝓆𝓆1

𝜕𝜕𝜕𝜕 + 𝑢𝑢
𝜕𝜕𝓆𝓆1

𝜕𝜕𝜕𝜕 + 𝑣𝑣
𝜕𝜕𝓆𝓆1

𝜕𝜕𝜕𝜕 =
𝜕𝜕𝓆𝓆1

𝜕𝜕𝜕𝜕 −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝓆𝓆1

𝜕𝜕𝜕𝜕 +
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝓆𝓆1

𝜕𝜕𝜕𝜕 =
𝜕𝜕𝓆𝓆1

𝜕𝜕𝜕𝜕 + 𝐽𝐽(𝜕𝜕, 𝓆𝓆1) 

The Jacobian	𝐽𝐽(𝐴𝐴, 𝐵𝐵)	is used for simple notation, and we can thus write 
𝜕𝜕𝓆𝓆1

𝜕𝜕𝜕𝜕 + 𝐽𝐽(𝜕𝜕, 𝓆𝓆1) + 𝛽𝛽
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 0, with		

D
D𝜕𝜕 =

𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝐽𝐽(𝜕𝜕,⋅) 

 
Dispersion relation for barotropic Rossby wave 
Consider the plane wave solution, and with	𝐽𝐽(𝐴𝐴, 𝐴𝐴) = 0	we have 

𝓆𝓆1 = ∇#𝜕𝜕 −
𝜕𝜕
𝐿𝐿c#

= − r𝑘𝑘# + 𝑙𝑙# +
1
𝐿𝐿c#

s 𝜕𝜕, 𝐽𝐽(𝜕𝜕, 𝓆𝓆1) = 0 

This leads to the dispersion relation 

𝜔𝜔 = −
𝛽𝛽𝑘𝑘

𝑘𝑘# + 𝑙𝑙# + 1/𝐿𝐿c#
 

Assume	𝑙𝑙 = 0, and the non-dimensional frequency and wavenumber are 

𝑘𝑘· = 𝑘𝑘𝐿𝐿c , 𝜔𝜔Ã =
𝜔𝜔
𝑓𝑓'

= −
𝛽𝛽𝐿𝐿c
𝑓𝑓'

⋅
𝑘𝑘·

𝑘𝑘·# + 1
 

The maximum frequency of barotropic Rossby waves occurs at the following condition 

𝜕𝜕𝜔𝜔Ã
𝜕𝜕𝑘𝑘·

= −
𝛽𝛽𝐿𝐿c
𝑓𝑓'

⋅
¥𝑘𝑘·# + 1µ − 2𝑘𝑘·#

¥𝑘𝑘·# + 1µ#
= 0, 𝑘𝑘· = ±1 

Consider	𝜔𝜔Ã > 0, we choose	𝑘𝑘· = −1	and the maximum frequency is 

𝜔𝜔Ã32H =
𝛽𝛽𝐿𝐿c
2𝑓𝑓'

≈ 0.2, 𝜔𝜔32H ≈ 0.2	𝑓𝑓' 

 



This shows that barotropic Rossby waves are sub-inertial. This estimation is based on 

𝛽𝛽 =
2Ω
𝑅𝑅:

cos 𝜑𝜑' ≈ 2 × 10!--		m!- ⋅ s!-, 𝐿𝐿c =
—𝜌𝜌𝐻𝐻

𝑓𝑓'
≈ 2000		km 

 
Phase velocity of Rossby wave 
The	𝜕𝜕-component phase velocity is 

𝑐𝑐?> =
𝜔𝜔
𝑘𝑘 = −

𝛽𝛽
𝑘𝑘# + 𝑙𝑙# + 1/𝐿𝐿c#

< 0 

This implies that the phase lines of Rossby waves, the streamlines and thus the lines of constant 
pressure always propagate to the west (-𝜕𝜕-direction). Now consider	𝑙𝑙 = 0	with no variation 
in the	𝜕𝜕-direction. The ratio of the two terms in the PV anomaly scales as 

|𝑓𝑓/𝐻𝐻|
|𝑓𝑓'𝜂𝜂/𝐻𝐻#| =

|∇#𝜕𝜕|
|𝜕𝜕/𝐿𝐿c#| ∼ 𝑘𝑘#𝐿𝐿c#  

Under short wave limit, the vorticity term dominates PV anomaly and we have 

|𝑘𝑘|𝐿𝐿c ≫ 1, 𝑞𝑞1 ≈
𝑓𝑓
𝐻𝐻 , 𝑞𝑞 ≈

𝑓𝑓 + 𝑓𝑓
𝐻𝐻  

 
Under long wave limit, the thickness anomaly (stretching) term dominates and we have 

|𝑘𝑘|𝐿𝐿c ≪ 1, 𝑞𝑞1 ≈ −
𝑓𝑓'𝜂𝜂
𝐻𝐻# , 𝑞𝑞 ≈

𝑓𝑓
𝐻𝐻 −

𝑓𝑓'𝜂𝜂
𝐻𝐻# ≈

𝑓𝑓
𝐻𝐻 + 𝜂𝜂 

In both cases, the induced vorticity or geostrophic flows displace the fluid parcels in such a 
way that shifts the whole pattern westward over time. 

 



Group velocity of barotropic Rossby wave 
Assume	𝑙𝑙 = 0	with no variation in the	𝜕𝜕-direction. The group velocity is calculated as 

𝑐𝑐K> =
𝜕𝜕𝜔𝜔
𝜕𝜕𝑘𝑘 = −𝛽𝛽 ⋅

𝐿𝐿c!# − 𝑘𝑘#

(𝑘𝑘# + 𝐿𝐿c!#)# 

Under short wave limit, energy propagates eastward and the group velocity is very small. 

|𝑘𝑘|𝐿𝐿c ≫ 1, 𝑐𝑐K> ≈
𝛽𝛽
𝑘𝑘# ≪ 𝛽𝛽𝐿𝐿c#  

Under long wave limit, energy propagates westward. The long waves are non-dispersive, and 
the group velocity is fast with rapid energy transfer. 

|𝑘𝑘|𝐿𝐿c ≪ 1, 𝑐𝑐K> ≈ 𝑐𝑐?> ≈ −𝛽𝛽𝐿𝐿c#  

 
2D Rossby wave 
The contour of	𝜔𝜔	in the	𝑘𝑘-𝑙𝑙	plane are displaced circles, which leads 
to anisotropic behavior.  

𝜔𝜔 = −
𝛽𝛽𝑘𝑘

𝑘𝑘# + 𝑙𝑙# + 1/𝐿𝐿c#
 

For a fixed wavenumber amplitude	|𝒌𝒌|, its frequency	𝜔𝜔	depends on 
azimuth, also for phase and group velocities. In contrast, Poincaré 
waves are isotropic.  
 
Wind-driven long Rossby wave modes 
In terms of the spin-up of ocean circulation by winds, the initially generated Rossby waves are 

baroclinic with	𝐿𝐿c 	replaced by the baroclinic Rossby radius of deformation	𝐿𝐿clm ≈	50 – 100 km 
at mid-latitudes. However, the winds setup perturbations with length scale	𝐿𝐿n67o ≈	1000 km, 
which excites long Rossby wave modes that propagate energy westward towards the western 
boundary of the ocean basin. 
 
Western intensification 
Near the western boundary, energy is fluxed in by long waves and fluxed out by reflected short 
waves. Due to the difference in group velocities, energy piles up on the western boundary and 
thus leads to the western intensification of flows in this region. 
 
Ø Regular perturbation expansion analysis 
To derive the QG equation, consider the following small parameters are in the same order 

Ro =
𝑈𝑈
𝑓𝑓𝐿𝐿 ∼

𝜂𝜂'
𝐻𝐻 ∼

𝛽𝛽𝐿𝐿
𝑓𝑓 ∼ 𝜀𝜀 



We first obtain the non-dimensional shallow water equation using scales like	𝐿𝐿, 𝜂𝜂' , 𝑈𝑈. 

Ro r
𝜕𝜕𝑢𝑢∑
𝜕𝜕�̃�𝜕 + 𝒖𝒖Ã ⋅ ∇Õ𝑢𝑢∑s − 𝑣𝑣∑ r1 +

𝛽𝛽𝐿𝐿
𝑓𝑓'

𝜕𝜕∑s = −
𝜕𝜕𝜂𝜂∑
𝜕𝜕𝜕𝜕∑ 

Ro r
𝜕𝜕𝑣𝑣∑
𝜕𝜕�̃�𝜕 + 𝒖𝒖Ã ⋅ ∇Õ𝑣𝑣∑s + 𝑢𝑢∑ r1 +

𝛽𝛽𝐿𝐿
𝑓𝑓'

𝜕𝜕∑s = −
𝜕𝜕𝜂𝜂∑
𝜕𝜕𝜕𝜕∑ 

𝜂𝜂'
𝐻𝐻 r

𝜕𝜕𝜂𝜂∑
𝜕𝜕�̃�𝜕 + 𝒖𝒖Ã ⋅ ∇Õ𝜂𝜂∑s = − ‹1 +

𝜂𝜂'
𝐻𝐻 𝜂𝜂∑› ∇Õ ⋅ 𝒖𝒖Ã 

Based on the following expansions 

𝑢𝑢∑ = 𝑢𝑢∑ (E) + 𝜀𝜀𝑢𝑢∑ (-) + 𝜀𝜀#𝑢𝑢∑(#) + ⋯ 
𝑣𝑣∑ = 𝑣𝑣∑(E) + 𝜀𝜀𝑣𝑣∑(-) + 𝜀𝜀#𝑣𝑣∑(#) + ⋯ 
𝜂𝜂∑ = 𝜂𝜂∑(E) + 𝜀𝜀𝜂𝜂∑(-) + 𝜀𝜀#𝜂𝜂∑(#) + ⋯ 

The leading order	𝑂𝑂(1)	equations give the background geostrophic flow 

𝑣𝑣∑(E) =
𝜕𝜕𝜂𝜂∑(E)

𝜕𝜕𝜕𝜕∑ , 𝑢𝑢∑ (E) = −
𝜕𝜕𝜂𝜂∑(E)

𝜕𝜕𝜕𝜕∑ , ∇Õ ⋅ 𝒖𝒖Ã(E) = 0 

The first order	𝑂𝑂(𝜀𝜀)	equations are 

𝜀𝜀 Å
𝜕𝜕𝑢𝑢∑ (E)

𝜕𝜕�̃�𝜕 + 𝒖𝒖Ã(E) ⋅ ∇Õ𝑢𝑢∑ (E)Ç − 𝜀𝜀𝑣𝑣∑(-) −
𝛽𝛽𝐿𝐿
𝑓𝑓'

𝜕𝜕∑𝑣𝑣∑ (E) = −𝜀𝜀
𝜕𝜕𝜂𝜂∑(-)

𝜕𝜕𝜕𝜕∑  

𝜀𝜀 Å
𝜕𝜕𝑣𝑣∑(E)

𝜕𝜕�̃�𝜕 + 𝒖𝒖Ã(E) ⋅ ∇Õ𝑣𝑣∑(E)Ç + 𝜀𝜀𝑢𝑢∑ (-) +
𝛽𝛽𝐿𝐿
𝑓𝑓'

𝜕𝜕∑𝑢𝑢∑ (E) = −𝜀𝜀
𝜕𝜕𝜂𝜂∑(-)

𝜕𝜕𝜕𝜕∑  

𝜂𝜂'
𝐻𝐻 Å

𝜕𝜕𝜂𝜂∑(E)

𝜕𝜕�̃�𝜕 + 𝒖𝒖Ã(E) ⋅ ∇Õ𝜂𝜂∑(E)Ç = −𝜀𝜀∇Õ ⋅ 𝒖𝒖Ã(-) 

Denote the geostrophic and ageostrophic flows as 

𝑢𝑢K = 𝑈𝑈𝑢𝑢∑ (E), 𝑣𝑣K = 𝑈𝑈𝑣𝑣∑(E), 𝜂𝜂K = 𝜂𝜂'𝜂𝜂∑(E) 

𝑢𝑢gK = 𝜀𝜀𝑈𝑈𝑢𝑢∑ (-), 𝑣𝑣gK = 𝜀𝜀𝑈𝑈𝑣𝑣∑(-), 𝜂𝜂gK = 𝜀𝜀𝜂𝜂'𝜂𝜂∑(-) 

Then the dimensional first order	𝑂𝑂(𝜀𝜀)	equations become 
D𝑢𝑢K
D𝜕𝜕 − 𝛽𝛽𝜕𝜕𝑣𝑣K − 𝑓𝑓'𝑣𝑣gK = −𝜌𝜌

𝜕𝜕𝜂𝜂gK
𝜕𝜕𝜕𝜕  

D𝑣𝑣K
D𝜕𝜕 + 𝛽𝛽𝜕𝜕𝑢𝑢K + 𝑓𝑓'𝑢𝑢gK = −𝜌𝜌

𝜕𝜕𝜂𝜂gK
𝜕𝜕𝜕𝜕  

D𝜂𝜂K
D𝜕𝜕 = −𝐻𝐻∇ ⋅ 𝒖𝒖gK,

D
D𝜕𝜕 =

𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝒖𝒖K ⋅ ∇ 

The vorticity equation can be constructed from the momentum equations 

D𝜉𝜉K
D𝜕𝜕 + 𝛽𝛽𝑣𝑣K = −𝑓𝑓' Å

𝜕𝜕𝑢𝑢gK

𝜕𝜕𝜕𝜕 +
𝜕𝜕𝑣𝑣gK
𝜕𝜕𝜕𝜕 Ç =

𝑓𝑓'
𝐻𝐻

D𝜂𝜂K
D𝜕𝜕  

 



Using the geostrophic stream function	𝜕𝜕, we have 

D
D𝜕𝜕

(∇#𝜕𝜕) + 𝛽𝛽
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 =

𝑓𝑓'#

𝜌𝜌𝐻𝐻
D𝜕𝜕
D𝜕𝜕 , with		

D
D𝜕𝜕 =

𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝐽𝐽(𝜕𝜕,⋅) 

This is now the same as the QG-PV equation 
𝜕𝜕
𝜕𝜕𝜕𝜕 r∇#𝜕𝜕 −

𝜕𝜕
𝐿𝐿c#

s + 𝐽𝐽 r𝜕𝜕, ∇#𝜕𝜕 −
𝜕𝜕
𝐿𝐿c#

s + 𝛽𝛽
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 0 

Now consider Rossby waves in a background flow with no variation in	𝜕𝜕-direction, we have 

𝑢𝑢K = 0,
∂𝑣𝑣K
∂𝜕𝜕 + 𝑓𝑓'𝑢𝑢gK = 0,

∂𝜂𝜂K
∂𝜕𝜕 = −𝐻𝐻

∂𝑢𝑢gK

∂𝜕𝜕  

The acceleration of the geostrophic flow is caused by the Coriolis force from the ageostrophic 
flow. The free surface change is caused by the convergence of ageostrophic flow. 
 
Group velocity of barotropic Rossby wave 
Recall that the group velocity is in the same direction of the energy flux. In the	𝜕𝜕-direction, we 
need to analyze the correlation	𝑝𝑝𝑢𝑢. Note that 

𝑝𝑝 = 𝜌𝜌'𝜌𝜌𝜂𝜂 ≈ 𝜌𝜌'𝜌𝜌𝜂𝜂K, 𝑢𝑢 = 𝑢𝑢K + 𝑢𝑢gK + ⋯ , 𝑢𝑢K = −
𝜌𝜌
𝑓𝑓'

𝜕𝜕𝜂𝜂K
𝜕𝜕𝜕𝜕 = 0 

Therefore, the energy flux is determined by the correlation between displacement in the free 
surface and the zonal ageostrophic velocity, which is 

𝑝𝑝𝑢𝑢 = 𝜌𝜌'𝜌𝜌	𝜂𝜂K𝑢𝑢gK 

 
Under short wave limit, PV anomaly is dominated by vorticity. Therefore, we need to analyze 
the 𝜕𝜕-momentum equation, which gives 

|𝑘𝑘|𝐿𝐿c ≫ 1,
∂𝑣𝑣K
∂𝜕𝜕 + 𝑓𝑓'𝑢𝑢gK = 0,

𝜕𝜕𝑓𝑓K
𝜕𝜕𝜕𝜕 = −𝑓𝑓'

𝜕𝜕𝑢𝑢gK

𝜕𝜕𝜕𝜕  

From the previous pattern of	𝜂𝜂K, we can obtain the pattern of	𝜕𝜕𝑓𝑓K/𝜕𝜕𝜕𝜕	and thus	𝜕𝜕𝑢𝑢gK/𝜕𝜕𝜕𝜕, which 
leads to the pattern of	𝑢𝑢gK. This implies that the change in	𝑓𝑓K	is caused by the convergence of 
ageostrophic flow.	𝜂𝜂K	and	𝑢𝑢gK	share the same sign, giving	𝑐𝑐K> > 0	propagating eastward. 



Under long wave limit, PV anomaly is dominated by thickness anomaly. Therefore, we need 
to analyze the continuity equation, which gives 

|𝑘𝑘|𝐿𝐿c ≪ 1,
∂𝜂𝜂K
∂𝜕𝜕 = −𝐻𝐻

∂𝑢𝑢gK

∂𝜕𝜕  

Similarly, based on the pattern of	𝜂𝜂K, we can obtain the pattern of	𝜕𝜕𝜂𝜂K/𝜕𝜕𝜕𝜕	and thus	𝜕𝜕𝑢𝑢gK/𝜕𝜕𝜕𝜕, 
which leads to the pattern of	𝑢𝑢gK. The change in	𝜂𝜂K	is due to the convergence of ageostrophic 
flow.	𝜂𝜂K	and	𝑢𝑢gK	share opposite signs, giving	𝑐𝑐K> < 0	propagating westward. 

 
Ø Baroclinic Rossby wave 
Two-layer model 
Now we include the effects of stratification with a two-layer model. An example is the lighter 
and denser fluids separated by the thermocline / pycnocline in the ocean.  

Consider the layers are thin compared to the horizontal length scale of the flow with	𝐻𝐻5 ≪ 𝐿𝐿. 
The pressure is hydrostatic for shallow water layers. In layer 1, the PGF is calculated as 

𝑝𝑝- = 𝑝𝑝2)3 + 𝜌𝜌-𝜌𝜌(𝜂𝜂 − 𝜕𝜕), −
1
𝜌𝜌'

∇4𝑝𝑝- = −
𝜌𝜌-
𝜌𝜌'

𝜌𝜌∇4𝜂𝜂 ≈ −𝜌𝜌∇4𝜂𝜂 

The Boussinesq approximation is applied with	𝜌𝜌- ≈ 𝜌𝜌'. In layer 2, we have 
𝑝𝑝# = 𝑝𝑝2)3 + 𝜌𝜌-𝜌𝜌(𝜂𝜂 + 𝐻𝐻- − 𝜉𝜉) + 𝜌𝜌#𝜌𝜌(𝜉𝜉 − 𝐻𝐻- − 𝜕𝜕) 

Denote the reduced gravity as	𝜌𝜌′. The PGF in layer 2 is calculated as 

−
1
𝜌𝜌'

∇4𝑝𝑝# = −𝜌𝜌∇4𝜂𝜂 − 𝜌𝜌1∇4𝜉𝜉, 𝜌𝜌1 =
𝜌𝜌# − 𝜌𝜌-

𝜌𝜌E
𝜌𝜌 ≪ 𝜌𝜌 

 



The momentum equations in both layers become 
D𝒖𝒖-

D𝜕𝜕 + 𝒇𝒇 × 𝒖𝒖- = −𝜌𝜌∇4𝜂𝜂	

D𝒖𝒖#

D𝜕𝜕 + 𝒇𝒇 × 𝒖𝒖# = −𝜌𝜌∇4𝜂𝜂 − 𝜌𝜌1∇4𝜉𝜉 

The continuity equations in each layer are 
D
D𝜕𝜕

(𝐻𝐻- + 𝜂𝜂 − 𝜉𝜉) = −(𝐻𝐻- + 𝜂𝜂 − 𝜉𝜉)	∇ ⋅ 𝒖𝒖- 

D
D𝜕𝜕

(𝐻𝐻# + 𝜉𝜉) = −(𝐻𝐻# + 𝜉𝜉)	∇ ⋅ 𝒖𝒖# 

For a very thick lower layer with	𝐻𝐻# ≫ 𝐻𝐻-, velocity in the lower layer is very weak. 

−
1

𝐻𝐻#

D𝜉𝜉
D𝜕𝜕 ≈ ∇ ⋅ 𝒖𝒖# → 0 

 
Two-layer QG-PV equation 
Under the same assumptions as for barotropic Rossby waves 

𝑓𝑓 = 𝑓𝑓' + 𝛽𝛽𝜕𝜕,
𝛽𝛽𝐿𝐿
𝑓𝑓'

≪ 1, Ro ≪ 1,
𝜂𝜂

𝐻𝐻-
≪ 1,

𝜉𝜉
𝐻𝐻-

≪ 1,
𝜉𝜉

𝐻𝐻#
≪ 1 

the QG approximation gives the geostrophic balance in each layer as 
𝒇𝒇 × 𝒖𝒖- = −𝜌𝜌∇4𝜂𝜂, 𝒇𝒇 × 𝒖𝒖# = −𝜌𝜌∇4𝜂𝜂 − 𝜌𝜌1∇4𝜉𝜉 

Using the geostrophic stream function in each layer, we have 

𝜕𝜕- =
𝜌𝜌
𝑓𝑓'

𝜂𝜂, 𝜕𝜕# = 𝜕𝜕- +
𝜌𝜌1

𝑓𝑓'
𝜉𝜉, 𝜉𝜉 =

𝑓𝑓'
𝜌𝜌1 (𝜕𝜕# − 𝜕𝜕-) 

The relation between the displacement of interface	𝜉𝜉	and stream functions are illustrated below. 

The total PV in each layer is 

𝑞𝑞- =
𝑓𝑓' + 𝛽𝛽𝜕𝜕 + 𝑓𝑓-
𝐻𝐻- + 𝜂𝜂 − 𝜉𝜉 , 𝑞𝑞# =

𝑓𝑓' + 𝛽𝛽𝜕𝜕 + 𝑓𝑓#
𝐻𝐻# + 𝜉𝜉  

We can decompose it into the background and perturbation PV fields as 

𝑞𝑞Ω- =
𝑓𝑓' + 𝛽𝛽𝜕𝜕

𝐻𝐻-
, 𝑞𝑞Ω# =

𝑓𝑓' + 𝛽𝛽𝜕𝜕
𝐻𝐻#

, 𝑞𝑞-1 =
𝑓𝑓-
𝐻𝐻-

−
𝑓𝑓'𝜂𝜂
𝐻𝐻-
# +

𝑓𝑓'𝜉𝜉
𝐻𝐻-
# , 𝑞𝑞#1 =

𝑓𝑓#
𝐻𝐻#

−
𝑓𝑓'𝜉𝜉
𝐻𝐻#
#  

𝜉𝜉 ∝ 𝜓𝜓% −𝜓𝜓& > 0 
𝜉𝜉 ∝ 𝜓𝜓% −𝜓𝜓& < 0 



With the geostrophic stream function, the PV anomaly in each layer becomes 

𝑞𝑞-1 =
1

𝐻𝐻-
»∇#𝜕𝜕- −

𝜕𝜕-

𝐿𝐿c,-# +
𝜕𝜕# − 𝜕𝜕-

¥𝐿𝐿c,-lm µ#
  , 𝑞𝑞#1 =

1
𝐻𝐻#

»∇#𝜕𝜕# −
𝜕𝜕# − 𝜕𝜕-

¥𝐿𝐿c,#lm µ#
  

The baroclinic Rossby radii of deformation are defined as 

𝐿𝐿c,-lm =
—𝜌𝜌1𝐻𝐻-

𝑓𝑓'
, 𝐿𝐿c,#lm =

—𝜌𝜌1𝐻𝐻#

𝑓𝑓'
 

Now we scale the terms in PV anomaly of layer 1 

	
±𝜕𝜕-/𝐿𝐿c,-# ±
|∇#𝜕𝜕-| ∼

𝐿𝐿#

𝐿𝐿c#
≪ 1,

±𝜕𝜕-/𝐿𝐿c,-# ±

Í(𝜕𝜕# − 𝜕𝜕-)/¥𝐿𝐿c,-lm µ#Í
∼

¥𝐿𝐿c,-lm µ#

𝐿𝐿c#
=

𝜌𝜌1

𝜌𝜌 ≪ 1 

In mid-latitudes, 𝐻𝐻 ∼	4000 km and	𝐿𝐿c ∼	1000 km. For most cases we have	𝐿𝐿 ≪ 𝐿𝐿c, so 

𝑞𝑞-1 ≈
1

𝐻𝐻-
»∇#𝜕𝜕- +

𝜕𝜕# − 𝜕𝜕-

¥𝐿𝐿c,-lm µ#
  , 𝑞𝑞#1 =

1
𝐻𝐻#

»∇#𝜕𝜕# −
𝜕𝜕# − 𝜕𝜕-

¥𝐿𝐿c,#lm µ#
  

The conservation of total PV gives 
D-𝑞𝑞-1

D𝜕𝜕 =
𝜕𝜕𝑞𝑞-1

𝜕𝜕𝜕𝜕 + 𝐽𝐽(𝜕𝜕-, 𝑞𝑞-1 ) = −
𝛽𝛽
𝐻𝐻-

𝜕𝜕𝜕𝜕-

𝜕𝜕𝜕𝜕  

D#𝑞𝑞#1

D𝜕𝜕 =
𝜕𝜕𝑞𝑞#1

𝜕𝜕𝜕𝜕 + 𝐽𝐽(𝜕𝜕#, 𝑞𝑞#1 ) = −
𝛽𝛽
𝐻𝐻#

𝜕𝜕𝜕𝜕#

𝜕𝜕𝜕𝜕  

These two equations are coupled through the interface	𝜉𝜉 ∝ 𝜕𝜕# − 𝜕𝜕-, as the change of interface 

leads to opposite changes of	𝑞𝑞-1 	and	𝑞𝑞#1 . In the short wave limit	𝐿𝐿 ≪ 𝐿𝐿clm, the equations become 
uncoupled as the coupled term in the PV anomaly is small. 
 
Barotropic and baroclinic modes 
For a simple system with	𝐻𝐻- = 𝐻𝐻# = 𝐻𝐻, the linearized two-layer QG-PV equations become 

𝜕𝜕
𝜕𝜕𝜕𝜕 »∇#𝜕𝜕- +

𝜕𝜕# − 𝜕𝜕-

¥𝐿𝐿clmµ
#   + 𝛽𝛽

𝜕𝜕𝜕𝜕-

𝜕𝜕𝜕𝜕 = 0	

𝜕𝜕
𝜕𝜕𝜕𝜕 »∇#𝜕𝜕# −

𝜕𝜕# − 𝜕𝜕-

¥𝐿𝐿clmµ
#   + 𝛽𝛽

𝜕𝜕𝜕𝜕#

𝜕𝜕𝜕𝜕 = 0 

The equations can be decoupled by analyzing the barotropic (depth-averaged, bt) mode and the 
baroclinic (bc) mode separately 

𝜕𝜕l) =
𝜕𝜕- + 𝜕𝜕#

2 , 𝜕𝜕lm =
𝜕𝜕- − 𝜕𝜕#

2  

¨ When	𝜕𝜕- = 𝜕𝜕#, we have a flat interface with	𝜉𝜉 = 0. No baroclinic mode. 
¨ When	𝜕𝜕- = −𝜕𝜕#, flows are opposite in each layer. No barotropic mode. 
 



The uncoupled two-layer QG-PV equations are 

𝜕𝜕
𝜕𝜕𝜕𝜕

(∇#𝜕𝜕l)) + 𝛽𝛽
𝜕𝜕𝜕𝜕l)

𝜕𝜕𝜕𝜕 = 0,
𝜕𝜕
𝜕𝜕𝜕𝜕 »∇#𝜕𝜕lm −

2𝜕𝜕lm

¥𝐿𝐿clmµ
#  + 𝛽𝛽

𝜕𝜕𝜕𝜕lm

𝜕𝜕𝜕𝜕 = 0 

The original	𝜕𝜕-	and	𝜕𝜕#	are a combination of the barotropic and baroclinic modes. 
 
Long baroclinic Rossby wave 

In the long wave limit with	𝐿𝐿 ≫ 𝐿𝐿clm	(𝜂𝜂 ≃ 0), the dispersion relation is 

2𝑖𝑖𝜔𝜔

¥𝐿𝐿clmµ
# + 𝑖𝑖𝑘𝑘𝛽𝛽 = 0, 𝜔𝜔 = −

𝛽𝛽𝑘𝑘
2 ¥𝐿𝐿clmµ

# 

Baroclinic modes are non-dispersive, independent of	𝑙𝑙	wavenumber and propagate westward. 
To visualize this westward movement of patterns, note that the geostrophic flow	𝑣𝑣 advects low 
PV from the south and high PV from the north. The initial perturbation can be caused by a local 
convergence of surface flow that pushes the interface downward.  

  
Advect high PV 
from the north 

Advect low PV 
from the south 



Baroclinic Instability 

Ø Two-layer QG system 

Consider a two-layer system with	𝐻𝐻- = 𝐻𝐻# = 𝐻𝐻. The interface	𝜉𝜉̅	is tilted, and is associated with 
a background flow (in	𝜕𝜕-direction) under geostrophic balance, given as 

𝜕𝜕- = −𝑈𝑈𝜕𝜕, 𝜕𝜕# = 𝑈𝑈𝜕𝜕, 𝜉𝜉̅ =
𝑓𝑓'
𝜌𝜌1 ¥𝜕𝜕# − 𝜕𝜕-µ =

2𝑓𝑓'𝑈𝑈
𝜌𝜌1 𝜕𝜕 

Assume	±𝜉𝜉̅± ≪ 𝐻𝐻	with the	𝛽𝛽-plane	𝑓𝑓 = 𝑓𝑓' + 𝛽𝛽𝜕𝜕. The background PV fields are simplified as 

𝑞𝑞Ω- =
𝑓𝑓

𝐻𝐻 − 𝜉𝜉̅ ≈
𝑓𝑓' + 𝛽𝛽𝜕𝜕

𝐻𝐻 +
𝑓𝑓'𝜉𝜉̅
𝐻𝐻# , 𝑞𝑞Ω# =

𝑓𝑓
𝐻𝐻 + 𝜉𝜉̅ ≈

𝑓𝑓' + 𝛽𝛽𝜕𝜕
𝐻𝐻 −

𝑓𝑓'𝜉𝜉̅
𝐻𝐻#  

The gradient of background PV becomes 

∇𝑞𝑞Ω- =
𝛽𝛽
𝐻𝐻 Ä̂ +

𝑓𝑓'
𝐻𝐻# ∇𝜉𝜉̅ =

𝛽𝛽 + 𝛽𝛽Z
𝐻𝐻 Ä̂, ∇𝑞𝑞Ω# =

𝛽𝛽 − 𝛽𝛽Z
𝐻𝐻 Ä̂, 𝛽𝛽Z =

2𝑈𝑈

¥𝐿𝐿clmµ
# 

The perturbed fields are denoted as	𝜉𝜉, 𝒖𝒖5 , 𝜕𝜕5. With the similar assumptions, the contribution to 
PV anomaly from the free surface	𝜂𝜂	can be neglected, which leads to 

𝑞𝑞-1 ≈
1
𝐻𝐻 »∇#𝜕𝜕- +

𝜕𝜕# − 𝜕𝜕-

¥𝐿𝐿clmµ
#   , 𝑞𝑞#1 =

1
𝐻𝐻 »∇#𝜕𝜕# −

𝜕𝜕# − 𝜕𝜕-

¥𝐿𝐿clmµ
#   

The contribution from	𝜂𝜂	is neglected since	𝐿𝐿 ≪ 𝐿𝐿c. The conservation of total PV gives 
D-𝑞𝑞-1

D𝜕𝜕 =
𝜕𝜕𝑞𝑞-1

𝜕𝜕𝜕𝜕 + 𝐽𝐽(𝜕𝜕-, 𝑞𝑞-1) + 𝑈𝑈
𝜕𝜕𝑞𝑞-1

𝜕𝜕𝜕𝜕 = −𝑣𝑣-
𝜕𝜕𝑞𝑞Ω-
𝜕𝜕𝜕𝜕  

D#𝑞𝑞#1

D𝜕𝜕 =
𝜕𝜕𝑞𝑞#1

𝜕𝜕𝜕𝜕 + 𝐽𝐽(𝜕𝜕#, 𝑞𝑞#1 ) − 𝑈𝑈
𝜕𝜕𝑞𝑞#1

𝜕𝜕𝜕𝜕 = −𝑣𝑣#
𝜕𝜕𝑞𝑞Ω#
𝜕𝜕𝜕𝜕  

Now the advection also includes the background flow. The linearized equations become 

r
𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝑈𝑈

𝜕𝜕
𝜕𝜕𝜕𝜕s »∇#𝜕𝜕- +

𝜕𝜕# − 𝜕𝜕-

¥𝐿𝐿clmµ
#   + ¥𝛽𝛽 + 𝛽𝛽Zµ

𝜕𝜕𝜕𝜕-

𝜕𝜕𝜕𝜕 = 0	

r
𝜕𝜕
𝜕𝜕𝜕𝜕 − 𝑈𝑈

𝜕𝜕
𝜕𝜕𝜕𝜕s »∇#𝜕𝜕# −

𝜕𝜕# − 𝜕𝜕-

¥𝐿𝐿clmµ
#   + ¥𝛽𝛽 − 𝛽𝛽Zµ

𝜕𝜕𝜕𝜕#

𝜕𝜕𝜕𝜕 = 0 

 



Similarly using the barotropic and baroclinic modes, we have 
𝜕𝜕
𝜕𝜕𝜕𝜕

(∇#𝜕𝜕l)) + 𝛽𝛽
𝜕𝜕𝜕𝜕l)

𝜕𝜕𝜕𝜕 + 𝑈𝑈
𝜕𝜕

𝜕𝜕𝜕𝜕
(∇#𝜕𝜕lm) = 0 

𝜕𝜕
𝜕𝜕𝜕𝜕 »∇#𝜕𝜕lm −

2𝜕𝜕lm

¥𝐿𝐿clmµ
#  + 𝛽𝛽

𝜕𝜕𝜕𝜕lm

𝜕𝜕𝜕𝜕 + 𝑈𝑈
𝜕𝜕

𝜕𝜕𝜕𝜕
(∇#𝜕𝜕l)) + 𝛽𝛽Z

𝜕𝜕𝜕𝜕l)

𝜕𝜕𝜕𝜕 = 0 

With the background baroclinic current, the equations are coupled through: 
¨ Advection of background PV gradient from the tilted interface by the barotropic mode 
¨ Advection of barotropic / baroclinic vorticity by the background baroclinic flow 
 
Coupling terms 
The advection of background PV gradient by the barotropic mode is  

𝛽𝛽Z
𝜕𝜕𝜕𝜕l)

𝜕𝜕𝜕𝜕 = 𝛽𝛽Z𝑣𝑣l) = 𝐻𝐻𝑣𝑣l)
𝜕𝜕𝑞𝑞Ω-
𝜕𝜕𝜕𝜕 = −𝐻𝐻𝑣𝑣l)

𝜕𝜕𝑞𝑞Ω#
𝜕𝜕𝜕𝜕  

The advection of barotropic / baroclinic vorticity by the background baroclinic flow is 

𝑈𝑈
𝜕𝜕

𝜕𝜕𝜕𝜕
(∇#𝜕𝜕lm)																𝑈𝑈

𝜕𝜕
𝜕𝜕𝜕𝜕

(∇#𝜕𝜕l)) 

These coupling terms are illustrated below. The barotropic flow advects background PV field 
and generates a baroclinic PV anomaly. The background flow advects the vorticity field of one 
mode and generates the other mode. 

 
Ø Baroclinic instability 
Now consider the	𝑓𝑓-plane with	𝛽𝛽 = 0. For linear stability analysis, we seek wave solution and 
this leads to the eigenvalue problem 

𝜔𝜔𝜕𝜕Ïl) − 𝑈𝑈𝑘𝑘𝜕𝜕Ïlm = 0, 𝜔𝜔 »𝐾𝐾# +
2

¥𝐿𝐿clmµ
#  𝜕𝜕Ïlm − 𝑈𝑈𝑘𝑘𝐾𝐾#𝜕𝜕Ïl) + 𝑘𝑘𝛽𝛽Z𝜕𝜕Ïl) = 0 

The eigenvalues and eigenvectors are solved as 

𝜔𝜔# = 𝑘𝑘#𝑈𝑈# ⋅
𝐾𝐾# − 2/¥𝐿𝐿clmµ

#

𝐾𝐾# + 2/¥𝐿𝐿clmµ
# , 𝜕𝜕Ïlm =

𝜔𝜔
𝑘𝑘𝑈𝑈 𝜕𝜕Ïl), 𝐾𝐾# = 𝑘𝑘# + 𝑙𝑙# 

 



When	𝐾𝐾# < 2/¥𝐿𝐿clmµ
#, we have growing modes with imaginary frequency 

𝜔𝜔 = 𝑖𝑖𝜔𝜔p = 𝑖𝑖𝑘𝑘𝑈𝑈𝑖𝑖, 𝑖𝑖 = »
2/¥𝐿𝐿clmµ

# − 𝐾𝐾#

𝐾𝐾# + 2/¥𝐿𝐿clmµ
# 

-/#

	 

The fastest growing mode occurs at	𝑙𝑙 = 0	with streamwise wavelength 

𝑘𝑘 ≈
0.91
𝐿𝐿clm

, 𝜆𝜆> =
2𝜋𝜋
𝑘𝑘 ≈ 6.7	𝐿𝐿clm ≈ 67	km 

For unstable modes, the baroclinic	𝜕𝜕Ïlm	lags the barotropic	𝜕𝜕Ïl)	by 90°. This is essential for the 
instability mechanism. 

𝜕𝜕l) = 𝜕𝜕Ïl)	𝑒𝑒5(𝒌𝒌⋅𝒙𝒙!O@), 𝜕𝜕lm = 𝑖𝑖𝑖𝑖𝜕𝜕Ïl)	𝑒𝑒5(𝒌𝒌⋅𝒙𝒙!O@) = 𝑖𝑖𝜕𝜕Ïl)	𝑒𝑒5(𝒌𝒌⋅𝒙𝒙!O@SX/#) 
 
Instability mechanism 
The structure of the fastest growing mode indicates the phase lag between the two modes. 

The instability mechanism can be summarized into two stages: 
Stage 1. Barotropic perturbation advects background PV, setting up baroclinic vorticity 
Stage 2. Background flow advects baroclinic vorticity, reinforcing barotropic perturbation 

 
Influence of planetary vorticity 

When	𝛽𝛽 > 𝛽𝛽Z , the PV gradient in both layers have the same sign. Then, a barotropic perturbation 
will not create a baroclinic PV anomaly, and thus no growth. An essential criterion for mode 
growth is that the PV gradients have opposite signs in the two layers. 



Ø Energetics of baroclinic instability 
Baroclinic instability derives its KE from the release of APE through driving a net overturning 
circulation that flattens out the tilted interface. Averaged over the	𝜕𝜕-direction (N-S), the eddies 
drive a net northward transport in the upper layer, and southward transport in the lower layer. 
However, the averaged N-S flow is zero. To see this, we have 

𝑣𝑣- =
1
2 r

𝜕𝜕𝜕𝜕l)

𝜕𝜕𝜕𝜕 +
𝜕𝜕𝜕𝜕lm

𝜕𝜕𝜕𝜕 s , 𝑣𝑣# =
1
2 r

𝜕𝜕𝜕𝜕l)

𝜕𝜕𝜕𝜕 −
𝜕𝜕𝜕𝜕lm

𝜕𝜕𝜕𝜕 s 

With wave solution, their average over one wavelength is zero. But the release of APE is in 
fact governed by the net volume transport in layers, instead of the averaged velocity. The 
transport also depends on the layer thickness which is modified by the instability. Note that 

ℎ- = 𝐻𝐻 − 𝜉𝜉̅ − 𝜉𝜉1, ℎ# = 𝐻𝐻 + 𝜉𝜉̅ + 𝜉𝜉1, 𝜉𝜉 =
𝑓𝑓'
𝜌𝜌1 (𝜕𝜕# − 𝜕𝜕-) = −

2𝑓𝑓'
𝜌𝜌1 𝜕𝜕lm 

The net N-S transport in the upper layer is 

𝑉𝑉- =
1
𝜆𝜆>

H 𝑣𝑣-ℎ-	d𝜕𝜕
r'

E
= −

1
𝜆𝜆>

H 𝑣𝑣-𝜉𝜉1	d𝜕𝜕
r'

E
=

𝑓𝑓'
𝜌𝜌1𝜆𝜆>

H r
𝜕𝜕𝜕𝜕l)

𝜕𝜕𝜕𝜕 +
𝜕𝜕𝜕𝜕lm

𝜕𝜕𝜕𝜕 s 𝜕𝜕lm	d𝜕𝜕
r'

E
 

Consider the solution for a growing mode, which is 

𝜕𝜕l) = 𝜕𝜕'𝑒𝑒O(@ cos(𝑘𝑘𝜕𝜕) , 𝜕𝜕lm = Re	𝑖𝑖𝑖𝑖𝜕𝜕'𝑒𝑒O(@𝑒𝑒5(>Ò = −𝑖𝑖𝜕𝜕'𝑒𝑒O(@ sin(𝑘𝑘𝜕𝜕) 

It can be shown that the net N-S transport is positive 

𝑉𝑉- =
𝑓𝑓'

𝜌𝜌1𝜆𝜆>
𝑘𝑘𝑖𝑖𝜕𝜕'

#𝑒𝑒#O(@ H [sin(𝑘𝑘𝜕𝜕) + 𝑖𝑖 cos(𝑘𝑘𝜕𝜕)] sin(𝑘𝑘𝜕𝜕) d𝜕𝜕
r'

E
=

𝑓𝑓'
2𝜌𝜌1 𝑘𝑘𝑖𝑖𝜕𝜕'

#𝑒𝑒#O(@ 

From the result, we notice that 

𝑉𝑉- ∝ − H 𝜉𝜉1𝑣𝑣l)	d𝜕𝜕
r'

E
 

The transport depends on the correlation between the barotropic N-S velocity and the interface 
perturbation. In the upper layer, they are negatively correlated, which indicates a net northward 
transport. Vice versa, there is a net southward transport in the lower layer with	𝑉𝑉# = −𝑉𝑉-. These 
net transports correspond to a net release of APE. 
  



Frictional Effects 

Ø Ekman layer 
Frictional force from turbulent momentum flux 
The effects of friction are important in boundary layers near the surface or bottom of the ocean. 
The flows in the Ekman layers, for example, affect the dynamics of the entire water column. 
Friction in the boundary layer is associated with turbulent processes that transport momentum 
flux down the gradient. The vertical flux of horizontal momentum by turbulence is proportional 
to the vertical shear of mean horizontal flow through eddy viscosity	𝜈𝜈:, which is 

𝑢𝑢1𝑤𝑤1 = −𝜈𝜈:
𝜕𝜕𝑢𝑢Ω
𝜕𝜕𝜕𝜕 , 𝑣𝑣1𝑤𝑤1 = −𝜈𝜈:

𝜕𝜕�̅�𝑣
𝜕𝜕𝜕𝜕 

The lateral friction can be neglected. In practice,	𝜈𝜈: 	is not constant and varies with properties 
of the mean flow, surface forcing, roughness of the bathymetry, etc., and has to be 
parameterized in ocean circulation models. The typical range of	𝜈𝜈: 	is 

10!"	m#/s < 𝜈𝜈: < 0.1	m#/s 
The frictional force (per unit mass) generated by these turbulent momentum fluxes is 

𝑭𝑭 = −
𝜕𝜕
𝜕𝜕𝜕𝜕 r−𝜈𝜈:

𝜕𝜕𝒖𝒖º
𝜕𝜕𝜕𝜕s = 𝜈𝜈:

𝜕𝜕#𝒖𝒖º
𝜕𝜕𝜕𝜕#  

 
Ekman number 
For simplicity, consider a constant	𝜈𝜈:. The Boussinesq equation becomes 

D𝒖𝒖
D𝜕𝜕 + 𝒇𝒇 × 𝒖𝒖 = −

1
𝜌𝜌'

∇𝑝𝑝 + 𝑏𝑏𝐤𝐤Z + 𝜈𝜈:
𝜕𝜕#𝒖𝒖º
𝜕𝜕𝜕𝜕#  

Assume the fluid is homogeneous with	𝜌𝜌 = 𝜌𝜌'	and	𝑏𝑏 = 0. The non-dimensional equation is 

Ro)
𝜕𝜕𝑢𝑢∑
𝜕𝜕�̃�𝜕 + Ro¥𝒖𝒖Ã ⋅ ∇Õ𝑢𝑢∑µ − 𝑣𝑣∑ = −

𝜕𝜕𝑝𝑝∑
𝜕𝜕𝜕𝜕∑ + Ek	

𝜕𝜕#𝑢𝑢∑
𝜕𝜕�̃�𝜕#  

Ro)
𝜕𝜕𝑣𝑣∑
𝜕𝜕�̃�𝜕 + Ro¥𝒖𝒖Ã ⋅ ∇Õ𝑣𝑣∑µ + 𝑢𝑢∑ = −

𝜕𝜕𝑝𝑝∑
𝜕𝜕𝜕𝜕∑ + Ek	

𝜕𝜕#𝑣𝑣∑
𝜕𝜕�̃�𝜕#  

Ro)	Γ# 𝜕𝜕𝑤𝑤Ã
𝜕𝜕�̃�𝜕 + Ro	Γ#¥𝒖𝒖Ã ⋅ ∇Õ𝑤𝑤Ãµ = −

𝜕𝜕𝑝𝑝∑
𝜕𝜕�̃�𝜕 + Ek	Γ# 𝜕𝜕#𝑤𝑤Ã

𝜕𝜕�̃�𝜕#  

The key non-dimensional parameters are 

Ro) =
1

𝑓𝑓𝑇𝑇 , Ro =
𝑈𝑈
𝑓𝑓𝐿𝐿 , Γ =

𝐻𝐻
𝐿𝐿 , Ek =

𝜈𝜈:
𝑓𝑓𝐻𝐻# 

The Ekman number compares the frictional force to the Coriolis force. In the ocean, we have 

Ek =
𝜈𝜈:

𝑓𝑓𝐻𝐻# ∼
10!M	m#/s

10!$	s!- × 10%	m# ∼ 10!" ≪ 1 

When all these parameters are small, the governing equations describe the geostrophic flow 
invariant over depth. However, the solution cannot satisfy the no-slip boundary condition at 



the bottom. This implies that a thin boundary layer must develop where the frictional force is 
as important as the Coriolis force, and locally the Ekman number is of	𝑂𝑂(1). 
 
Ekman boundary layer 
We decompose the balanced flow into the interior flow (geostrophic and ageostrophic) and the 
Ekman flow as 

𝑢𝑢 = 𝑢𝑢5 + 𝑢𝑢5
2f + 𝑢𝑢: , 𝑣𝑣 = 𝑣𝑣5 + 𝑣𝑣5

2f + 𝑣𝑣: 

The Ekman flow is confined within the vertical scale	𝛿𝛿	of the Ekman layer 

Ek =
𝜈𝜈:

𝑓𝑓𝛿𝛿# ∼ 1, 𝛿𝛿 ∼ —𝜈𝜈:/𝑓𝑓 

Away from the boundary, we have 
𝑢𝑢: , 𝑣𝑣: → 0, 𝑢𝑢, 𝑣𝑣 → 𝑢𝑢5 , 𝑣𝑣5 , for		𝜕𝜕 ≫ 𝛿𝛿 

The geostrophic interior flow (not varying with depth) is given by 

−𝑓𝑓𝑣𝑣5 = −
1
𝜌𝜌'

𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕 , 𝑓𝑓𝑢𝑢5 = −

1
𝜌𝜌'

𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕 

The ageostrophic component is of order	𝑂𝑂¥√Ekµ	and neglected for the leading order balance, 

but it is important for the evolution of Ekman flow. Within the Ekman layer, we have 

−𝑓𝑓(𝑣𝑣5 + 𝑣𝑣:) = −
1
𝜌𝜌'

𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕 + 𝜈𝜈:

𝜕𝜕#𝑢𝑢:

𝜕𝜕𝜕𝜕# , 𝑓𝑓(𝑢𝑢5 + 𝑢𝑢:) = −
1
𝜌𝜌'

𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕 + 𝜈𝜈:

𝜕𝜕#𝑣𝑣:
𝜕𝜕𝜕𝜕#  

Since pressure does not vary through the Ekman layer, subtracting the equations gives 

−𝑓𝑓𝑣𝑣: = 𝜈𝜈:
𝜕𝜕#𝑢𝑢:

𝜕𝜕𝜕𝜕# , 𝑓𝑓𝑢𝑢: = 𝜈𝜈:
𝜕𝜕#𝑣𝑣:
𝜕𝜕𝜕𝜕#  

This is the Ekman balance. The boundary conditions are specified as 
𝑢𝑢 ∼ 𝑢𝑢5 + 𝑢𝑢: = 0, 𝑣𝑣 ∼ 𝑣𝑣5 + 𝑣𝑣: = 0, at		z = 0 

𝑢𝑢: → 0, 𝑣𝑣: → 0, at		𝜕𝜕 → ∞ 
We can obtain a single governing equation for	𝑢𝑢: 	as 

𝑢𝑢: =
𝜈𝜈:
𝑓𝑓

𝜕𝜕#𝑣𝑣:
𝜕𝜕𝜕𝜕# = − r

𝜈𝜈:
𝑓𝑓 s

# 𝜕𝜕$𝑣𝑣:
𝜕𝜕𝜕𝜕$ ,

𝜕𝜕$𝑣𝑣:
𝜕𝜕𝜕𝜕$ +

𝑓𝑓#

𝜈𝜈:#
𝑢𝑢: = 0 

We seek solution of the form	𝑒𝑒rG	with	Re	𝜆𝜆 < 0, which leads to 

𝜆𝜆$ +
𝑓𝑓#

𝜈𝜈:#
= 0, 𝜆𝜆 =

1
𝛿𝛿:

(−1 ± 𝑖𝑖), 𝛿𝛿: = ø
2𝜈𝜈:
𝑓𝑓 = √2 ⋅ √Ek ⋅ 𝐻𝐻 

The length scale	𝛿𝛿: 	is the Ekman layer depth. With the boundary conditions at	𝜕𝜕 = 0, we have 

𝑢𝑢: = −𝑣𝑣5 	𝑒𝑒!G/F) sin(𝜕𝜕/𝛿𝛿:) − 𝑢𝑢5 	𝑒𝑒!G/F) cos(𝜕𝜕/𝛿𝛿:)	
𝑣𝑣: = 𝑢𝑢5 	𝑒𝑒!G/F) sin(𝜕𝜕/𝛿𝛿:) − 𝑣𝑣5 	𝑒𝑒!G/F) cos(𝜕𝜕/𝛿𝛿:) 

The Ekman flow spirals with depth to the left (Northern Hemisphere) of the geostrophic flow.  



To understand this, consider a geostrophic flow with	𝑣𝑣5 = 0. In the Ekman layer, PGF is not 
entirely balanced by the Coriolis force, as the Ekman flow	𝑢𝑢: 	reduces the total zonal flow to 
satisfy the no-slip bottom boundary condition.  This unbalanced PGF would drive a flow in the 
+𝜕𝜕-direction to the left of	𝑢𝑢5. This tendency is eventually counteracted by the friction. 

	−
1
𝜌𝜌'

𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕 − 	𝑓𝑓(𝑢𝑢5 + 𝑢𝑢:) + 𝜈𝜈:

𝜕𝜕#𝑣𝑣:
𝜕𝜕𝜕𝜕# = 0 

The Ekman flow is analogous to a pipe flow down pressure gradient. In this case, the N-S 
flow	𝑣𝑣: is governed by the balance between PGF and friction, and its profile is nearly parabolic 
with negative curvature. The Ekman layer breaks the rotational constraint set by geostrophy. 
 
Ø Spin-down of geostrophic flow by Ekman transport 
Flows in the Ekman layer transport fluid down pressure gradient. Consider a cyclone setup, the 
bottom Ekman flows are convergent and fill in the low pressure region. This process weakens 
the PGF and thus the geostrophic flow. 

 
Ekman transport 
The Ekman transport is defined as 

𝑀𝑀:
> = H 𝑢𝑢: 	d𝜕𝜕

G*

E
, 𝑀𝑀:

C = H 𝑣𝑣: 	d𝜕𝜕
G*

E
 

The upper bound	𝜕𝜕. > 𝛿𝛿: 	is the height where	𝑢𝑢: , 𝑣𝑣: ≈ 0. The turbulent stress is given as 

𝜏𝜏> = 𝜌𝜌'𝜈𝜈:
𝜕𝜕𝑢𝑢:

𝜕𝜕𝜕𝜕 , 𝜏𝜏C = 𝜌𝜌'𝜈𝜈:
𝜕𝜕𝑣𝑣:
𝜕𝜕𝜕𝜕  

Using the Ekman balance, we can evaluate the integrals as 

𝑀𝑀:
> =

𝜈𝜈:
𝜌𝜌'𝑓𝑓 H

𝜕𝜕𝜏𝜏C
𝜕𝜕𝜕𝜕 	d𝜕𝜕

G*

E
= −

𝜏𝜏A
C

𝜌𝜌'𝑓𝑓 , 𝑀𝑀:
C =

𝜏𝜏A>

𝜌𝜌'𝑓𝑓 , 𝐌𝐌< =
𝐤𝐤Z × 𝝉𝝉A

𝜌𝜌'𝑓𝑓  

“pipe” 

L H 



The Ekman spiral solution evaluates the bottom stress as 

𝜏𝜏A> = 𝜌𝜌'𝜈𝜈:
𝜕𝜕𝑢𝑢:

𝜕𝜕𝜕𝜕 ∞
GsE

=
𝜌𝜌'𝜈𝜈:
𝛿𝛿:

(𝑢𝑢5 − 𝑣𝑣5), 𝜏𝜏A
C = 𝜌𝜌'𝜈𝜈:

𝜕𝜕𝑣𝑣:
𝜕𝜕𝜕𝜕 ∞

GsE
=

𝜌𝜌'𝜈𝜈:
𝛿𝛿:

(𝑢𝑢5 + 𝑣𝑣5) 

Therefore, the Ekman transport becomes 

𝐌𝐌< =
𝛿𝛿:
2

[(𝑢𝑢5 − 𝑣𝑣5)	Ä̂ − (𝑢𝑢5 + 𝑣𝑣5)	|̂] 

It can also be related to PGF by using the interior geostrophic flow, which leads to 

𝐌𝐌< =
𝛿𝛿:
2𝑓𝑓 r−

1
𝜌𝜌'

∇4𝑝𝑝 +
1
𝜌𝜌'

∇4𝑝𝑝 × 𝐤𝐤Z s 

This implies that Ekman transport has a component down pressure gradient. For a low pressure 
center, the bottom Ekman transport is convergent and generates an upward motion. 
 
Ekman pumping / suction 
We similarly decompose	𝑤𝑤 = 𝑤𝑤5 + 𝑤𝑤:. Note that the geostrophic flow does not have a vertical 
component, and	𝑤𝑤5 	here is purely ageostrophic. Due to different vertical scales of the interior 
(ageostrophic) and Ekman flows, the continuity should be considered separately as 

𝜕𝜕𝑢𝑢5
2f

𝜕𝜕𝜕𝜕 +
𝜕𝜕𝑣𝑣5

2f

𝜕𝜕𝜕𝜕 +
𝜕𝜕𝑤𝑤5

2f

𝜕𝜕𝜕𝜕 = 0,
𝜕𝜕𝑢𝑢:

𝜕𝜕𝜕𝜕 +
𝜕𝜕𝑣𝑣:
𝜕𝜕𝜕𝜕 +

𝜕𝜕𝑤𝑤:

𝜕𝜕𝜕𝜕 = 0 

Since there is no normal flow at the bottom, we have 

𝑤𝑤 = 𝑤𝑤5
2f + 𝑤𝑤: = 0, at		z = 0 

Integrating the continuity equation gives 

H
𝜕𝜕𝑤𝑤:

𝜕𝜕𝜕𝜕 	d𝜕𝜕
G*

E
= −𝑤𝑤:|GsE = − H r

𝜕𝜕𝑢𝑢:

𝜕𝜕𝜕𝜕 +
𝜕𝜕𝑣𝑣:
𝜕𝜕𝜕𝜕 s 	d𝜕𝜕

G*

E
= −∇4 ⋅ 𝐌𝐌< 

The Ekman pumping / suction is reflected by the interior flow	𝑤𝑤5 	at the boundary, which is 

𝑤𝑤5
2f±

GsE
= −∇4 ⋅ 𝐌𝐌< 

Positive	𝑤𝑤5|GsE > 0	implies Ekman pumping of fluid from the bottom Ekman layer into the 
interior. For surface Ekman layer, the terms are flipped. The convergence of Ekman transport 
can be evaluated as 

−∇4 ⋅ 𝐌𝐌< =
𝛿𝛿:
2 √r

𝜕𝜕𝑣𝑣5
𝜕𝜕𝜕𝜕 −

𝜕𝜕𝑢𝑢5

𝜕𝜕𝜕𝜕 s + r
𝜕𝜕𝑢𝑢5

𝜕𝜕𝜕𝜕 +
𝜕𝜕𝑣𝑣5
𝜕𝜕𝜕𝜕 sƒ =

𝛿𝛿:
2 𝑓𝑓5 

We thus obtain the relation between the Ekman pumping and the vorticity 

𝑤𝑤5
2f±

GsE
=

𝛿𝛿:
2 𝑓𝑓5 

As a summary, Ekman transport tends to fill in low pressure regions, and remove mass from 
the high pressure regions. 
 



Spin-down of geostrophic flow 
Consider a geostrophic flow between two solid boundaries at	𝜕𝜕 = 0	and	𝜕𝜕 = 𝐻𝐻. For the top and 
bottom Ekman layers, we have  

𝑤𝑤5|GsD = −
𝛿𝛿:
2 𝑓𝑓5 , 𝑤𝑤5|GsE =

𝛿𝛿:
2 𝑓𝑓5 

Based on the vortex dynamics, we have 
𝜕𝜕𝑓𝑓5
𝜕𝜕𝜕𝜕 = 𝑓𝑓

𝜕𝜕𝑤𝑤5

𝜕𝜕𝜕𝜕  

The vorticity evolves by vortex stretching / squashing of planetary vorticity. For a cyclone, the 
geostrophic flow has	𝑓𝑓5 > 0, while the Ekman flow induces a vortex squashing that reduces the 
magnitude of	𝑓𝑓5. For an anticyclone, the geostrophic flow has	𝑓𝑓5 < 0, while the Ekman flow 
induces a vortex stretching that also reduces the magnitude of	𝑓𝑓5. 
 
To solve the vorticity equation, note that the barotropic (ageostrophic) flow implies constant 
𝑓𝑓5 	over depth. The continuity also implies that	𝜕𝜕𝑤𝑤5/𝜕𝜕𝜕𝜕	is also constant over depth, which gives 

𝜕𝜕𝑤𝑤5

𝜕𝜕𝜕𝜕 =
𝑤𝑤5|GsD − 𝑤𝑤5|GsE

𝐻𝐻 = −
𝛿𝛿:
𝐻𝐻 𝑓𝑓5 

From continuity of ageostrophic component, 𝑈𝑈2f ∼ √Ek	𝑈𝑈K. The vorticity equation becomes 

𝜕𝜕𝑓𝑓5
𝜕𝜕𝜕𝜕 = −

𝛿𝛿:
𝐻𝐻 𝑓𝑓𝑓𝑓5 , 𝑓𝑓5 = 𝑓𝑓' exp r−

𝛿𝛿:
𝐻𝐻 𝑓𝑓𝜕𝜕s 

The	𝑒𝑒-folding time for vorticity spin-down is 

𝜏𝜏to =
𝐻𝐻
𝛿𝛿:

𝑓𝑓!- 

Note that the Ekman number describes the ratio between the vertical scales, we have 

Ek =
𝜈𝜈:

𝑓𝑓𝐻𝐻# =
1
2 r

𝛿𝛿:
𝐻𝐻s

#

, 𝜏𝜏to =
𝐻𝐻
𝛿𝛿:

𝑓𝑓!- =
1

√2
Ek!-/#𝑓𝑓!- =

1
2√2𝜋𝜋

Ek!-/#𝑇𝑇5 

For small Ekman number, the spin-down time is much longer than the inertial period. 
 
Effects of rotation 
The frictional force does not directly decelerate the geostrophic flow. It is the vortex stretching 
or squashing of planetary vorticity that spins down the geostrophic flow. In fact, the rotation 
speeds up the spin-down process relative to a non-rotating fluid. Without rotation, the spin-
down timescale is governed by the diffusive time, which is much longer as shown below 

𝜏𝜏touv =
𝐻𝐻#

𝜈𝜈:
= Ek!-𝑓𝑓!-,

𝜏𝜏touv

𝜏𝜏to
∼ —2/Ek ≫ 1 

  



Two-dimensional Turbulence 

Consider a two-dimensional flow invariant in	𝜕𝜕-direction with no vertical velocity	𝑤𝑤 = 0. The 
continuity equation implies that we can describe the flow with a stream function	𝜕𝜕 

∇ ⋅ 𝒖𝒖 = ∇4 ⋅ 𝒖𝒖 = 0, 𝑢𝑢 = −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 , 𝑣𝑣 =

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕  

Physically this could represent a geostrophic flow, as the vertical rigidity imposed by rotation 
makes the flow nearly invariant in	𝜕𝜕-direction, as shown by the Taylor-Proudman theorem 

𝛀𝛀 ⋅ ∇𝒖𝒖 = 𝟎𝟎, 𝛀𝛀 = Ω	𝐤𝐤Z 								 ⟹ 								
𝜕𝜕𝒖𝒖
𝜕𝜕𝜕𝜕 = 𝟎𝟎 

For inviscid flow, the momentum equations are 
D𝑢𝑢
D𝜕𝜕 − 𝑓𝑓𝑣𝑣 = −

1
𝜌𝜌'

𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕 ,

D𝑣𝑣
D𝜕𝜕 + 𝑓𝑓𝑢𝑢 = −

1
𝜌𝜌'

𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕 

The equation for KE can be obtained as 
𝜕𝜕KE
𝜕𝜕𝜕𝜕 = −∇4 ⋅ r𝒖𝒖	KE +

𝑝𝑝𝒖𝒖
𝜌𝜌'

s = −∇4 ⋅ 𝑭𝑭\ , KE =
1
2

(𝑢𝑢# + 𝑣𝑣#) 

For a volume	𝑉𝑉, if the energy flux	𝑭𝑭\ 	is either zero or periodic at the boundaries, we have 
𝜕𝜕
𝜕𝜕𝜕𝜕 HKE	d𝑉𝑉

+
= − H 𝑭𝑭\ ⋅ 𝒏𝒏N	d𝐴𝐴

w+
= 0 

In the Fourier domain, the KE spectrum is defined as 

KĔ =
1
2

(𝑢𝑢x𝑢𝑢x∗ + 𝑣𝑣x𝑣𝑣x∗), 𝑢𝑢 = H 𝑢𝑢x(𝒌𝒌, 𝜕𝜕)	𝑒𝑒5𝒌𝒌⋅𝒙𝒙	dM𝒌𝒌 

From the Parseval theorem, we have 

HKE	d𝑉𝑉
+

= HKĔ	dM𝒌𝒌
+x

,
𝜕𝜕
𝜕𝜕𝜕𝜕 HKĔ	dM𝒌𝒌

+x
= 0 

 
Now we focus on the vertical vorticity component	𝑓𝑓	and its governing equation. Since	𝑤𝑤 = 0, 
the vorticity is advected like a tracer  

𝑓𝑓 =
𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕 −

𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕 = ∇#𝜕𝜕,

D𝑓𝑓
D𝜕𝜕 = 0 

We can define the enstrophy	ℰ	and obtain its governing equation as 

ℰ =
1
2 𝑓𝑓#,

𝜕𝜕ℰ
𝜕𝜕𝜕𝜕 = −∇4 ⋅ (𝒖𝒖ℰ) = −∇4 ⋅ 𝑭𝑭ℰ 

If the enstrophy flux	𝑭𝑭ℰ 	is either zero or periodic at the boundaries, we similarly have 
𝜕𝜕
𝜕𝜕𝜕𝜕 Hℰ	d𝑉𝑉

+
=

𝜕𝜕
𝜕𝜕𝜕𝜕 HℰZ	dM𝒌𝒌

+x
= 0, ℰZ =

1
2 𝑓𝑓Z𝑓𝑓Z∗ 

The enstrophy spectrum is related to the KE spectrum. Note that 

KĔ =
1
2

(𝑢𝑢x𝑢𝑢x∗ + 𝑣𝑣x𝑣𝑣x∗) =
1
2

(𝑘𝑘# + 𝑙𝑙#)	𝜕𝜕Ï𝜕𝜕Ï∗, 𝑓𝑓Z = −(𝑘𝑘# + 𝑙𝑙#)	𝜕𝜕Ï 

 



The enstrophy spectrum then can be written as 

ℰZ =
1
2 𝑓𝑓Z𝑓𝑓Z∗ =

1
2 𝐾𝐾$𝜕𝜕Ï𝜕𝜕Ï∗ = 𝐾𝐾#KĔ, 𝐾𝐾# = 𝑘𝑘# + 𝑙𝑙# 

 
The spectrum can be quantified based on the centroid wavenumber	𝐾𝐾\ 	and its bandwidth	Δ𝐾𝐾\ 

𝐾𝐾\ =
∫ 𝐾𝐾 ⋅ KĔ	d𝐾𝐾

∫ KĔ	d𝐾𝐾
, Δ𝐾𝐾\ =

∫(𝐾𝐾 − 𝐾𝐾\)#	KĔ	d𝐾𝐾
∫ KĔ	d𝐾𝐾

 

We want to know how	𝐾𝐾\ 	evolves with time, which implies the evolution of spatial scale of 2D 
turbulence, either forward cascade (𝐾𝐾\ 	increases with time) or inverse cascade (𝐾𝐾\ 	decreases 
with time). A general property of turbulent flows is that they distribute energy to different 
wavenumber components, and thus increase the bandwidth with	𝜕𝜕(Δ𝐾𝐾\)/𝜕𝜕𝜕𝜕 > 0. 
 
From the definition of	Δ𝐾𝐾\, we have 

Δ𝐾𝐾\ =
∫ ℰZ	d𝐾𝐾

∫ KĔ	d𝐾𝐾
− 𝐾𝐾\

#,
𝜕𝜕(Δ𝐾𝐾\)

𝜕𝜕𝜕𝜕 =
𝜕𝜕
𝜕𝜕𝜕𝜕 ¸

∫ ℰZ	d𝐾𝐾
∫ KĔ	d𝐾𝐾

˝ − 2𝐾𝐾\
𝜕𝜕𝐾𝐾\

𝜕𝜕𝜕𝜕  

Under the assumption of conservation of	ℰZ	and	KĔ	over the total volume	𝑉𝑉, we obtain 
𝜕𝜕(Δ𝐾𝐾\)

𝜕𝜕𝜕𝜕 = −2𝐾𝐾\
𝜕𝜕𝐾𝐾\

𝜕𝜕𝜕𝜕 > 0,
𝜕𝜕𝐾𝐾\

𝜕𝜕𝜕𝜕 < 0 

It implies that the centroid wavenumber	𝐾𝐾\ 	becomes smaller, moves to larger scales and thus 
there is an inverse cascade. In turbulent flows with low Rossby number, the kinetic energy is 
transferred from small to large scales, following an inverse cascade. As the eddies grow in size, 
they extend deeper in the water column and become more barotropic. 
 
Turbulent motions strongly constrained by Earth’s rotation follow the rules of 2D turbulence: 
¨ Vortices that spin in the same direction orbit one another (Fujiwara effect). 
¨ Vortices merge and become larger in size. 


