
CME 306  Computational Methods of Applied Mathematics 

Instructor: Lexing Ying 

Topics to be covered: 

l ODE (2 weeks) 

l PDEs:  

¨ Elliptic: FDM, FEM (2 weeks) 

¨ Parabolic: FDM (1 week) 

¨ Hyperbolic: FVM (2 weeks)  

l SDE: Stochastic DE (1 week) 

l Monte Carlo methods: MCMC (1 week) 

l Wavelets & FFT: Applied harmonic analysis (1 week) 

 

Textbooks: 

l ODE: S.H.D. 

l PDEs: Larsson + Thomee, LeVeque 

l SDE & MCMC: E et. al. 

l Wavelets: Mallat, Chapter 7 

  



Week 1: Lecture 1. ODE Recap. 

𝑥̇(𝑡) = 𝑓(𝑡, 𝑥(𝑡)*, 𝑥(0) = 𝑥!, 𝑡 > 0, 𝑥(𝑡) ∈ ℝ 

Find a solution whose slope satisfies the specified vector field 

 

Ø Existence and uniqueness 

Ex. 1: 𝑥̇ = 𝑥", 𝑥(0) = 1. The solution is	𝑥(𝑡) = 1/(1 − 𝑡), only local existence 

Ex. 2: 𝑥̇ = √𝑥, 𝑥(0) = 0. One solution is	𝑥(𝑡) ≡ 0.	In fact, there are infinite solutions: 

𝑥(𝑡) = 6
1
4
(𝑥 − 𝑠)", 𝑥 ≥ 𝑠
0, 𝑥 < 𝑠

 

 

Consider only	𝑓(𝑡, 𝑥)	that is Lipschitz in	𝑥: 

∀𝑡 ∈ [0, 𝑇], ∀𝑥, 𝑦, |𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑦)| ≤ 𝐿|𝑥 − 𝑦| 

Intuitively, this condition means that 

C
𝜕𝑓
𝜕𝑥
(𝑡, 𝑥)C ≤ 𝐿 

Ex. 1: 𝑓#(𝑡, 𝑥) = 𝑥,	not bounded by	𝐿	for	𝑥 → ∞ 

Ex. 2: 𝑓#(𝑡, 𝑥) = 1/(2√𝑥),	not bounded by	𝐿	for	𝑥 → 0 

 

Thm. If	𝑓(𝑡, 𝑥)	is Lipschitz in	𝑥	in	𝑡 ∈ [0, 𝑇], then the solution to ODE exists and is unique. 

 

Ø Gradient system (related to ML) 

Optimize the energy loss function	𝑈(𝑥)	by 

𝑥̇ = −∇#𝑈(𝑥) 

If	𝑒	is stationary, then the gradient is 0. 

 

Ø Hamiltonian dynamics 

From the Newton’s form with potential	𝑈(𝑥) 

𝑥̈ = −∇#𝑈(𝑥) 

We can define the Hamiltonian dynamics in the form 

𝑞 = 𝑥, 𝑝 = 𝑥̇, 𝑞̇ = 𝑝, 𝑝̇ = −∇𝑈(𝑞) 



In this system, the energy is conserved 

𝐸 =
𝑝"

2 + 𝑈(𝑞), 𝐸̇(𝑡) = 𝑝𝑝̇ + ∇𝑈(𝑞)𝑞̇ = −∇𝑈(𝑞)𝑝 + ∇𝑈(𝑞)𝑝 = 0 

 

Ø Damped Hamiltonian dynamics (e.g., exponential form of decay) 

𝑞̇ = 𝑝, 𝑝̇ = −∇𝑈(𝑞) − 𝝀𝒑 

If the damping is extremely strong (𝜆 ≫ 1) 

−∇𝑈(𝑞) − 𝜆𝑝 ≈ 0, 𝑝 = −
∇𝑈(𝑞)
𝜆  

Putting back to the system gives the form of the gradient dynamics 

𝑞̇ = 𝑝 = −
∇𝑈(𝑞)
𝜆 = −∇U

𝑈
𝜆V
(𝑞) 

The gradient system is the limit of a damped HD. In ML, the momentum GD (Gradient 

Descent) is equal to the damped HD. 

 

Ø Numerics 

From Calculus (derivative = limit of difference) to Numerics (derivative	≈	small difference) 

To solve the following ODE: 

𝑦̇ = 𝑓(𝑡, 𝑦), 𝑦(0) = 0, 𝑡 ∈ [0, 𝑇] 

For a step size	ℎ	and the number of points	𝑁 = 𝑇/ℎ 

𝑦$ = 𝑦(𝑡$), 𝑤$ ≈ 𝑦$ = 𝑦(𝑡$), 𝑡% = 𝑖ℎ 

An approx. equation of the exact solution is 
𝑦$&' − 𝑦$

ℎ ≈ 𝑓(𝑡, 𝑦$) 

Now we set the following (exact solution for approx. ODE) 
𝑤$&' −𝑤$

ℎ = 𝑓(𝑡, 𝑤$) 

 

Explicit Euler method: 

𝑤$&' = 𝑤$ + ℎ ⋅ 𝑓(𝑡$, 𝑤$) 

Implicit Euler method: 

𝑤$&' = 𝑤$ + ℎ ⋅ 𝑓(𝑡$&', 𝑤$&') 

 



Trapezoidal method: 

𝑤$&' = 𝑤$ + ℎ \
1
2 𝑓
(𝑡$, 𝑤$) +

1
2𝑓
(𝑡$&', 𝑤$&')] 

 

Ø Proof of Explicit Euler method 

To estimate the error	𝑒$ = |𝑦$ −𝑤$|, from Taylor expansion we have 

𝑦$&' = 𝑦$ + ℎ ⋅ 𝑓(𝑡$, 𝑦$) +
1
2ℎ

" ⋅ 𝑦(((𝜉$), 𝜉$ ∈ [𝑡$, 𝑡$&'] 

The remainder can be bounded considering	|𝑦(((𝜉$)| ≤ 𝑀. According to the Lipschitz 

condition, now the error term becomes 

𝑒$&' ≤ 𝑒$ + ℎ|𝑓(𝑡$, 𝑦$) − 𝑓(𝑡$, 𝑤$)| +
1
2ℎ

"𝑀 ≤ 𝑒$(1 + ℎ𝐿) +
1
2ℎ

"𝑀 

𝑒$&' +
1
2ℎ

"𝑀
ℎ𝐿 ≤ (1 + ℎ𝐿)𝑒$ +

1
2ℎ

"𝑀 +
1
2ℎ

"𝑀
ℎ𝐿 = (1 + ℎ𝐿) `𝑒$ +

1
2ℎ

"𝑀
ℎ𝐿 a 

Therefore, the error is bounded by (note that	𝑒! = 0) 

𝑒$ +
1
2ℎ

"𝑀
ℎ𝐿 ≤ (1 + ℎ𝐿)$ ⋅ b𝑒! +

1
2ℎ

"𝑀
ℎ𝐿 c ≤ 𝑒$)* ⋅

ℎ𝑀
2𝐿 ,				using		

(1 + ℎ𝐿)
'
)* → 𝑒 

And we can obtain the bound of the global truncation error 

𝑒$ ≤ (𝑒$)* − 1) ⋅
ℎ𝑀
2𝐿 	∼ 	 𝑒

+* ⋅ ℎ, ∀𝑛 ∈ [1, 𝑁] 

 

Note that the error converges: 

max
',$,-

𝑒$ = 𝑂(ℎ) → 0, ℎ → 0 

However, the exponential term	𝑒+*	can destroy all analysis for large time	𝑇 

 

Explicit Euler converges, but the convergence is too slow, and there is an exponential 

error blow-up with the factor	𝒆𝑻𝑳. 

 

  



Ø Runge-Kutta method 

For previous Euler schemes 

𝑦(𝑡$&') = 𝑦(𝑡$) + ℎ ⋅ 𝑦((𝑡$) + 𝑂(ℎ") 

The remainder	𝑂(ℎ")	gives rise to the final	𝑂(ℎ)	truncation error. 

 

The second-order derivative is 

𝑦(( =
d
d𝑡 q𝑓(𝑡, 𝑦

(𝑡)*r = 𝑓0 + 𝑓1 ⋅ 𝑦( = 𝑓0 + 𝑓1 ⋅ 𝑓 

However, for engineering problem the function	𝑓	is usually a black box, which is impossible 

to evaluate the analytic derivatives of	𝑓. 

 

To obtain numerical schemes with higher order of convergence, we write 

𝑦(𝑡$&') = 𝑦(𝑡$) + ℎ ⋅ 𝑦((𝑡$) +
1
2ℎ

" ⋅ 𝑦(((𝑡$) + 𝑂(ℎ2) 

The idea is to approximate	𝑦((	(and	𝑦() with	𝑓	evaluated at carefully selected locations: 

𝑦(𝑡$&') = 𝑦(𝑡$) + ℎq𝑎'𝑓(𝑡, 𝑦) + 𝑎"𝑓(𝑡 + 𝜀, 𝑦 + 𝛿𝑓(𝑡, 𝑦)*r 

Now we need to choose	𝑎', 𝑎", 𝜀, 𝛿	by matching it with Taylor expansion 

𝑓 +
ℎ
2 (𝑓0 + 𝑓1 ⋅ 𝑓* = 𝑎'𝑓 + 𝑎"(𝑓 + 𝜀𝑓0 + 𝑓1 ⋅ 𝛿𝑓* 

The above equality should be true for all possible	𝑓, 𝑓0 , 𝑓1. We thus obtain 

𝑎' + 𝑎" = 1, 𝑎"𝜀 =
ℎ
2 , 𝑎"𝛿 =

ℎ
2 

Now we can obtain different numerical schemes. 

 

Several second-order RK methods (need 2 function evals): 

𝑎' = 0,			𝑎" = 1,			𝜀 = 𝛿 =
ℎ
2	 

𝑤$&' = 𝑤$ + ℎ ⋅ 𝑓 v𝑡$ +
ℎ
2 ,𝑤$ +

ℎ
2 𝑓
(𝑡$, 𝑤$)w 

𝑎' =
1
2,			𝑎" =

1
2 ,			𝜀 = 𝛿 = ℎ 

𝑤$&' = 𝑤$ + ℎ ⋅ \
1
2 𝑓
(𝑡$, 𝑤$) +

1
2𝑓(𝑡$ + ℎ,𝑤$ + ℎ𝑓

(𝑡$, 𝑤$)*] 

These methods have	𝑂(ℎ")	accuracy, 𝑒$ ≤ 𝑒+* ⋅ 𝑂(ℎ") 



Fourth-order RK method: 

𝑤$&' = 𝑤$ +
1
6
[𝑘' + 2𝑘" + 2𝑘2 + 𝑘3], |𝑒$| ≤ 𝑒*+ ⋅ 𝑂(ℎ3) 

𝑘' = ℎ ⋅ 𝑓(𝑡$, 𝑤$), 𝑘" = ℎ ⋅ 𝑓 U𝑡$ +
ℎ
2 ,𝑤$ +

𝑘'
2 V,		 

𝑘2 = ℎ ⋅ 𝑓 U𝑡$ +
ℎ
2 ,𝑤$ +

𝑘"
2 V , 𝑘3 = ℎ ⋅ 𝑓(𝑡$ + ℎ,𝑤$ + 𝑘2) 

 

Topics for next lecture: 

Stiffness of the gradient dynamics 

Symplectic scheme of Hamiltonian dynamics: 𝑂(ℎ)	and	𝑂(ℎ")	schemes 

  



Week 1: Lecture 2. Stiffness & Symplectic schemes 

Ø Stiffness of an ODE system 

Consider a vector	𝒚(𝑡)	with	𝜆 ≫ 1 

𝑦̇4(𝑡) = −𝜆𝑦4(𝑡), 𝑦4(0) = 1 

𝑦̇5(𝑡) = −𝑦5(𝑡), 𝑦5(0) = 1 

The solution is 

𝑦4(𝑡) = 𝑒670 , 𝑦5(𝑡) = 𝑒60 

“Boring” or “interesting” solutions depend on the observer. 

For a much faster time scale, 𝑦5 	is nearly constant and 

becomes the “boring” solution. 

 

In terms of matrix notation 

𝒚̇(𝑡) = − {𝜆 0
0 1| 𝒚(𝑡) 

In a different basis 

𝑀𝒚̇(𝑡) = −𝑀 {𝜆 0
0 1|𝑀

6𝟏𝑀𝒚(𝑡), 𝒛(𝑡) = −𝐴𝒛(𝑡) 

Usually our problem is given in the second form, but doing matrix diagonalization at each 

time step is very expensive. 

 

Consider how to solve	𝒚(𝑡)	numerically using explicit Euler methods 

𝑤$&'4 = 𝑤$4 + ℎ ⋅ (−𝜆) ⋅ 𝑤$4 = (1 − ℎ𝜆)𝑤$4, 𝑤$&'5 = (1 − ℎ)𝑤$5 

Recursion gives (with	𝑤!4 = 𝑤!5 = 1) 

𝑤$4 = (1 − ℎ𝜆)$, 𝑤$5 = (1 − ℎ)$ 

Both exact solutions decay with time, so at least we want 

𝑤$ → 0, 𝑛 → ∞ 

To obtain this asymptotic behavior, we need 

|1 − ℎ𝜆| < 1, |1 − ℎ| < 1 

0 < ℎ <
2
𝜆 , 0 < ℎ < 2 

Because	𝜆 ≫ 1	we are forced to have	0 < ℎ < 2/𝜆	due to part A, the “boring” solution. 

For explicit Euler method, the “boring” part forces us to take tiny step size. 



Stiffness: For a linear ODE system, if the exponential decaying behavior is drastically 

different among components, then the system is a stiff system. 

 

On the contrary, for implicit Euler method 

𝑤$&'4 = 𝑤$4 − ℎ𝜆𝑤$&'4 , 𝑤$&'5 = 𝑤$5 − ℎ𝑤$&'5  

𝑤$&'4 =
𝑤$4

1 + ℎ𝜆 , 𝑤$&'5 =
𝑤$5

1 + ℎ 

Recursion also gives 

𝑤$4 = U
1

1 + ℎ𝜆V
$

, 𝑤$5 = U
1

1 + ℎV
$

 

To obtain the asymptotic behavior, we need 

|1 + ℎ𝜆| > 1, |1 + ℎ| > 1 

This leads to a trivial condition	ℎ > 0. Note that this only guarantees decaying solutions, but 

not accurate solutions. For implicit Euler method, the choice of step size	ℎ	is not restricted 

by	𝜆, but is dictated by the desired accuracy for the “interesting” part. 

 

Ø Application to example stiff systems 

1. Heat equation includes rapidly decaying high-frequency mode (“boring”) and slowly 

decaying low-frequency mode (“interesting”) 

𝑢0 = 𝑢## 

2. Plate equation (very stiff system) 

𝑢0 = −𝑢#### 

 

Ø Trapezoidal method for a stiff system 

𝑤$&'4 = 𝑤$4 + ℎ \
1
2 𝑓
(𝑤$4) +

1
2𝑓
(𝑤$&'4 )] , U1 +

ℎ𝜆
2 V𝑤$&'

4 = U1 −
ℎ𝜆
2 V𝑤$

4 

The recursive solutions are 

𝑤$4 = U
2 − ℎ𝜆
2 + ℎ𝜆V

$

, 𝑤$5 = U
2 − ℎ
2 + ℎV

$

 

Again	ℎ > 0	is enough to guarantee the desired decaying behavior. 

For stiff systems, explicit methods do not work, while implicit methods are appropriate. 

 



Extra notes: For Schrodinger equation, all modes are rotating around a unit circle, which is 

hard to determine “boring” or “interesting” modes. WKB methods are applied to solve 

specific modes efficiently, avoiding the usage of tiny time step size. 

 

Ø Gradient descent system for optimization 

𝑥̇ = −∇#𝐸(𝑥) 

𝐸(𝑥) =
𝜆𝑥"

2 , ∇#𝐸(𝑥) = 𝜆𝑥, 𝑥̇ = −𝜆𝑥 

If the goal is only to find the minimum	𝑒, we can use different ODEs 

𝑥̇ = −𝑀(𝑥) ⋅ ∇#𝐸(𝑥), 𝑥 ∈ ℝ9 , 𝑀(𝑥) ∈ ℝ9×9 	is	sym. pos. def. 

The reason is that the derivative is still negative (energy still decreases) 
d
d𝑡 𝐸(𝑥

(𝑡)* = ∇#𝐸+(𝑥) ⋅ 𝑥̇ = −∇#𝐸+ ⋅ 𝑀 ⋅ ∇#𝐸 < 0 

 

Ø Hamiltonian system & Symplectic integrator 

𝑞̇(𝑡) = 𝑝(𝑡) = 𝐻;, 𝑝̇(𝑡) = −∇<𝑉(𝑞(𝑡)* = −𝐻< 

H.S. is everywhere, and the long-time error can be treated to not blow up (instead of	𝑒*+) 

 

The Hamiltonian is defined as 

𝐻(𝑞, 𝑝) =
𝑝"

2 + 𝑉(𝑞) 

And it is conserved over time (energy conservation) 
𝑑
𝑑𝑡 𝐻 = 𝐻<𝑞̇ + 𝐻;𝑝̇ = 𝐻<𝐻; + 𝐻; ⋅ (−𝐻<* = 0 

 

The symplectic form is a signed volume form 

𝑑𝑞 ∧ 𝑑𝑝 = −𝑑𝑝 ∧ 𝑑𝑞 

The HS also preserves the above symplectic form	𝑑𝑞 ∧ 𝑑𝑝. Consider time	𝑡 = 𝜀 

𝑞(𝜀) ≈ 𝑞 + 𝐻;𝜀 + 𝑂(𝜀"), 𝑝(𝜀) ≈ 𝑝 − 𝐻<𝜀 + 𝑂(𝜀") 

The wedge product becomes 

𝑑𝑞(𝜀) ∧ 𝑑𝑝(𝜀) = 𝑑𝑞 ∧ 𝑑𝑝 + 𝑑𝑞 ∧ 𝑑(−𝐻<𝜀* + 𝑑(𝐻;𝜀* ∧ 𝑑𝑝 + 𝑂(𝜀") 

 



The chain rule gives 

𝑑𝐻; = 𝐻;;𝑑𝑝 + 𝐻;<𝑑𝑞, 𝑑𝐻< = 𝐻<;𝑑𝑝 + 𝐻<<𝑑𝑞 

Note the following properties of the symplectic form 

𝑑𝑝 ∧ 𝑑𝑝 = 𝑑𝑞 ∧ 𝑑𝑞 = 0				("zero	area") 

So we have 

𝑑𝑞(𝜀) ∧ 𝑑𝑝(𝜀) = 𝑑𝑞 ∧ 𝑑𝑝 + 𝜀*−𝑑𝑞 ∧ 𝐻!"𝑑𝑝 − 𝑑𝑞 ∧ 𝐻!!𝑑𝑞 + 𝐻""𝑑𝑝 ∧ 𝑑𝑝 + 𝐻"!𝑑𝑞 ∧ 𝑑𝑝- + 𝑂(𝜀#) 

𝑑𝑞(𝜀) ∧ 𝑑𝑝(𝜀) = 𝑑𝑞 ∧ 𝑑𝑝 + 𝑂(𝜀#) 

Therefore, we have the conservation of	𝑑𝑞 ∧ 𝑑𝑝 

𝑑𝑞(𝜀) ∧ 𝑑𝑝(𝜀) − 𝑑𝑞(0) ∧ 𝑑𝑝(0)
𝜀 = 𝑂(𝜀),

𝑑
𝑑𝑡
[𝑑𝑞(𝑡) ∧ 𝑑𝑝(𝑡)] = 0 

Hamiltonian	𝐻(𝑞, 𝑝)	and volume form	𝑑𝑞 ∧ 𝑑𝑝	are preserved along the Hamiltonian system. 

Therefore,	𝑓(𝐻)𝑑𝑉	is also preserved. 

 

Goal: Design numerical schemes for H.S. such that 

𝐻(𝑞, 𝑝)	is approx. preserved 

𝑑𝑞 ∧ 𝑑𝑝	is exactly preserved 

These schemes are called symplectic integrators. 

 

1. Euler-B method 

𝑞$&' = 𝑞$ + Δ𝑡𝐻;(𝑞$, 𝑝$&')	

𝑝$&' = 𝑝$ − Δ𝑡𝐻<(𝑞$, 𝑝$&') 

Numerically, the second equation is solved first. This is in general an implicit scheme. 

However, for a decoupled Hamiltonian 

𝐻(𝑞, 𝑝) =
𝑝"

2 + 𝑉(𝑞), 𝐻< = 𝑉((𝑞) 

This Euler-B method becomes explicit when	𝐻<(𝑞, 𝑝)	only depends on	𝑞 

 

2. Euler-A method 

𝑞$&' = 𝑞$ + Δ𝑡𝐻;(𝑞$&', 𝑝$)	

𝑝$&' = 𝑝$ − Δ𝑡𝐻<(𝑞$&', 𝑝$) 



Numerically, the first equation is solved first. With the standard Hamiltonian, we then have a 

fully explicit scheme 

𝑞$&' = 𝑞$ + Δ𝑡 ⋅ 𝑝$	

𝑝$&' = 𝑝$ − Δ𝑡 ⋅ 𝑉((𝑞$&') 

Applications: Celestial mechanics and Fluid dynamics 

 

 

  



Week 2: Lecture 3. Symplectic schemes 

Ø Review on Hamiltonian system 

Example to be working with (related to Newton’s law): 

𝐻(𝑞, 𝑝) =
1
2𝑝

" + 𝑉(𝑞), 𝑞̇ = 𝐻; = 𝑝, 𝑝̇ = −𝐻< = −𝑉((𝑞) 

Two important properties: 

1. Energy	𝐻(𝑞, 𝑝)	preserved along the flow 
𝑑
𝑑𝑡 𝐻(𝑞

(𝑡), 𝑝(𝑡)* = 0, 𝐻(𝑞(𝑡), 𝑝(𝑡)* = 𝐻(𝑞(0), 𝑝(0)* 

2. Symplectic form	𝑑𝑞 ∧ 𝑑𝑝	preserved along the flow (constant area) 
𝑑
𝑑𝑡
[𝑑𝑞(𝑡) ∧ 𝑑𝑝(𝑡)] = 0 

 

Ø Review on Euler-B method 

𝑞$&' = 𝑞$ + Δ𝑡𝐻;(𝑞$, 𝑝$&'), 2nd	step	

𝑝$&' = 𝑝$ − Δ𝑡𝐻<(𝑞$, 𝑝$&'), 1st	step 

In general, the scheme is implicit due to the first step. But for our	𝐻(𝑞, 𝑝)	the scheme 

becomes fully explicit (decoupled Hamiltonian) 

𝑞$&' = 𝑞$ + Δ𝑡 ⋅ 𝑝$&', 𝑝$&' = 𝑝$ − Δ𝑡 ⋅ 𝑉((𝑞$) 

 

Ø Euler-B method exactly preserves the symplectic form 

For our decoupled Hamiltonian, the differentials are expressed as 

𝑑𝑞$&' = 𝑑𝑞$ + Δ𝑡 ⋅ 𝑑𝑝$&', 𝑑𝑝$&' = 𝑑𝑝$ − Δ𝑡𝑉(((𝑞$) ⋅ 𝑑𝑞$ 

Therefore, the symplectic form is 

𝑑𝑞$&' ∧ 𝑑𝑝$&' = 𝑑𝑞$ ∧ 𝑑𝑝$&' + Δ𝑡 ⋅ 𝑑𝑝$&' ∧ 𝑑𝑝$&'	

= 𝑑𝑞$ ∧ 𝑑𝑝$ − Δ𝑡 ⋅ 𝑉(((𝑞$) ⋅ 𝑑𝑞$ ∧ 𝑑𝑞$ = 𝑑𝑞$ ∧ 𝑑𝑝$ 

For the general case, the last step uses the property of symmetry matrix 

 

Ø Splitting method 

For matrices	𝐴, 𝐵	of	𝑂(𝜀), we have 

𝑒4&5 = 𝐼 + (𝐴 + 𝐵) + 𝑂(𝜀") 



𝑒4𝑒5 = (𝐼 + 𝐴 + 𝑂(𝜀")*(𝐼 + 𝐵 + 𝑂(𝜀")* = 𝐼 + (𝐴 + 𝐵) + 𝑂(𝜀") 

When	𝐴, 𝐵	are large matrices, calculation of	𝑒4, 𝑒5 	and	𝑒4𝑒5 	is easy, while	𝑒4&5 	is very hard 

 

Example: 𝐴 = Δ	and	𝐵 = 𝑉(𝑥).	𝑒=4 = 𝑒=>	is the kernel for heat equation, 𝑒=5 = 𝑒=?(#)	only 

involves matrix multiplication.	𝑢0 = Δ𝑢, 𝑢(𝜀) = 𝑒=>𝑢(0). 

 

Consider the Hamiltonian is decomposed into 

𝐻(')(𝑝, 𝑞) =
𝑝"

2 , 𝐻(")(𝑝, 𝑞) = 𝑉(𝑞) 

Step 1: Apply explicit Euler on	𝐻(") 

𝑞̇ = 𝐻;
(")(𝑞, 𝑝), 𝑝̇ = −𝐻<

(")(𝑞, 𝑝) 

We obtain the intermediate results 

𝑞� = 𝑞$, 𝑝� = 𝑝$ − Δ𝑡 ⋅ 𝑉((𝑞$) 

 

Step 2: Apply explicit Euler on	𝐻(') 

𝑞̇ = 𝐻;
(')(𝑞, 𝑝), 𝑝̇ = −𝐻<

(')(𝑞, 𝑝) 

Using the intermediate results, we have 

𝑞$&' = 𝑞� + Δ𝑡 ⋅ 𝑝� = 𝑞$ + Δ𝑡 ⋅ 𝑝$&'	

𝑝$&' = 𝑝� = 𝑝$ − Δ𝑡 ⋅ 𝑉((𝑞$) 

This is exactly the Euler-B method. If we apply	𝐻(')	first, then we get the Euler-A method. 

 

Ø Strang-splitting method 

If	𝐴, 𝐵	are of	𝑂(𝜀), we have 

𝑒4&5 = 𝑒
5
" 	𝑒4𝑒

5
" + 𝑂(𝜀2) 

This can be shown as below: 

𝑒
5
" 	𝑒4𝑒

5
" = v𝐼 +

𝐵
2 +

𝐵"

8 + 𝑂(𝜀2)w v𝐼 + 𝐴 +
𝐴"

2 + 𝑂(𝜀2)w v𝐼 +
𝐵
2 +

𝐵"

8 + 𝑂(𝜀2)w	

= 𝐼 + (𝐴 + 𝐵) +
𝐴" + 𝐴𝐵 + 𝐵𝐴 + 𝐵"

2 + 𝑂�(𝜀2) = 𝑒4&5 + 𝑂(𝜀2) 

 



Remark: We only need to implement	𝑒4	and	𝑒5 	within accuracy of	𝑂(𝜀2). 

𝑒5/" = 𝐿5/" + 𝑂(𝜀2), 𝑒4 = 𝐿4 + 𝑂(𝜀2), 𝐿5/"𝐿4𝐿5/" ≈ 𝑒4&5 + 𝑂(𝜀2) 

 

Ø Strang-splitting method on Hamiltonian system 

1. Implementation for	𝐻(")	has	𝑂(Δ𝑡2) 

𝑞̇ = 𝐻;
(")(𝑞, 𝑝) = 0, 𝑝̇ = −𝐻<

(")(𝑞, 𝑝) = −𝑉((𝑞), 𝑝̈ = −𝑉(((𝑞)𝑞̇ = 0 

𝑞� = 𝑞$ + Δ𝑡 ⋅ 0 +
Δ𝑡"

2 ⋅ 0 + 𝑂(Δ𝑡2), 𝑝� = 𝑝$ − Δ𝑡 ⋅ 𝑉((𝑞$) +
Δ𝑡"

2 ⋅ 0 + 𝑂(Δ𝑡2) 

 

2. Combine Euler-A and Euler-B by Strang-splitting 

𝐻(")	for	
Δ𝑡
2 :				𝑝

$&'/" = 𝑝$ −
Δ𝑡
2 ⋅ 𝑉((𝑞$) 

𝐻(')	for	Δ𝑡:				𝑞$&' = 𝑞$ + Δ𝑡 ⋅ 𝑝$&'/" 

𝐻(")	for	
Δ𝑡
2 :				𝑝

$&' = 𝑝$&'/" −
Δ𝑡
2 ⋅ 𝑉((𝑞$&') 

This can be combined into a better scheme on the staggered grid 

𝑝$&
'
" = 𝑝$6

'
" − Δ𝑡 ⋅ 𝑉((𝑞$)	

𝑞$&' = 𝑞$ + Δ𝑡 ⋅ 𝑝$&'/" 

This the Verlet integrator with global error of	𝑂(Δ𝑡"). Since both Euler-A 

and Euler-B preserve	𝑑𝑞 ∧ 𝑑𝑝, Verlet integrator also does. 

 

3. Hamiltonian is conserved for Verlet scheme  

We use harmonic oscillator as a simple example to prove it 

𝐻(𝑞, 𝑝) =
𝑝"

2 +
𝑞"

2 , 𝑉((𝑞) = 𝑞 

Start with a surrogate Hamiltonian 

𝐻�$ ≡
1
2 (𝑝$6'/"

" + 𝑞$" − Δ𝑡 ⋅ 𝑝$6'/" ⋅ 𝑞$* 

We can prove that this surrogate (“shadow”) is exactly preserved 

𝐻�$&' = 𝐻�$ 

 

 



This is shown as below, by repeatedly using the expression of Verlet scheme 

2𝐻�$ = 𝑝
$6'"

U𝑝
$6'"

− Δ𝑡 ⋅ 𝑞$V + 𝑞$" = 𝑝
$6'"

⋅ 𝑝
$&'"

+ 𝑞$" = 𝑝
$&'"

U𝑝
$&'"

+ Δ𝑡 ⋅ 𝑞$V + 𝑞$" 

2𝐻�$&' = 𝑝
$&'"

" + 𝑞$&' U𝑞$&' − Δ𝑡 ⋅ 𝑝$&'"
V = 𝑝

$&'"

" + 𝑞$&'𝑞$ = 𝑝
$&'"

" + 𝑞$ UΔ𝑡 ⋅ 𝑝$&'"
+ 𝑞$V 

 

Now define the following	𝐻$	and it is approximately conserved 

𝐻$ ≡ 𝐻(𝑞$, 𝑝$6'/"* =
𝑞$"

2 +
𝑝$6'/""

2  

This is shown by calculating 

2
Δ𝑡 (𝐻$ − 𝐻

�$* = 𝑝$6'/" ⋅ 𝑞$ ≤
𝑝$6'/""

2 +
𝑞$"

2 = 𝐻$ 

𝐻$ ≤
2

2 − Δ𝑡 𝐻
�$, 𝐻$ − 𝐻�$ ≤

Δ𝑡
2 − Δ𝑡 𝐻

�$ 

Therefore, we have 

𝐻% − 𝐻C = (𝐻% − 𝐻�%* − (𝐻C − 𝐻�C* + (𝐻�% − 𝐻�C*, �𝐻% − 𝐻C� ≤
2Δ𝑡
2 − Δ𝑡 𝐻

�! 

For general Hamiltonian	𝐻(𝑞, 𝑝), the Verlet integrator guarantees 

�𝐻(𝑞$, 𝑝$6'/"* − Energy� ≤ 𝑂(Δ𝑡DEFGE*				for	exp. long	time ∼ 𝑒'/>0 

 

Ø Verlet integrator is second order 

From Taylor series, we have 

𝑦̇ = U𝑞̇𝑝̇V = �
𝑝

−𝑉((𝑞)� , 𝑦̈ = U
𝑝̇

−𝑉(((𝑞)	𝑞̇V = U −𝑉((𝑞)
−𝑉(((𝑞)	𝑝V 

U𝑞
$&'

𝑝$&'
V = U𝑞

$

𝑝$V + Δ𝑡 U
𝑝$

−𝑉((𝑞$)V +
1
2Δ𝑡

" U −𝑉((𝑞$)
−𝑉(((𝑞$)	𝑝$V + 𝑂(Δ𝑡

2) 

The analysis of Verlet scheme gives 

𝑞$&' = 𝑞$ + Δ𝑡 \𝑝$ −
1
2Δ𝑡 ⋅ 𝑉

((𝑞$)] = 𝑞$ + Δ𝑡 ⋅ 𝑝$ −
1
2Δ𝑡

" ⋅ 𝑉((𝑞$)	

𝑝$&' = 𝑝$ −
1
2Δ𝑡 ⋅ 𝑉

((𝑞$) −
1
2Δ𝑡 ⋅ 𝑉

((𝑞$&')	

= 𝑝$ −
1
2Δ𝑡 ⋅ 𝑉

((𝑞$) −
1
2Δ𝑡

[𝑉((𝑞$) + 𝑉(((𝑞$)(𝑞$&' − 𝑞$)] + 𝑂(Δ𝑡2)	

= 𝑝$ − Δ𝑡 ⋅ 𝑉((𝑞$) −
1
2Δ𝑡 ⋅ 𝑉

(((𝑞$) ⋅ Δ𝑡 \𝑝$ −
1
2Δ𝑡 ⋅ 𝑉

((𝑞$)] + 𝑂(Δ𝑡2)	

= 𝑝$ − Δ𝑡 ⋅ 𝑉((𝑞$) −
1
2Δ𝑡

" ⋅ 𝑉(((𝑞$)𝑝$ + 𝑂(Δ𝑡2) 

Up to the second order term, Verlet scheme is accurate. Hence its convergence is	𝑂(ℎ") 



Ø Topics covered in ODE 

ü Explicit and Implicit Euler, Trapezoid, RK 

ü Stiffness 

ü Splitting method 

ü Symplectic schemes for	𝐻(𝑞, 𝑝), Euler-A/B and Verlet scheme 



Week 2: Lecture 4. FDM for Elliptic PDE 

Ø Two-point boundary-value ODE problem 

−𝑢!!(𝑥) = 𝑓(𝑥), 𝑢(0) = 𝑢" , 𝑢(1) = 𝑢# , in	Ω = (0,1) 

For a 2nd derivative, consider its value at point	𝑥 

𝑢!!(𝑥) =
𝑢(𝑥 + ℎ) + 𝑢(𝑥 − ℎ) − 2𝑢(𝑥)

ℎ$ + 𝑂(ℎ$) 

The 2nd derivative “compares the average of neighbors with itself”.  

 

If	𝑢!!(𝑥) = 0, then the local average is equal to the value at the point. Unless	𝑢(𝑥) ≡ const., 

there exists neighbors larger than itself. Therefore, the max and min are always on the 

boundary. This is called the maximal principle. 

 

Ø Discretization & Finite difference 

To discretize: Domain and Derivative operator 

Goal: Look for	𝑈% ≈ 𝑢;𝑥%<	with	𝑈& = 𝑢" , 𝑈' = 𝑢# 

 

The derivatives are approximated by finite difference with the following notations. For 1st 

derivatives, the forward, backward and central differences are defined as 

𝜕𝑈% ≡
𝑈%() − 𝑈%

ℎ , 𝜕̅𝑈% ≡
𝑈% − 𝑈%*)

ℎ , 𝜕?𝑈% =
𝑈%() − 𝑈%*)

2ℎ  

For 2nd derivatives, we can show 

𝜕;𝜕̅𝑈%< =
𝑈%() − 2𝑈% + 𝑈%*)

ℎ$  

 

Ø Accuracy of finite difference 

Define the unknown exact solution as (restriction of exact solution on the grid) 

𝑢% ≡ 𝑢;𝑥%< 

The accuracy of derivative approximation is bounded by 

@𝜕?𝑢% − 𝑢!;𝑥%<@ ≤ 𝐶ℎ$|𝑢|+! , |𝑢|+! ≡ max
,∈.

@𝑢(0)(𝑥)@ 

@𝜕𝜕̅𝑢% − 𝑢!!;𝑥%<@ ≤ 𝐶ℎ$|𝑢|+" , |𝑢|+" ≡ max
,∈.

@𝑢(2)(𝑥)@ 



As an example, for central difference we have 

𝑢;𝑥%()< = 𝑢;𝑥%< + ℎ𝑢!;𝑥%< +
ℎ$

2 𝑢
!!;𝑥%< +

ℎ0

3! 𝑢
(0);𝜉%< 

𝑢%() − 𝑢%*) = 2ℎ ⋅ 𝑢!;𝑥%< + 𝑂(ℎ0)|𝑢|+! , @𝜕?𝑢% − 𝑢!;𝑥%<@ ≤ 𝐶ℎ$|𝑢|+! 

 

Ø Finite difference scheme 

−𝑢!!(𝑥) = 𝑓(𝑥), −𝜕𝜕̅𝑈% = 𝑓% 			for			𝑗 = 1,2, … ,𝑀 − 1,			𝑈& = 𝑢" ,			𝑈' = 𝑢# 

We have	𝑀 − 1	unknowns and constraints. At the boundary (𝑗 = 1,𝑀 − 1), we have 

2𝑈) − 𝑈$ = ℎ$ ⋅ 𝑓) + 𝑈&, −𝑈'*$ + 2𝑈'*) = ℎ$ ⋅ 𝑓'*) + 𝑈' 

The interior constraints give 

−𝑈%*) + 2𝑈% − 𝑈%() = ℎ$ ⋅ 𝑓% 

The linear system has the form of	𝐴𝑈 = 𝐹, which is	ℎ-dependent 

⎣
⎢
⎢
⎢
⎡
2 −1 	 	 	
−1 2 −1 	 	
	 ⋱ ⋱ ⋱ 	
	 	 −1 2 −1
	 	 	 −1 2 ⎦

⎥
⎥
⎥
⎤
Y

𝑈)
𝑈$
⋮

𝑈'*)

[ =

⎣
⎢
⎢
⎡ ℎ$𝑓) + 𝑈&

ℎ$𝑓$
⋮

ℎ$𝑓'*) + 𝑈'⎦
⎥
⎥
⎤
 

The tridiagonal system can be solved by LU factorization 

Discrete 𝑈% ≈ 𝑢% −𝑈%*) + 2𝑈% − 𝑈%() = ℎ$𝑓% 

Continuous (exact) 𝑢;𝑥%< = 𝑢% −𝑢!!(𝑥) = 𝑓(𝑥) 

 

Ø Analysis of FDM: How accurate is	𝑈%?  

General goal: How much the discretized exact solution satisfy the discrete equations (i.e., 

moving the continuous universe into the discrete universe) 

 

Discrete maximal principle: For some vector	𝑉	and the augmented linear system	𝐴], if the 

vector	𝑉	satisfies the inequality in its piecewise sense 

𝐴]3𝑉 =
1
ℎ$

⎣
⎢
⎢
⎢
⎡
−1 2 −1 	 	 	
	 −1 2 −1 	 	
	 	 ⋱ ⋱ ⋱ 	
	 	 −1 2 −1 	
	 	 	 −1 2 −1⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
𝑉&
𝑉)
⋮

𝑉'*)
𝑉' ⎦

⎥
⎥
⎥
⎤

≤ 0, 𝐴]3 ∈ ℝ('*))×('()) 



Then the maximal value is on the boundary 

max
%5&,),⋯'

𝑉% = max(𝑉&, 𝑉') 

Proof. For each interior	𝑗	we have 

−𝑉%*) + 2𝑉% − 𝑉%() ≤ 0, 𝑉% ≤
𝑉%*) + 𝑉%()

2  

If	𝑉% ≡ const., it is obvious. If not, we can repeat the comparison until hitting the boundary. # 

 
Now introduce the following notations 

Ω = (0,1), Ὼ = [0,1], |𝑧|8 ≡ max
,#∈8

|𝑧%| 

As an example 

|𝑧|. = max
%5),⋯,'*)

@𝑧%@ , |𝑧|.9 = max
%5&,⋯,'

@𝑧%@ 

 

Lemma: More generally, for any	𝑍	we have 

max
%5&,),⋯'

@𝑍%@ ≤ max(|𝑍&|, |𝑍'|) + 𝐶 max
%5),⋯'*)

e;𝐴]3𝑍<%e 

|𝑍|.9 ≤ max(|𝑍&|, |𝑍'|) + 𝐶 ⋅ @𝐴]3𝑍@. 

Proof. Introduce a parabola 

𝑤(𝑥) =
1
4 − h𝑥 −

1
2i

$

, 0 ≤ 𝑤(𝑥) ≤
1
4 ,

|𝑤|+" = 0 

Then at the mesh points we have 

𝑊% = 𝑤;𝑥%< ≤
1
4 , 𝑊& = 𝑊' = 0, ;𝐴]3𝑊<

%
= −𝑤!!;𝑥%< = 2 

Define and calculate 

𝑉± = ±𝑍 −
1
2 @𝐴
]3𝑍@.𝑊, 𝑉&

± = ±𝑍& −
1
2 @𝐴
]3𝑍@.𝑊& = ±𝑍&, 𝑉'

± = ±𝑍' 

;𝐴]3𝑉±<% = ±;𝐴]3𝑍<% − @𝐴
]3𝑍@. ≤ 0 

Now we apply the Discrete Maximal Principle 

𝑉%
± = ±𝑍% −

1
2 @𝐴
]3𝑍@.𝑊% ≤ max;𝑉&

±, 𝑉'
±< = max(±𝑍&, ±𝑍') 

𝑍% ≤ max(𝑍&, 𝑍') +
1
8 @𝐴

]3𝑍@., −𝑍% ≤ max(−𝑍&, −𝑍') +
1
8 @𝐴

]3𝑍@. 

Therefore we prove (the pointwise version) 

@𝑍%@ ≤ max(|𝑍&|, |𝑍'|) +
1
8 @𝐴

]3𝒁@. 

 



Week 3: Lecture 5. Error analysis of FDM for Elliptic PDE 
Ø Max-norm error analysis 
Theorem: The error bound is 

|𝑈 − 𝑢|. ≤ 𝐶ℎ$|𝑢|+" 
Remark: The method is	𝑂(ℎ$), but the error depends on	|𝑢|+" 	(regularity) which may not 
exist (or regularity is not guaranteed) 
 
Proof. We define 

𝑍% ≡ 𝑈% − 𝑢% , 𝑍& = 𝑍' = 0 

To apply the Lemma, we need to calculate 

;𝐴]3𝑍<% = (𝐴𝑈)% − (𝐴𝑢)% = 𝑓% − h−
𝑢%() − 2𝑢% + 𝑢%*)

ℎ$ i	

= −𝑢!!;𝑥%< − h−
𝑢%() − 2𝑢% + 𝑢%*)

ℎ$ i 

Therefore, the	@𝐴]3𝑍@.	term is also bounded by 

e;𝐴]3𝑍<%e = n
𝑢%() − 2𝑢% + 𝑢%*)

ℎ$ − 𝑢!!;𝑥%<n ≤ 𝐶ℎ$|𝑢|+" , @𝐴]3𝑍@. ≤ 𝐶ℎ$|𝑢|+" 

Using the previous Lemma, we have 

|𝑈 − 𝑢|. ≤ max(|𝑍&|, |𝑍'|) + 𝐶 ⋅ @𝐴]3𝑍@. ≲ 𝐶ℎ$|𝑢|+" 

 
This theorem is about the infinity norm	|𝑈 − 𝑢|.	using the maximal principle. However, for 
solving the linear system we usually use 2-norm	‖𝑥q − 𝑥‖;$ 
 
Ø 𝐿$-norm error estimate 
For FDM, we have the tridiagonal linear systems for the approximated and exact solutions 

𝐴3𝑈 = 𝐹, 𝐴3𝑢 = 𝐹 − 𝜏, @𝜏%@ ≤ 𝑂(ℎ$) 

Therefore, we have 
𝐴3𝑍 ≡ 𝐴3(𝑈 − 𝑢) = 𝜏, ‖𝑍‖;$ ≤ ‖𝐴3*)‖;$→;$ ⋅ ‖𝜏‖;$ 

Now calculate the	𝑙$-norms 

‖𝜏‖;$ = uv@𝜏%@
$

'*)

%5)

≲ w𝑀ℎ2 ≤ √𝑀ℎ$			(∼ ℎ).>) 

For the	𝐴3	matrix, it is a TST (Toeplitz symmetric tridiagonal) matrix. For a general TST 
matrix of the form 



𝐴 =

⎣
⎢
⎢
⎢
⎡
𝛼 𝛽 	 	 	
𝛽 𝛼 𝛽 	 	
	 ⋱ ⋱ ⋱ 	
	 	 𝛽 𝛼 𝛽
	 	 	 𝛽 𝛼⎦

⎥
⎥
⎥
⎤

, 𝛼 =
2
ℎ$ , 𝛽 = −

1
ℎ$ 

The eigenvalue decomposition is 

𝐴 = 𝑄Λ𝑄*), 𝜆% = 𝛼 + 2𝛽 cos h
𝜋𝑗
𝑀i , 𝑞%? = �2

𝑀 sin h
𝜋𝑗𝑘
𝑀 i 

For our	𝐴3	the eigenvalues are 

𝜆% =
4
ℎ$ �

1
2 −

1
2 cos h

𝜋𝑗
𝑀i� =

4
ℎ$ sin

$ h
𝜋𝑗
2𝑀i 

The first and the last eigenvalues are about 

𝜆) ≈
𝜋$

ℎ$𝑀$ = 𝜋$ ∼ 𝑂(1), 𝜆'*) ≈
4
ℎ$ 

Similarly, for the inverse matrix	𝐴3*)	we have 

‖𝐴3*)‖;$→;$ = max 𝜆%*) ∼ 𝑂(1) 

The meaning of the matrix norm is 

‖𝐴‖;$→;$ = max
@

‖𝐴𝑣‖;$
‖𝑣‖;$

= max
‖@‖%$5)

‖𝐴𝑣‖;$ 

As a summary, on the average sense we have	@𝑧%@	is about	𝑂(ℎ$) 

‖𝑍‖;$ ≤ ‖𝐴3*)‖;$→;$ ⋅ ‖𝜏‖;$ ≲ √𝑀ℎ$, @𝑧%@ ∼ 𝑂(ℎ$) 

 
Ø 2D PDE example: Poisson equation 

−Δ𝑢 = 𝑓, 𝑥 ∈ Ω = (0,1)$, 𝑢(𝑥) = 0		on	boundary	 ∂Ω 
Discretize the domain: Introduce	𝑗 = (𝑗), 𝑗$)	and define 

𝑥% = (𝑗)ℎ, 𝑗$ℎ), 𝑢% ≡ 𝑢;𝑥%<, 𝑈% ≈ 𝑢% , 𝑒) = (1,0), 𝑒$ = (0,1) 

Discretize the operator: The Laplacian is approximated with central difference 

𝜕)𝜕)𝑢 ≈ 𝜕̅)𝜕)𝑈, −𝜕̅)𝜕)𝑈% − 𝜕̅$𝜕$𝑈% = 𝑓% 

At point	𝑗	the equation becomes 
1
ℎ$ ;4𝑈% − 𝑈%*B& − 𝑈%(B& − 𝑈%*B$ − 𝑈%(B$< = 𝑓% , 1 ≤ 𝑗), 𝑗$ ≤ 𝑀 − 1 

 
The linear system needs to be written carefully. The number of the unknowns and linear 
equations is	(𝑀 − 1)$. The ordering is important. 
 



Row ordering scheme 
The vector	𝑈	and	𝐹	is ordered as 

𝑈 = �𝑈), ⋯𝑈'*), 𝑈' , ⋯𝑈$'*$, ⋯⋯ ,𝑈('*))$�
C 

𝐹 = �𝐹), ⋯𝐹'*), 𝐹' , ⋯𝐹$'*$, ⋯⋯ , 𝐹('*))$�
C 

The linear system	𝐴𝑈 = 𝐹	looks like 

𝐴! =
1
ℎ"

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝐷 −𝐼 0 0 0 ⋯ 0
−𝐼 𝐷 −𝐼 0 0 ⋯ 0
0 −𝐼 𝐷 −𝐼 0 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 −𝐼 𝐷 −𝐼 0
0 ⋯ ⋯ 0 −𝐼 𝐷 −𝐼
0 ⋯ ⋯ ⋯ 0 −𝐼 𝐷 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

, with			𝐷 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
4 −1 0 0 0 ⋯ 0
−1 4 −1 0 0 ⋯ 0
0 −1 4 −1 0 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 −1 4 −1 0
0 ⋯ ⋯ 0 −1 4 −1
0 ⋯ ⋯ ⋯ 0 −1 4 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

As an intuitive example, for	𝑀 − 1 = 3	we have 

𝐴3 =
1
ℎ$

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
4 −1 0 −1 0 0 0 0 0
−1 4 −1 0 −1 0 0 0 0
0 −1 4 0 0 −1 0 0 0
−1 0 0 4 −1 0 −1 0 0
0 −1 0 −1 4 −1 0 −1 0
0 0 −1 0 −1 4 0 0 −1
0 0 0 −1 0 0 4 −1 0
0 0 0 0 −1 0 −1 4 −1
0 0 0 0 0 −1 0 −1 4 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

Now the matrix is a banded matrix of	𝑏 = 𝑂(𝑀)	band. The LU cost scales as 
𝑁𝑏$ = 𝑀$ ⋅ 𝑀$ = 𝑀2 = 𝑁$ 

  



Week 3: Lecture 6-1. Error analysis of 2D FDM for Elliptic PDE 
Ø Error analysis for Poisson equation 

Discrete maximal principle: Consider	𝑉 = ;𝑉%<, 0 ≤ 𝑗), 𝑗$ ≤ 𝑀. Suppose	;𝐴]3𝑉<% ≤ 0, 

then	𝑉	achieves its maximal value on boundary. 
Proof: The condition gives 

4𝑉% − 𝑉%*B& − 𝑉%(B& − 𝑉%*B$ − 𝑉%(B$ ≤ 0, 𝑉% ≤ Ave(𝑉%*B& , 𝑉%(B& , 𝑉%*B$ , 𝑉%(B$) 
This means	𝑉% 	is smaller than at least one of its neighbors, unless the function is constant. 

Recursively, this comparison continues until hitting the boundary 
 

Lemma 2: Suppose	;𝐴]3𝑍<% 	is not all zero, we generally have 

|𝑍|.9 ≤ max
%∈D.

@𝑍%@ + 𝐶@𝐴]3𝑍@. 

Proof: Similarly construct a function 

𝑤(𝑥) =
1
2 − n𝑥 − h

1
2 ,
1
2in

$

=
1
4 − h𝑥) −

1
2i

$

+
1
4 − h𝑥$ −

1
2i

$

 

Then we apply Discrete Maximal Principle to the following vector 

𝑍( = 𝑍 −
1
4 @𝐴

]3𝑍@.𝑊 

 
Max-norm error analysis: To analyze the error, we have 

(𝐴3𝑈)% = 𝑓% , (𝐴3𝑢)% = −Δ𝑢;𝑥%< − 𝜏% = 𝑓% − 𝜏% , 𝜏% ≤ 𝐶ℎ$|𝑢|+" 	 

(𝐴3𝑍)% = [𝐴3(𝑈 − 𝑢)]% = 𝜏% 

Based on Lemma 2, we obtain 
|𝑍|.9 ≤ |𝑍|D. + 𝐶|𝜏|. ≲ ℎ$|𝑢|+" 

 
L2-norm error analysis: Following 1D case, we still have 

𝐴3𝑍 ≡ 𝐴3(𝑈 − 𝑢) = 𝜏, ‖𝑍‖;$ ≤ ‖𝐴3*)‖;$→;$ ⋅ ‖𝜏‖;$ 
Kronecker product: 

𝐵⨂𝐶 = �
𝑏))𝐶 ⋯ 𝑏)E𝐶
⋮ ⋱ ⋮

𝑏F)𝐶 ⋯ 𝑏FE𝐶
� 

Therefore, the 2D FDM matrix	𝐴3	can be written from the 1D FDM matrix	𝐵3 

𝐴3 = 𝐵3⨂𝐼 + 𝐼⨂𝐵3 , 𝐵3 , 𝐼 ∈ ℝ('*))×('*)), 𝐴 ∈ ℝ('*))$×('*))$ 

The eigenvalue decomposition becomes 
𝐴3 = (𝑄Λ𝑄C)⨂(𝑄𝐼𝑄C) + (𝑄𝐼𝑄C)⨂(𝑄Λ𝑄C)	



= (𝑄⨂𝑄)(Λ⨂𝐼)(𝑄⨂𝑄)C + (𝑄⨂𝑄)(𝐼⨂Λ)(𝑄⨂𝑄)C 	
= (𝑄⨂𝑄)(Λ⨂𝐼 + 𝐼⨂Λ)(𝑄⨂𝑄)C 

The eigenvalues of	𝐴3	are 

𝜆G,H = 𝜆G(𝐵) + 𝜆H(𝐵), 𝜆G(𝐵) =
4
ℎ$ sin

$ �
𝜋𝑝
2𝑀� 

Hence, the eigenvalue spectrum is basically the same with	𝐵3, with an extra factor of 2 
 
Precisely, we have the L2-norm error bound 

‖𝑍‖;$ ≤ ‖𝐴3*)‖;$→;$ ⋅ ‖𝜏‖;$ ≲ ‖𝜏‖;$ 

On the “average sense”, we have	@𝑧%@ ∼ 𝑂(ℎ$). 



Week 3: Lecture 6-2. Hilbert Space 
Finite element method solves the following elliptic PDE 

−Δ𝑢 = 𝑓			or			 − ∇ ⋅ (𝑎(𝑥)∇𝑢) = 𝑓 
 
Ø Introduction to Hilbert space 

 Linear Algebra Hilbert Space 

Vectors ℝ! “∞-dim” vector space	𝑉 

Linear functional 
(Linear form) 𝑤"𝑣:	ℝ! → ℝ 𝐿:	𝑉 → ℝ 

Bilinear form 𝑢"𝐵𝑣:	ℝ! × ℝ! → ℝ 𝐵:	𝑉 × 𝑉 → ℝ 

Sym. Pos. Def. 
𝐵#$ = 𝐵$# 

𝑤"𝐵𝑤 > 0,			𝑤 ≠ 0 
𝐵(𝑢, 𝑣) = 𝐵(𝑣, 𝑢) 

𝐵(𝑢, 𝑢) > 0,			∀𝑢 ∈ 𝑉,			𝑢 ≠ 0 

Distance (Norm) ‖𝑢‖% = @𝑢"𝐵𝑢 ‖𝑢‖% = @𝐵(𝑢, 𝑢) 

Semi-norm 
‖𝑢‖&'() ≥ 0 

(e.g., ‖𝑢‖&'() = |𝑢*|) 
Triangle inequality 

‖𝑢‖&'() ≥ 0 
Triangle inequality 

 
Example:	𝑉 = 𝐿+(ℝ), square-integrable function space is a Hilbert space 

𝐵(𝑓, 𝑔) = D 𝑓(𝑥)𝑔(𝑥)	d𝑥
,-

.-
, ‖𝑓‖/! = FD 𝑓+(𝑥)	d𝑥

,-

.-
 

Example:	𝑉 = 𝐻*(ℝ), an example of Sobolev space 

𝐵(𝑓, 𝑔) = D 𝑓𝑔 + ∇𝑓 ⋅ ∇𝑔	d𝑥
,-

.-
, ‖𝑓‖0" = FD 𝑓+ + |∇𝑓|+

,-

.-
d𝑥 

 
Definition. Hilbert space (𝑉, ‖⋅‖%) is a complete inner product space. This means: 

1. Bilinear form	𝐵	on vector space	𝑉	is sym. pos. def. (i.e., inner product space) 
2. 𝑉	is complete (i.e., every Cauchy sequence in	𝑉	is convergent) 

 
Equivalent norms 
For linear algebra, two norms are always equivalent: 

∀𝑢 ∈ ℝ!, ∃𝛾1% , Γ1% > 0, 𝛾1%‖𝑢‖% ≤ ‖𝑢‖1 ≤ Γ1%‖𝑢‖% 
For Hilbert space, we define that the two norms are equivalent when 

∀𝑢 ∈ 𝑉, ∃𝛾1% , Γ1% > 0, 𝛾1%‖𝑢‖% ≤ ‖𝑢‖1 ≤ Γ1%‖𝑢‖% 



Bounded linear operator 
For linear algebra, the linear operator	𝑀:ℝ! → ℝ2	is always bounded.  
For Hilbert space, we define that the linear operator	𝐿: (𝑉, ‖⋅‖%) → (𝑊, ‖⋅‖1)	is bounded if 

∃𝐶/ ∈ ℝ,			‖𝐿𝑢‖1 ≤ 𝐶/‖𝑢‖% ,			∀𝑢 ∈ 𝑉 
Therefore, we can define the norm of a bounded linear operator 

‖𝐿‖ = sup
3∈5\{8}

‖𝐿𝑢‖1
‖𝑢‖%

 

 
Dual space: The set of all bounded linear functionals	𝐿: 𝑉 → ℝ	on	𝑉	is the dual space	𝑉∗. The 
(dual) norm in	𝑉∗	is (norm on a dual space, same definition as above) 

‖𝐿‖5∗ = sup
3∈5\{8}

|𝐿(𝑢)|
‖𝑢‖%

,			𝐿 ∈ 𝑉∗ 

 
Riesz representation theorem 
For each bounded	𝐿: 𝑉 → ℝ	on the Hilbert space	(𝑉, ‖⋅‖%), there is a unique	𝑥/ ∈ 𝑉	such that 

𝐿𝑢 = 𝐵(𝑥/ , 𝑢),			∀𝑢 ∈ 𝑉  ‖𝐿‖%∗ = ‖𝑥/‖% 
 
Remark: We can thus identify the linear functionals	𝐿 ∈ 𝑉∗	with the associated	𝑥/ ∈ 𝑉. Now, 
we obtain another Hilbert space	(𝑉∗, ‖⋅‖%∗) 
 
Example: In linear algebra, any linear functional	𝐿𝑢 = 𝑤"𝑢	can be represented by an SPD 
bilinear form (B-SPD) 

𝑤"𝑢 = 𝑥/"𝐵𝑢, 𝑥/ = 𝐵.*𝑤 
The inverse	𝐵.*	is also SPD. Now we can define a dual way to measure	𝐿	in the dual space, 
and it is the same with the norm of its representation	𝑥/: 

‖𝐿‖%∗ ≡ @𝑤"𝐵.*𝑤, ‖𝑥/‖% = @𝑤"𝐵.*𝑤 

The two norms are linked through the representation theorem 
 
Poincare’s inequality 

‖𝑓‖0" = D 𝑓+ + |∇𝑓|+	𝑑𝑥
[8,*]

, ‖∇𝑓‖ = D |∇𝑓|+	𝑑𝑥
[8,*]

, ‖𝑓‖ = D 𝑓+	𝑑𝑥
[8,*]

 

Poincare’s inequality gives 
‖∇𝑓‖ ≤ ‖𝑓‖0" ≤ 𝐶 ⋅ ‖∇𝑓‖ 

This implies that the first two norms are equivalent 
‖∇𝑓‖ ↔ ‖𝑓‖0" , ‖∇𝑓‖ ↮ ‖𝑓‖, ‖𝑓‖0" ↮ ‖𝑓‖  



Week 4: Lecture 7. Introduction of Sobolev Space 
Ø Review on Hilbert space 

 Linear Algebra Hilbert Space 

Norm ‖𝑥‖ = @𝑥"𝐵𝑥 ‖𝑢‖% = @𝐵(𝑢, 𝑢) 

Linear functional 𝑙"(𝑥) = 𝑙"𝑥 ∈ ℝ 𝐿:	𝑉 → ℝ 

Riesz Represent. 𝑙"𝑥 = 𝑢"𝐵𝑥,			𝑢 = 𝐵.*𝑙 ∃𝑢> ∈ 𝑉,			𝑙(𝑥) = 𝐵(𝑢> , 𝑥),			∀𝑥 ∈ 𝑉 

Dual norm ‖𝑙‖%$" = ‖𝑢‖ = @𝑙"𝐵.*𝑙 ‖𝑙‖%∗ = ‖𝑢>‖% 

 
In finite element method (FEM), for Hilbert space (𝑉, ‖⋅‖%), we want another bilinear form 
𝐴	which is symmetric 

𝐴(𝑢, 𝑣) = 𝐴(𝑣, 𝑢) 
bounded with respect to	𝐵 

|𝐴(𝑢, 𝑣)| ≤ 𝑀‖𝑢‖%‖𝑣‖% , ∀𝑢, 𝑣 ∈ 𝑉 
and coercive in	𝑉 

𝐴(𝑢, 𝑢) ≥ 𝛼‖𝑢‖%+ , ∀𝑢 ≠ 0 
The above is analogous to max. eigenvalue	< ∞	and min. eigenvalue	> 0	in linear algebra 
 
Now we can define another space (𝑉, ‖⋅‖1), and the two norms are equivalent, because from 
the properties of	𝐴	we have 

𝛼‖𝑢‖%+ ≤ 𝐴(𝑢, 𝑢)[\\\\]\\\\^
?@'A?)B'

= ‖𝑢‖1+ ≤ 𝑀‖𝑢‖%+[\\\\]\\\\^
C@DEF'F

, √𝛼‖𝑢‖% ≤ ‖𝑢‖1 ≤ √𝑀‖𝑢‖% 

 
Suppose	𝐴(⋅,⋅)	is symmetric, bounded, and coercive. We claim that (𝑉, ‖⋅‖1) is also a Hilbert 
space. Given a linear functional, by Riesz rep. theorem we have 

∃𝑢> ∈ 𝑉,			𝑠. 𝑡.		𝐴(𝑢> , 𝑣) = 𝑙(𝑣),			∀𝑣 ∈ 𝑉, ‖𝑢>‖1 = ‖𝑙‖1,∗ 
Now let	𝑣 = 𝑢>, we have 

𝛼‖𝑢>‖%+ ≤ 𝐴(𝑢> , 𝑢>)[\\\\\]\\\\\̂
?@'A?)B'

= 𝑙(𝑢>) ≤ ‖𝑢>‖%‖𝑙‖%,∗[\\\\\]\\\\\^
C@DEF'F	H)E'IA	JDE?K)@EIH

 

This leads to (energy estimate) 

𝛼‖𝑢>‖% ≤ ‖𝑙‖%,∗, ‖𝑢>‖% ≤
1
𝛼
‖𝑙‖%,∗ 

Remark. Even though we use a problem-specific norm	𝐴, we can still translate the result into 
a ‘common’ norm	𝐵, with the only difference being a constant factor 



Projection 
Suppose a subspace	𝑊 ⊂ 𝑉, the projection	𝑤 ∈ 𝑊	of	𝑣 ∈ 𝑉	satisfies	‖𝑢 − 𝑤‖%+ 	is minimized, 
and	𝑣 − 𝑤 ⊥% 	any vector	𝑤L ∈ 𝑊 
 
Connection with optimization 
Let	𝑢 ∈ 𝑉	be the solution of	𝐴(𝑢, 𝑣) = 𝑙(𝑣), ∀𝑣 ∈ 𝑉. This is equivalent to an optimization 

min
3

1
2𝐴

(𝑢, 𝑢) − 𝑙(𝑢) 

As an analogy, the linear system	𝐴𝑢 = 𝑙	is equivalent to an optimization problem 

min
3
𝐸(𝑢) , 𝐸(𝑢) =

1
2𝑢

"𝐴𝑢 − 𝑙"𝑢,
𝜕𝐸
𝜕𝑢 = 𝐴𝑢 − 𝑙 = 0 

 
Example:	𝐿+	space for a compact domain	Ω 

𝐿+(Ω) = m 𝑓 ∣∣ ∫ 𝑓+(𝑥)𝑑𝑥M < ∞p 

𝐴(𝑓, 𝑔) = D𝑓(𝑥)qqqqqq ⋅ 𝑔(𝑥)𝑑𝑥
M

, ‖𝑓‖/!(M) = FD |𝑓(𝑥)|+𝑑𝑥
M

 

 
Ø Weak derivatives 
For usual derivatives, we have the integration by parts 

D𝑓L𝑔	d𝑥
M

= 𝑓𝑔|PM −D𝑔L𝑓	d𝑥
M

 

Now consider	𝑓	is not differentiable (e.g., jumps, kinks). If test function	𝑔	is smooth, the LHS 
is bad while the RHS is still appropriate. We want to define the derivative for	𝑓(𝑥)	as a linear 
functional	𝐷𝑓	such that for any smooth	𝑔(𝑥) 

(𝐷𝑓)(𝑔) = −D𝑔L𝑓	d𝑥
[\\]\\̂

Q)E'IA	RDE?K)@EIH

 

As an example, for the boxcar function	𝑓(𝑥) 

(𝐷𝑓)(𝑔) = −D𝑔L𝑓	d𝑥
ℝ

= −D 𝑔L(𝑥)	d𝑥
*

8
= 𝑔(0) − 𝑔(1) 

 
Ø Sobolev space 
Suppose	𝑓, 𝑔 ∈ 𝐿+(ℝ), the weak derivative	𝐷𝑓	is a distribution. If	𝐷𝑓	and	𝐷𝑔	happen to be 
also in	𝐿+(ℝ), then we can define the following bilinear form 

𝐴(𝑓, 𝑔) = D (𝑓𝑔 + 𝐷𝑓𝐷𝑔)	d𝑥
ℝ

 



Then we have the following space	𝐻*(ℝ) 

𝐻*(ℝ) ≡ { 𝑓 ∣∣ 𝐴(𝑓, 𝑓) < ∞ }, ‖𝑓‖0" = FD[𝑓+(𝑥) + (𝐷𝑓)+(𝑥)]	d𝑥
ℝ

 

If	𝐷𝑓 ∈ 𝐿+	and	𝐷(𝐷𝑓) ≡ 𝐷+𝑓 ∈ 𝐿+, then we can define	𝐻+	space 

‖𝑓‖0! = FD[𝑓+(𝑥) + (𝐷𝑓)+(𝑥) + (𝐷+𝑓)+(𝑥)]	d𝑥
ℝ

 

Similarly, we can define	𝐻T 	space 

‖𝑓‖0% = wDx|𝐷$𝑓(𝑥)|+
T

$U*

d𝑥
ℝ

 

Now we have a sequence of spaces 
𝐿+ = 𝐻8 ⊃ 𝐻* ⊃ ⋯ ⊃ 𝐻T 

The corresponding sequence of the dual spaces is (the dual space of	𝐿+	is itself) 
𝐿+ = 𝐻8 ⊂ 𝐻.* ⊂ ⋯ ⊂ 𝐻.T 

The full sequence is thus 
⋯ ⊃ 𝐻.+ ⊃ 𝐻.* ⊃ 𝐻8 = 𝐿+ ⊃ 𝐻* ⊃ 𝐻+ ⊃ ⋯ 

 
For a finite domain (FEM purpose), we define 

𝐻8*(Ω) ≡ {𝑓 ∈ 𝐻*(Ω)	but	also	vanishes	on	the	boundary	of	Ω} 

‖𝑓‖0&"(M) = FD𝑓+(𝑥) + |∇𝑓|+(𝑥)	𝑑𝑥
M

 

More rigorously, 𝐻8*(Ω)	is the completion of	𝐶8-(Ω)	function w.r.t. the norm	‖𝑓‖0&"(M) 

 
Ø Poincare’s inequality (1D) 
Suppose	Ω = (0,1)	and	𝑓 ∈ 𝐻8*(Ω), we have 

‖𝑓‖/! ≲ ‖𝐷𝑓‖/! 
If this is not true, then	‖𝑓‖/!/‖𝐷𝑓‖/! 	is unbounded. This contradicts 

intuition, as having a large maximum requires steep slopes, given that 
𝑓 = 0	on the boundary. 
 
Proof. We have 

𝑓(𝑥) = D 𝑓L(𝑦)	d𝑦
V

8
 

 



The Cauchy-Schwartz inequality gives 

|𝑓(𝑥)| = �D 1 ⋅ 𝑓L(𝑦)	d𝑦
V

8
� ≤ FD 1+	d𝑦

*

8
⋅ FD 𝑓L(𝑦)+	d𝑦

*

8
, |𝑓(𝑥)| ≤ ‖𝐷𝑓‖/! 

Therefore, we have 

‖𝑓‖/! = FD 𝑓+(𝑥)	d𝑥
*

8
≤ FD ‖𝐷𝑓‖/!

+ 	d𝑥
*

8
= ‖𝐷𝑓‖/! , ‖𝑓‖/!(M) ≤ 𝐶(Ω)‖∇𝑓‖/!(M) 

 
The implication of Poincare’s inequality is 

D|𝐷𝑓|+	d𝑥
M

≤ D(|𝑓|+ + |𝐷𝑓|+)	d𝑥
M

≤ 2D |𝐷𝑓|+	d𝑥
M

 

‖∇𝑓‖/! ≤ ‖𝑓‖0&" ≤ √2‖∇𝑓‖/! 

This says that	‖∇𝑓‖/! 	can be regarded as a norm on	𝐻8*(Ω), and in fact,	‖∇𝑓‖/! 	is equivalent 

w.r.t.	𝐻8*(Ω)	norm 
 
Remark. It is very important that we consider	𝑓 ∈ 𝐻8*(Ω). If	𝑓	doesn’t vanish on boundary, 
Poincare’s inequality doesn’t hold, and one counter-example is a non-zero constant function. 
 
Ø Finite element method (FEM) for 1D problem 
Recall in FDM we solve	−𝑢LL = 𝑓	with zero on the boundary. The consequence is 

max
$
�𝑈$ − 𝑢�𝑥$�� ≤ 𝐶ℎ+|𝑢|W' 

The regularity term	|𝑢|W' 	is bad and will be fixed for FEM. 
 
For FEM, we focus on 

−[𝑎(𝑥)𝑢L(𝑥)]L + 𝐶𝑢(𝑥) = 𝑓(𝑥), 𝑢(0) = 𝑢(1) = 0, 
with smooth function	𝑎(𝑥)	and constant	𝐶	satisfying 

0 < 𝑎 ≤ 𝑎(𝑥) ≤ 𝑎q, 𝐶 ≥ 0 

 
The above problem is in the divergence form. In the operator form, we have (set	𝐶 = 0) 

−𝐷[𝑎(𝐷𝑢)] = 𝐷"[𝑎(𝐷𝑢)] = 𝑓(𝑥) 
The LHS is a sym. pos. def. operator.	−𝐷 = 𝐷" 	is the adjoint of	𝐷	in this finite domain based 
on integration by parts. 
 
 



Now focus on	𝐻8*(Ω)	which is a Hilbert space, with any test function	𝜑(𝑥) ∈ 𝐻8*(Ω) 

D −[𝑎𝑢L(𝑥)]L𝜑(𝑥)	d𝑥 = D𝑓(𝑥)𝜑(𝑥)	d𝑥
MM

 

From integration by parts, we obtain 

−𝑎𝑢L𝜑|PM +D𝑎(𝑥)𝑢L(𝑥)𝜑L(𝑥)	d𝑥
M

= D𝑓(𝑥)𝜑(𝑥)	d𝑥
M

,			∀𝜑(𝑥) ∈ 𝐻8*(Ω) 

The LHS is sym. pos. def. (SPD) 
 
Summary 
In the integral formulation, we only need one derivative for	𝑢, and thus consider	𝑢 ∈ 𝐻8*(Ω). 
Therefore,	𝑢	is a weak solution of	−(𝑎𝑢L)L = 𝑓	if we have	𝑢 ∈ 𝐻8*(Ω)	and for any	𝜑 

D𝑎(𝑥)𝑢L(𝑥)𝜑L(𝑥)	d𝑥
M

= D𝑓(𝑥)𝜑(𝑥)	d𝑥
M

, ∀𝜑(𝑥) ∈ 𝐻8*(Ω) 

 
Topic for next lecture: 

The Hilbert space	𝐻8*(Ω)	provides the base norm	‖⋅‖% → ‖⋅‖0&"(M). The problem specific 

bilinear form is 

𝐴(𝑢, 𝜑) ≡ D𝑎(𝑥)𝑢L(𝑥)𝜑L(𝑥)	d𝑥
M

 

This bilinear form is symmetric, bounded, and coercive, as shown below 

|𝐴(𝑢, 𝜑)| ≤ 𝑎qD |𝑢L𝜑L|	d𝑥
M

≤ 𝐶‖𝑢‖0&"(M)‖𝜑‖0&"(M) 

𝐴(𝑢, 𝑢) = D𝑎𝑢L𝑢Ld𝑥
M

≳ D |𝑢L|+𝑑𝑥
M

≳ ‖𝑢‖0&"(M) 

  



Week 4: Lecture 8. FEM for 1D elliptic PDE 
Ø Review on weak solution 
In the integral formulation,	𝑢 ∈ 𝐻8*(Ω)	is a weak solution of	−(𝑎𝑢L)L = 𝑓	if we have 

D𝑎(𝑥)𝑢L(𝑥)𝜑L(𝑥)	d𝑥
M

= D𝑓(𝑥)𝜑(𝑥)	d𝑥
M

, ∀𝜑(𝑥) ∈ 𝐻8*(Ω) 

More compactly, we can write it as 

𝐴(𝑢, 𝜑) = (𝑓, 𝜑)/! , ∀𝜑(𝑥) ∈ 𝐻8*(Ω) 

Note that the RHS is just the usual	𝐿+(Ω)	inner product. If	𝑓 ∈ 𝐻8*(Ω), then the RHS should 
be strictly written as	𝑓(𝜑), but when	𝑓 ∈ 𝐿+(Ω)	then it just becomes the inner product. 
 
Advantage 

1. Only need one derivative for	𝑢 
2. Bilinear form, we can apply Hilbert space technique 

 
Existence of solution 
The bilinear form	𝐴(𝑢, 𝜑) is symmetric, bounded, and coercive 

|𝐴(𝑢, 𝜑)| ≤ 𝑎q D |𝑢L𝜑L|	d𝑥
M

≤ 𝑎qFD|𝑢L|+	d𝑥
M

FD |𝜑L|+	d𝑥
M

≤ 𝑎q‖𝑢‖0&"(M)‖𝜑‖0&"(M) 

𝐴(𝑢, 𝑢) = D𝑎𝑢L𝑢Ld𝑥
M

≥ 𝑎D |𝑢L|+𝑑𝑥
M

≥ 𝑎‖𝑢‖0&"(M) 

Now we show that	𝐴(𝑢, 𝜑)	is an SPD bilinear form on	𝐻8*(Ω)	and it is equivalent to the usual 

norm	‖𝑢‖0&"(M). From Riesz rep. theorem, we can find	𝑢X ∈ 𝐻8*(Ω)	such that 

𝐴�𝑢X , 𝜑� = 𝑓(𝜑) = (𝑓, 𝜑)	 

If	𝐴	is non-symmetric, then we need to use Lax-Milgram theorem 
 
Ø Finite element method (FEM) 
The goal is to look for	𝑢Y ∈ 𝑆Y ⊊ 𝐻8*(Ω)	such that 

𝐴(𝑢Y , 𝜑Y) = (𝑓, 𝜑Y), ∀𝜑Y ∈ 𝑆Y 

where	𝑆Y	is a finite dimension subspace of	𝐻8*(Ω) 
 
Remark. The subspace	𝑆Y ⊊ 𝐻8*(Ω)	is finite dimension, easy to work with, and captures	𝑢 
 
 
 



Remark. The problems are equivalent to the following optimization problems 

min
3∈0&"(M)

1
2𝐴

(𝑢, 𝑢) − (𝑓, 𝑢) , min
3(∈Z(

1
2𝐴

(𝑢Y , 𝑢Y) − (𝑓, 𝑢Y) 

The FEM is a finite dimension optimization, in contrast to the infinite dimension one.  
 
The left figure indicates the infinite dimension problem, while the red line in the right figure 
indicates the FEM finite dimension problem. The advantage is that we reduce dimension, 
while the drawback is that there is a small gap between	𝑢Y	and the true solution	𝑢 
 
 
 
 
 
FEM partition 

0 = 𝑥8 < 𝑥* < ⋯ < 𝑥[ = 1 
Small intervals	𝐾$ 	are elements with 

𝐾$ = �𝑥$.*, 𝑥$�, ℎ$ = 𝑥$ − 𝑥$.*, ℎ = max
\
ℎ$ 

The discrete solution will be found in the finite dimension subspace	𝑆Y	defined as 

𝑆Y = {𝑓 ∈ 𝐶(Ω�) ∣∣ piecewise	linear	w. r. t	this	partition, 𝑓(0) = 𝑓(1) = 0 } 
 
Courant hat basis for	𝑺𝒉 
The hat basis is defined as 

𝜑#�𝑥$� = �1,				if	𝑖 = 𝑗
0,				if	𝑖 ≠ 𝑗 

Note that the intervals need not to be 
uniformly spaced 
 
It is easy to recognize 

𝑆Y = span(𝜑*, 𝜑+, ⋯ , 𝜑[.*) 
The representation by	{𝜑#}	is uniquely determined by function values at interior points 
 
FEM linear system 
Now write our target solution	𝑢Y	as 

𝑢Y = x 𝜑$(𝑥)𝑈$

[.*

$U*

 



We look for	m𝑈$p	to satisfy (now denote test functions as	𝜒Y) 

𝐴(𝑢Y , 𝜒Y) = 𝐴�x 𝜑$𝑈$

[.*

$U*

, 𝜒Y� = (𝑓, 𝜒Y), ∀𝜒Y ∈ 𝑆Y 

With	{𝜑#}	being the basis, we only need to check	𝜒Y ≡ 𝜑# 

𝐴�x 𝜑$𝑈$

[.*

$U*

, 𝜑#� = (𝑓, 𝜑#), 𝑖 = 1, 2,⋯ ,𝑀 − 1 

Now we need to solve 

x𝐴�𝜑# , 𝜑$�𝑈$

[.*

$U*

= (𝜑# , 𝑓), 𝑖 = 1, 2,⋯ ,𝑀 − 1 

This becomes the following linear system 

𝐴#$ = 𝐴�𝜑# , 𝜑$�, 𝐹# = (𝜑# , 𝑓), 𝐴𝑈 = 𝐹, 𝐴 ∈ ℝ([.*)×([.*) 

 
The matrix	𝐴	is a “shadow” of	𝐴(𝑢, 𝑣)	on	𝑆Y 

1. Since	𝐴(𝑢, 𝑣)	is SPD, then the restriction of	𝐴(𝑢, 𝑣)	on	𝑆Y, the matrix	𝐴, is also SPD 
2. Matrix	𝐴	is tridiagonal. For example, the supports of	𝜑*	and	𝜑_	are disjoint 
3. 𝐴## > 0, 𝐴#$ < 0 

𝐴*+ = D𝑎(𝑥)𝜑*L (𝑥)𝜑+L (𝑥) < 0 

 
Example: Uniform spacing	ℎ	with	𝑎(𝑥) ≡ 1 

𝐴(𝜑# , 𝜑#) = D |𝜑#L(𝑥)|+	d𝑥
*

8
=
2
ℎ , 𝐴(𝜑# , 𝜑#±*) = −

1
ℎ 

This matrix is the same with FDM matrix. It seems that the constant factor is	1/ℎ, but the 
missing	ℎ	is into the	𝐹# = (𝜑# , 𝑓). FEM and FDM matrices happen to be the same for the 
uniform spacing discretization 
 
Ø Error analysis of FEM 
For the problem 

−[𝑎(𝑥)𝑢L(𝑥)]L = 𝑓, 𝑢(0) = 𝑢(1) = 0 
Existence of solution indicates 

𝑓 ∈ 𝐻.* 			⇒ 			𝑢 ∈ 𝐻8*(Ω) 
𝑓 ∈ 𝐿+ = 𝐻8 			⇒ 			𝑢 ∈ 𝐻+(Ω) 

Claim. Solution	𝑢	is smoother than	𝑓 



The weak formulation is 
𝐴(𝑢, 𝜒) = (𝜒, 𝑓), ∀𝜒 ∈ 𝐻8*(Ω) 

The FEM problem is 

𝐴(𝑢Y , 𝜒Y) = (𝜒Y , 𝑓), ∀𝜒Y ∈ 𝑆Y ⊊ 𝐻8*(Ω) 
 
Difference between the two problems gives 

𝐴(𝑢 − 𝑢Y , 𝜒Y) = 0, ∀𝜒Y ∈ 𝑆Y 
Therefore, with respect to the inner product	𝐴(⋅,⋅)	we have 

(𝑢 − 𝑢Y) ⊥1 𝜒Y , ∀𝜒Y ∈ 𝑆Y 
The geometric characterization of FEM solution	𝑢Y	is 

‖𝑢 − 𝑢Y‖1 = min
a(
‖𝑢 − 𝜒Y‖1 

Or equivalently 
‖𝑢 − 𝑢Y‖1 ≤ ‖𝑢 − 𝜒Y‖1, ∀𝜒Y ∈ 𝑆Y 

 
Remark. As	‖⋅‖1	is equivalent to	𝐻8*(Ω)	norm, we have 

𝐶*‖𝑢 − 𝑢Y‖0&"(M) ≤ ‖𝑢 − 𝑢Y‖1 ≤ ‖𝑢 − 𝜒Y‖1 ≤ 𝐶+‖𝑢 − 𝜒Y‖0&"(M), ∀𝜒Y ∈ 𝑆Y 

‖𝑢 − 𝑢Y‖0&"(M) ≤ 𝐶‖𝑢 − 𝜒Y‖0&"(M), ∀𝜒Y ∈ 𝑆Y 

This is not problem-specific anymore. All we need to do now is to find a good	𝜒Y ∈ 𝑆Y	such 

that	‖𝑢 − 𝜒Y‖0&" 	is small. This	𝜒Y	can depend on	𝑢	as long as	𝜒Y ∈ 𝑆Y 

 
Approximation of	𝒖	in	𝑺𝒉 
Define the piecewise linear interpolation of	𝑢 ∈ 𝐻8*(Ω)	as	𝐼Y𝑢. We will use	𝜒Y ≡ 𝐼Y𝑢 
 
 
 
 
 
Error estimate of FEM 
Consider an element	𝐾$ 	and extend the range to	[0,1]. We have 

‖𝑣 − 𝐼𝑣‖/!(M) ≲ ‖𝑣LL‖/!(M) 

Proof. Poincare’s inequality gives 
‖𝑣 − 𝐼𝑣‖/! ≲ ‖(𝑣 − 𝐼𝑣)L‖/! 



By mean value theorem, (𝑣 − 𝐼𝑣)L	has a zero-crossing point	𝑥8. Therefore, we can modify 
the proof of Poincare’s inequality using this	𝑥8	and similarly obtain 

‖(𝑣 − 𝐼𝑣)L‖/! ≲ ‖(𝑣 − 𝐼𝑣)LL‖/! 

Therefore, because	𝐼𝑣	is piecewise linear, we have	(𝐼𝑣)LL = 0	and thus 
‖𝑣 − 𝐼𝑣‖/! ≲ ‖(𝑣 − 𝐼𝑣)L‖/! ≲ ‖(𝑣 − 𝐼𝑣)LL‖/! = ‖𝑣LL‖/! 

 
Going back to the original	𝐾$ 	element, as we have 

𝑢(𝑥) = 𝑣 £
𝑥 − 𝑥$.*

ℎ ¤ , 𝑢L =
𝑣L

ℎ , 𝑢LL =
𝑣LL

ℎ+  

we can obtain 

‖𝑢 − 𝐼Y𝑢‖/!bc)d ≲ ℎ+‖𝑢LL‖/!bc)d, ‖(𝑢 − 𝐼Y𝑢)L‖/!bc)d ≲ ℎ‖𝑢LL‖/!bc)d 

For the whole domain	Ω = (0,1), we have 

‖𝑢 − 𝐼Y𝑢‖/!
+ =xD |𝑢 − 𝐼Y𝑢|+	d𝑥

c)

[

$U*

≲ ℎexD |𝑢LL|+	d𝑥
c)

[

$U*

= �ℎ+‖𝑢LL‖/!�
+ 

‖(𝑢 − 𝐼Y𝑢)L‖/!
+ =xD |(𝑢 − 𝐼Y𝑢)L|+	d𝑥

c)

[

$U*

≲ ℎ+xD |𝑢LL|+	d𝑥
c)

[

$U*

= �ℎ‖𝑢LL‖/!�
+ 

These results show (scaling argument) 

‖𝑢 − 𝐼Y𝑢‖/! ≲ ℎ+‖𝑢LL‖/! , ‖(𝑢 − 𝐼Y𝑢)L‖/! ≲ ℎ‖𝑢LL‖/! 

Summarizing all together, we obtain the Theorem* 
‖𝑢 − 𝑢Y‖0&" ≲ ‖𝑢 − 𝐼Y𝑢‖0&" ≲ ‖(𝑢 − 𝐼Y𝑢)L‖/![\\\\\\\\\]\\\\\\\\\^

f@)E?IA'

≲ ℎ‖𝑢LL‖/! ≲ ℎ‖𝑢‖0! ≲ ℎ‖𝑓‖/![\\\\\]\\\\\^
fgh	ij'@Ak

 

 
Recall in FDM, we prove that 

max
$
|𝑢 − 𝑢$| ≲ ℎ+|𝑢|W' 

But note that	𝐻8*(Ω)	norm applied in FEM is a stronger one. Now the question is: can we 
estimate the	𝐿+	error for FEM 
  



Week 5: Lecture 9. FEM for 2D elliptic PDE 
Ø 𝐿+	error analysis of 1D FEM 
Theorem 

‖𝑢 − 𝑢Y‖/!(M) ≲ ℎ+‖𝑢‖0!(M) 

Proof. Define the error function	𝑒Y = 𝑢Y − 𝑢, and we have 
𝐴(𝑒Y , 𝜒Y) = 0, ∀𝜒Y ∈ 𝑆Y 

This means that	𝑒Y ⊥1 𝜒Y. Now consider the following problem 
𝒜𝜑 = −(𝑎L𝜑)L = 𝑒Y , 𝜑(0) = 𝜑(1) = 0 

Within	𝐿+-norm we can write 

‖𝑒Y‖/!
+ = (𝑒Y , 𝑒Y)/! = 𝑒Y" ⋅ 𝑒Y = 𝑒Y" ⋅ 𝒜𝜑 = 𝑒Y"𝒜(𝜑 − 𝐼Y𝜑) 

The last step uses the perpendicular property since	𝐼Y𝜑 ∈ 𝑆Y. Using Theorem* 

𝑒Y"𝒜(𝜑 − 𝐼Y𝜑) ≲ ‖𝑒Y‖1 ⋅ ‖𝜑 − 𝐼Y𝜑‖1 ≲ ‖𝑒Y‖1 ⋅ ℎ‖𝜑‖0! ≲ ‖𝑒Y‖1 ⋅ ℎ‖𝑒Y‖/! 

Therefore, using Theorem* again, we have 

‖𝑒Y‖/! ≲ ℎ ⋅ ‖𝑒Y‖1 ≲ ℎ+‖𝑓‖/! 

 
Ø FEM for 2D elliptic PDE 

𝒜𝑢 = −∇ ⋅ (𝑎(𝑥)∇𝑢) = 𝑓, 𝑢(𝑥) = 0		on	 ∂Ω 
We require that	Ω	is a convex, piecewise linear boundary. This implies	𝑢 ∈ 𝐻+(Ω), which 
guarantees that	𝑢	is continuous in 2D and we can construct	𝐼Y𝑢 
 
Weak solution 

D−∇ ⋅ (𝑎∇𝑢)𝜑	d𝑥
M

= −D 𝜑(𝑎∇𝑢)𝒏©	d𝑥
PM

+D𝑎∇𝑢 ⋅ ∇𝜑	d𝑥
M

= D𝑓𝜑	d𝑥
M

 

We search for solution	𝑢 ∈ 𝐻8*(Ω)	such that 

𝐴(𝑢, 𝜑) = D𝑎∇𝑢 ⋅ ∇𝜑	d𝑥
M

= D𝑓𝜑	d𝑥
M

= (𝑓, 𝜑), ∀𝜑 ∈ 𝐻8*(Ω) 

Again, we consider	𝑎(𝑥)	has upper and lower limits, and it is smooth in	Ω. The bilinear form 

is symmetric, bounded and coercive on	𝐻8*(Ω) 

|𝐴(𝑢, 𝜑)| ≤ 𝑎q D |∇𝑢||∇𝜑|	d𝑥
M

≤ 𝑎qFD|∇𝑢|+	d𝑥
M

FD|∇𝜑|+	d𝑥
M

≤ 𝑎q‖𝑢‖0&"(M)‖𝜑‖0&"(M) 

𝐴(𝑢, 𝑢) ≥ 𝑎D |∇𝑢|+	d𝑥
M

≳ 𝑎‖𝑢‖0&"(M) 

Therefore,	𝐴(𝑢, 𝜑)	is an SPD bilinear form on	𝐻8*(Ω)	and it is equivalent to	‖𝑢‖0&"(M). 



FEM solution 
We search for	𝑢Y ∈ 𝑆Y ⊊ 𝐻8*(Ω)	such that 

𝐴(𝑢Y , 𝜑Y) = (𝑓, 𝜑Y) 
The domain is decomposed into a triangular mesh that satisfies 

1. Small maximum radius	ℎ = max ℎc 
2. No triangles with angle close to 0˚ or 180˚ 
3. No bad decomposition like this 

 
Now we can define	𝑆Y	as 

𝑆Y = {𝑓 ∈ 𝐶(Ω�) ∣∣ piecewise	linear	w. r. t	triangulation, 𝑓(𝜕Ω) = 0 } 
The basis function is similar to the hat function 

𝑆Y ≡ spanm𝜑$p)EK'A)@A 									dim(𝑆Y) = #	of	interior	vertices 

 
Same with 1D case, now we need to solve 

x𝐴�𝜑# , 𝜑$�𝑈$

#)EK

$U*

= (𝜑# , 𝑓), ∀𝑖 = interior	point 

This becomes the following linear system 

𝐴#$ = 𝐴�𝜑# , 𝜑$�, 𝐹# = (𝜑# , 𝑓), 𝐴𝑈 = 𝐹, 𝐴 ∈ ℝ#)EK×#)EK 

The matrix	𝐴	is SPD. It is also very sparse, as we need	𝑖	and	𝑗	only 1 step away 
 
Example: 𝑎(𝑥) ≡ 1, −∇ ⋅ (∇𝑢) = 𝑓 

𝐴## = D |∇𝜑#|+	d𝑥
M

=
ℎ+

2 ⋅ 2 ¬
2
ℎ+ +

1
ℎ+ +

1
ℎ+­ = 4 

𝐴#$ =
ℎ+

2 ¬−
1
ℎ+ −

1
ℎ+­ = −1, 𝐴#T = 0 

The stencil is the same with 2D finite difference 
 
 
 
 
 
 
 
 



Error analysis 
Repeat the 1D analysis, we obtain the same picture 

𝐴(𝑒Y , 𝜑Y) = (𝑓, 𝜑Y), 𝑒Y ⊥1 𝜑Y , ∀𝜑Y ∈ 𝑆Y 

‖𝑢 − 𝑢Y‖1 = min
a(∈Z(

‖𝑢 − 𝜒Y‖1 , ‖𝑢 − 𝑢Y‖0&"(M) ≲ ‖𝑢 − 𝜒Y‖0&"(M) 

We similarly do piecewise linear interpolation	𝜒Y = 𝐼Y𝑢, but require other conditions. This is 
because in 2D	𝑢 ∈ 𝐻8*(Ω)	does not imply	𝑢	is continuous. We need	𝑢 ∈ 𝐻+(Ω), which requires 
the domain	Ω	to be convex (polygonal) and	𝑓 ∈ 𝐿+(Ω). Therefore, we can interpolate	𝜒Y = 𝐼Y𝑢 
 
By scaling argument, we similarly have 

‖𝑣 − 𝐼𝑣‖/! ≲ ‖∇+𝑣‖/! , ‖∇(𝑣 − 𝐼𝑣)‖ ≲ ‖∇+𝑣‖/! 

‖𝑢 − 𝐼Y𝑢‖/! ≲ ℎ+‖∇+𝑢‖/! , ‖∇(𝑢 − 𝐼Y𝑢)‖/! ≲ ℎ‖∇+𝑢‖/! 

‖𝑢 − 𝐼Y𝑢‖0&" ≲ ℎ‖𝑢‖0! 

Also with the requirement that the triangles are regular. Otherwise, the Jacobian matrix will 
be bad when mapping the element into an equilateral triangle. Therefore, we obtain 

‖𝑢 − 𝐼Y𝑢‖0&" ≤ ℎ‖𝑢‖0! ≤ ℎ‖𝑓‖/! , ‖𝑢 − 𝑢Y‖0&" ≲ ℎ‖𝑓‖/! 

 
Theorem. 𝐿+-error estimate 

‖𝑢 − 𝑢Y‖/! ≲ ℎ+‖𝑢‖0! ≲ ℎ+‖𝑓‖/! 



Week 6: Lecture 10. FDM for parabolic PDE 
Ø 1D heat equation 

𝑢! = 𝑢"" , 𝑢(𝑥, 0) = 𝑣(𝑥), 𝑥 ∈ ℝ, 𝑡 > 0 
 
Discretization 

𝑥# = 𝑗ℎ, 𝑡$ = 𝑛𝑘, 𝑈#$ ≈ 𝑢3𝑥# , 𝑡$4 

At grid point	3𝑥# , 𝑡$4	we have forward difference in time and central difference in space 

𝑢! ≈ 𝜕!𝑈#$ ≡
𝑈#$%& − 𝑈#$

𝑘 , 𝑢"" ≈ 𝜕"𝜕̅"𝑈#$ ≡
𝑈#%&$ − 2𝑈#$ + 𝑈#'&$

ℎ(  

The equation becomes 

𝜕!𝑈#$ = 𝜕"𝜕̅"𝑈#$,
𝑈#$%& − 𝑈#$

𝑘 =
𝑈#%&$ − 2𝑈#$ + 𝑈#'&$

ℎ(  

The usual way to write the system is 

𝑈#$%& = 𝜆𝑈#%&$ + (1 − 2𝜆)𝑈#$ + 𝜆𝑈#'&$ , 𝜆 =
𝑘
ℎ( 

This is an explicit method since it does not involve solving a linear system 
 
Time marching 
Define the column vector at time	𝑡$	as	𝑈$, we have the following convolution 

𝑈$%& =

⎣
⎢
⎢
⎢
⎡
1 − 2𝜆 𝜆 	 	 	
𝜆 1 − 2𝜆 𝜆 	 	
	 ⋱ ⋱ ⋱ 	
	 	 𝜆 1 − 2𝜆 𝜆
	 	 	 𝜆 1 − 2𝜆⎦

⎥
⎥
⎥
⎤
𝑈$ = 𝐸)*𝑈$ 

 
Error analysis 
To simplify the analysis, we assume that	𝑈(𝑥)	is defined everywhere, not only on the grid 
points. We now consider	𝑈	is continuous and the numerical scheme is 

𝑈$%&(𝑥) = 𝜆𝑈$(𝑥 − ℎ) + (1 − 2𝜆)𝑈$(𝑥) + 𝜆𝑈$(𝑥 + ℎ) 
The operator becomes discrete convolution 

(𝐸)*𝑈$)(𝑥) = [(𝜆𝛿'* + (1 − 2𝜆)𝛿+ + 𝜆𝛿*) ∗ 𝑈$](𝑥) 
 
For the approximate solution	𝑈 

𝜕!𝑈 = 𝜕"𝜕̅"𝑈, 𝑈$%& = 𝐸)*𝑈$ 
For the exact solution	𝑢 (exact solution applied to FD), we denote the local error	𝜏$ 
𝑢$%&(𝑥) − 𝑢$(𝑥)

𝑘 =
𝑢$(𝑥 + ℎ) − 2𝑢$(𝑥) + 𝑢$(𝑥 − ℎ)

ℎ( + 𝜏$(𝑥), 𝑢$%& = 𝐸)*𝑢$ + 𝑘𝜏$ 



Define the error	𝑍$ = 𝑈$ − 𝑢$ 
𝑍$ = 𝐸)*𝑍$'& + (−𝑘𝜏$'&) = 𝐸)*$ 𝑍+ − 𝑘[𝐸)*$'&𝜏+ + 𝐸)*$'(𝜏& +⋯+ 𝐸)*+ 𝜏$'&] 

Then we have 

‖𝑍$‖ ≤ 𝑘O‖𝐸)*$'&‖‖𝜏+‖ +⋯+ P𝐸)*+ P‖𝜏$'&‖Q ≤ 𝑛 ⋅ max
,
P𝐸)*

, P ⋅ max
,
‖𝑘𝜏,‖ 

To ensure	‖𝑍$‖	is small, we need the following conditions 
P𝐸)*

, P ≤ 𝐶WXXYXXZ
①

, ‖𝜏,‖		smallWXXYXXZ
②

, ∀𝑝 

 

In order to have small	P𝐸)*
, P, note that it is a convolution operator. We analyze it with the 

Fourier transform (i.e., a rotation) 

𝑓(𝑥) ∈ 𝐿((ℝ) 		→ 		ℱ{𝑓}(𝜉) = 𝑓f(𝜉) ∈ 𝐿((ℝ) 
The convention we use is 

𝑓f(𝜉) = g𝑒'/"0𝑓(𝑥)	d𝑥
ℝ

, 𝑔k(𝑥) = g 𝑒/"0𝑔(𝜉)	d l
𝜉
2𝜋nℝ

 

The Fourier transform has the following properties 

𝑓fo ≡ 𝑓, ∀𝑓 ∈ 𝐿(, ‖𝑓‖2!(4") = P𝑓fP
2!6

40
(78
, ℱ{𝑓 ∗ 𝑔}(𝜉) = 𝑓f(𝜉)𝑔p(𝜉) 

For the convolution property, we can show it as 

ℱ{𝑓 ∗ 𝑔}(𝜉) = g g𝑒'/"0[𝑓(𝑦)𝑔(𝑥 − 𝑦)	d𝑦]
ℝ

d𝑥
ℝ

	

= g g𝑒'/90𝑒'/("'9)0𝑓(𝑦)𝑔(𝑥 − 𝑦)	d𝑦d𝑥
ℝℝ

= 𝑓f(𝜉)𝑔p(𝜉) 

 
Now we analyze the FDM scheme in the Fourier domain 

𝑈$%& = 𝐸)*𝑈$ = [𝜆𝛿'* + (1 − 2𝜆)𝛿+ + 𝜆𝛿*] ∗ 𝑈$ 

𝑈r$%&(𝜉) = [1 − 2𝜆 + 2𝜆 cos(ℎ𝜉)] ⋅ 𝑈r$(𝜉) 
The condition	①	

P𝐸)*
, P ≤ 𝐶,				∀𝑝				 ↔ 				 ‖𝐸)*‖ ≤ 1 

is now equivalent to 

max
:
|1 − 2𝜆 + 2𝜆 cos(ℎ𝜉)| ≤ 1 

When	𝜉 ≈ 0,	the above condition is met. Focus on	𝜉 ≈ 𝜋/ℎ, we can obtain 

|1 − 4𝜆| ≤ 1, 0 ≤ 𝜆 ≤
1
2 

Conclusion. When	𝜆 > 1/2	the solution blows up 
 



Interpretation 
The high frequency mode (large	𝜉), which immediately disappears (“boring mode”), enforces 
a tiny time step (𝑘 ≤ ℎ(/2). This corresponds to stiffness. In Fourier domain, we have 

d
d𝑡 𝑢p

(𝜉, 𝑡) = −𝜉(𝑢p(𝜉, 𝑡) 

From ODE analysis, we can get the same interpretation. 
 
Local error 

For condition	②, the local error is 

𝑘𝜏$ = 𝑢$%& − 𝐸)*𝑢$ = (𝑒); − 𝐸)*)𝑢$	
Fourier transform gives  

𝑘𝜏̂$ = ℱ{𝑒); − 𝐸)*} ⋅ 𝑢p$(𝜉) = z𝑒')0! − [1 − 2𝜆 + 2𝜆 cos(ℎ𝜉)]{ ⋅ 𝑢p$(𝜉)	

ℱ{𝑒); − 𝐸)*} = |
𝑘(

2 −
𝑘ℎ(

12 } 𝜉
< +⋯ = 𝐶 ⋅ ℎ<𝜉< +⋯ 

Therefore, we have the following bound  
|𝑘𝜏̂$(𝜉)| ≾ ℎ<𝜉<|𝑢p$(𝜉)| ≤ ℎ<𝜉<|𝑣p(𝜉)|WXXXXXXXYXXXXXXXZ

=>?:	B	CD	CECFCGH	IJE4.

 

The	𝐿(-error estimate becomes 

‖𝑘𝜏$‖2!
( = g|𝑘𝜏̂$(𝜉)|(	d𝜉

ℝ
≾ ℎLg |𝜉<𝑣p(𝜉)|(	d𝜉

ℝ
≤ ℎL‖𝑣‖M"(ℝ)

(  

The last step applies Fourier isometry	3P𝑣(<)(𝑥)P ∼ ‖𝜉<𝑣p(𝜉)‖4, and thus we have 

‖𝑘𝜏$‖2! ≾ ℎ<‖𝑣‖M" 

Finally, we obtain 
‖𝑍$‖ ≤ 𝑛 ⋅ max

,
P𝐸)*

, P ⋅ max
,
‖𝑘𝜏,‖ ≾ 𝑛ℎ<‖𝑣‖M" ≾ 𝑡$𝑘‖𝑣‖M"WXXXXXXYXXXXXXZ

!#N$),			)∼*!
 

 
Summary: Explicit FDM for heat equation is 

1. Convergent when	𝜆 = 𝑘/ℎ( ≤ 0.5	(stiffness) 
2. 1st order in time step	𝑘 
3. Depends on	‖𝑣‖M" 	(similar to FDM for elliptic PDE) 

  



Week 6: Lecture 11. Implicit FDM for parabolic PDE 
Ø Implicit FDM scheme 

𝑈$%&(𝑥) − 𝑈$(𝑥)
𝑘 =

𝑈$%&(𝑥 + ℎ) − 2𝑈$%&(𝑥) + 𝑈$%&(𝑥 − ℎ)
ℎ(  

(1 + 2𝜆)𝑈$%&(𝑥) − 𝜆𝑈$%&(𝑥 − ℎ) − 𝜆𝑈$%&(𝑥 + ℎ) = 𝑈$(𝑥) 
The linear system becomes 

𝐴)*𝑈$%& = 𝑈$, 𝑈$%& = 𝐴)*'&𝑈$ = 𝐸)*𝑈$ 
In the Fourier domain, we have 

[1 + 2𝜆 − 2𝜆 cos(ℎ𝜉)] ⋅ 𝑈r$%&(𝜉) = 𝑈r$(𝜉), 𝐸�)*(𝜉) =
1

1 + 2𝜆 − 2𝜆 cos(ℎ𝜉) 

 
Error analysis 
Following the same procedure, we have 

𝑍$%& = 𝐸)*𝑍$ + (−𝑘𝜏$), ‖𝑍$‖ ≤ 𝑛 ⋅ max
,
P𝐸)*

, P ⋅ max
,
‖𝑘𝜏,‖ 

For the operator part, we always have 

�
1

1 + 2𝜆 − 2𝜆 cos(ℎ𝜉)� ≤ 1 

Therefore, we can arbitrarily choose	𝜆 = 𝑘/ℎ(	to satisfy this condition 
 
For the local error part 

𝑘𝜏̂$ = ℱ{𝑒); − 𝐸)*} ⋅ 𝑢p$(𝜉) = �𝑒')0! −
1

1 + 2𝜆 − 2𝜆 cos(ℎ𝜉)� ⋅ 𝑢p
$(𝜉) 

Based on Taylor expansion, we obtain 

ℱ{𝑒); − 𝐸)*} ≾ 𝑘(𝜉< + 𝑘ℎ(𝜉<, ‖𝑘𝜏̂$(𝜉)‖2! ≾ ‖(𝑘(𝜉< + 𝑘ℎ(𝜉<)𝑣p(𝜉)‖2! 

The Fourier isometry gives 

‖𝑘𝜏$‖2! ≾ (𝑘( + 𝑘ℎ()‖𝑣‖M" 

Therefore, the error bound is 
‖𝑍$‖ ≾ 𝑛(𝑘( + 𝑘ℎ()‖𝑣‖M" ≤ 𝑡$(𝑘 + ℎ()‖𝑣‖M" 

 
Summary: Implicit FDM for heat equation is  

1. No longer stiff 
2. 1st order in time 
3. Depends on	‖𝑣‖M" 

 
 



Ø Trapezoidal rule FDM scheme 

(1 + 𝜆)𝑈!"#(𝑥) −
𝜆
2𝑈

!"#(𝑥 − ℎ) −
𝜆
2𝑈

!"#(𝑥 + ℎ) = (1 − 𝜆)𝑈!(𝑥) +
𝜆
2𝑈

!(𝑥 − ℎ) +
𝜆
2𝑈

!(𝑥 + ℎ) 

The linear system becomes 
𝐴𝑈$%& = 𝐵𝑈$, 𝑈$%& = 𝐴'&𝐵𝑈$ = 𝐸)*𝑈$ 

In the Fourier domain, we have 

𝐸�)*(𝜉) =
1 − 𝜆 + 𝜆 cos(ℎ𝜉)
1 + 𝜆 − 𝜆 cos(ℎ𝜉) 

 
Error analysis 
For the operator part, we always have 

�
1 − 𝜆[1 − cos(ℎ𝜉)]
1 + 𝜆[1 − cos(ℎ𝜉)]� ≤ 1 

Therefore, we can still arbitrarily choose	𝜆 = 𝑘/ℎ(	to satisfy this condition 
 
For the local error part 

𝑘𝜏̂$ = ℱ{𝑒); − 𝐸)*} ⋅ 𝑢p$(𝜉) = �𝑒')0! −
1 − 𝜆 + 𝜆 cos(ℎ𝜉)
1 + 𝜆 − 𝜆 cos(ℎ𝜉)� ⋅ 𝑢p

$(𝜉) 

Based on Taylor expansion, we have 

ℱ{𝑒); − 𝐸)*} ≾ (𝑘Q𝜉R + 𝑘ℎ(𝜉<) 
Following the same procedure gives 

‖𝑘𝜏$‖2! ≾ 𝑘Q‖𝑣‖M$ + 𝑘ℎ(‖𝑣‖M" 

Therefore, the error bound is 
‖𝑍$‖ ≾ 𝑡$(𝑘(‖𝑣‖M$ + ℎ(‖𝑣‖M") 

 
Summary: Trapezoidal rule FDM for heat equation is  

1. No longer stiff 
2. 2nd order in time 
3. Depends on	‖𝑣‖M$ 



Week 7: Lecture 12. FDM for hyperbolic PDE 
Ø 1D transport (advection) equation 

𝜕𝑢
𝜕𝑡 = 𝑎

𝜕𝑢
𝜕𝑥 

When	𝑎 > 0,	the function is transported in	−𝑥	direction. This implies that our scheme should 
be upwind to use the information from the previous time step 
 
Discretization 

𝑥! = 𝑗ℎ, 𝑡" = 𝑛𝑘, 𝑈!" ≈ 𝑢2𝑥! , 𝑡"3 

At grid point	2𝑥! , 𝑡"3	we use forward difference in time and space 

𝑈!"#$ − 𝑈!"

𝑘 = 𝑎
𝑈!#$" − 𝑈!"

ℎ  

𝑈!"#$ = 𝑎𝜆𝑈!#$" + (1 − 𝑎𝜆)𝑈!",				𝜆 =
𝑘
ℎ 

The backward difference in space is bad, as it is not upwind. 
 
Analysis 
Again, we assume	𝑈"(𝑥)	as a continuous function in space and obtain the lifted equation 

𝑈"#$(𝑥) = 𝑎𝜆𝑈"(𝑥 + ℎ) + (1 − 𝑎𝜆)𝑈"(𝑥) 
In the operator form 

𝑈"#$ = 𝐸%&𝑈", 𝐸%& = (1 − 𝑎𝜆)𝛿'(𝑥) + 𝑎𝜆𝛿(&(𝑥)	 
Now apply FD scheme to the exact solution 

𝑢"#$ = 𝐸%&𝑢" + 𝑘𝜏", 𝑍"#$ = 𝐸%&𝑍" + (−𝑘𝜏") 
Telescoping gives 

𝑍" = 𝐸%&"($(−𝑘𝜏') + ⋯+ 𝐸%&' (−𝑘𝜏"($) 

‖𝑍"‖ ≤ 𝑛 ⋅ max
)
D𝐸%&

) D ⋅ max
)
‖𝑘𝜏)‖ 

 
In the Fourier domain 

𝑈E"#$(𝜉) = 𝐸G%&(𝜉)𝑈E"(𝜉), 𝐸G%&(𝜉) = (1 − 𝑎𝜆) + 𝑎𝜆𝑒*+& 
The operator norm should be bounded by 1 

D𝐸G%&D = max
+
I(1 − 𝑎𝜆) + 𝑎𝜆𝑒*+&I ≤ 1 

We only need to focus on the situations where	𝑒*+& = ±1, which leads to 

𝑎𝜆 ≤ 1, 𝑘 ≤
ℎ
𝑎 



Remark. When	𝑎	is large, the speed is fast, and the characteristics are ‘flat’. At this case, the 
time step	𝑘	should be small 
 
The local error term is analyzed as 

𝑘𝜏" ≡ 𝑢"#$ − 𝐸%&𝑢" = 2𝑒%⋅-.! − 𝐸%&3𝑢", ‖𝑘𝜏"‖ ≤ D2𝑒%-.! − 𝐸%&3𝑢"D 

Using Fourier isometry, we have 

‖𝑘𝜏̂"‖ ≤ D𝑒*%-+ − (1 − 𝑎𝜆) − 𝑎𝜆𝑒*&+D ⋅ ‖𝑢M"‖ 

By Taylor expansion 

𝑒*%-+ − (1 − 𝑎𝜆) − 𝑎𝜆𝑒*&+ = 𝑖𝑘𝑎𝜉 −
1
2𝑘

/𝑎/𝜉/ − 𝑎𝜆 P𝑖ℎ𝜉 −
1
2ℎ

/𝜉/Q + 𝑂(ℎ0, 𝑘0)	

= 𝑖𝑘𝑎𝜉 − 𝑎𝜆𝑖ℎ𝜉 + 𝐶(ℎ/ + 𝑘/)𝜉/ + 𝑂(ℎ0, 𝑘0)	
= 𝐶ℎ/𝜉/ + 𝑂(ℎ0) 

Therefore, we have the error bound 
|𝑘𝜏̂"| ≤ 𝐶ℎ/𝜉/|𝑢M"(𝜉)| ≤ 𝐶ℎ/𝜉/|𝑣M(𝜉)| 

‖𝑘𝜏"‖1"
/ ≤ V(ℎ/𝜉/)/|𝑣M(𝜉)|/	d𝜉

+
= ℎ2‖𝑣‖3"

/  

‖𝑍"‖ ≤ 𝑛 ⋅ max
)
D𝐸%&

) D ⋅ max
)
‖𝑘𝜏)‖ ≤ 𝑛 ⋅ ℎ/‖𝑣‖3" ≤ 𝑇ℎ‖𝑣‖3" 

 
Theorem. If	𝜆 = 𝑘/ℎ < 1/𝑎, then we have 

‖𝐸%&‖ ≲ 1, ‖𝑘𝜏"‖ ≤ 𝐶ℎ/‖𝑣‖3" , ‖𝑍"‖ ≤ 𝑡"ℎ‖𝑣‖3" 
 
Meta-theorem: Lax-equivalence theorem 

1. Stability: Time step control 
2. Consistency: Plugging in PDE solution in FD scheme gives small error 

With these two conditions, then the FD scheme is convergent 
 
Ø Influence of stencil on transport equation 
For the backward difference scheme, we have 

𝑈!"#$ − 𝑈!" = 𝑎𝜆2𝑈!" − 𝑈!($" 3, 𝑈!"#$ = (1 + 𝑎𝜆)𝑈!" − 𝑎𝜆𝑈!($"  

This scheme is not stable for	𝑎 > 0, as the operator is not bounded 

I𝐸G%&(𝜉)I = I1 + 𝑎𝜆 − 𝑎𝜆𝑒(*+&I ≥ 1, when	𝑎 > 0 

However, when	𝑎 < 0	we need backward difference in space, which is upwinding. 



For the central difference scheme 

𝑈!"#$ − 𝑈!" =
𝑎𝜆
2 2𝑈!#$

" − 𝑈!($" 3, 𝑈!"#$ = 𝑈!" +
𝑎𝜆
2 2𝑈!#$

" − 𝑈!($" 3 

This scheme is not stable, as the operator is not bounded 

I𝐸G%&(𝜉)I = |1 + 𝑖𝑎𝜆 sin(ℎ𝜉)| ≥ 1 

Comments. We want to improve the following aspects: 
1. We don’t always know	sign(𝑎) 
2. The error	‖𝑍"‖	is first order in	ℎ	and depends on	‖𝑣‖3" 

 
Ø Friedrichs method 

Replace the value at	𝑈!"	by the average of the neighbors 

𝑈!"#$ −
1
2 2𝑈!($

" + 𝑈!#$" 3 =
𝑎𝜆
2 2𝑈!#$" − 𝑈!($" 3, 𝐸%& =

1 + 𝑎𝜆
2 𝛿(&(𝑥) +

1 − 𝑎𝜆
2 𝛿&(𝑥) 

For stability condition, we have 

I𝐸G%&(𝜉)I = |cos(ℎ𝜉) + 𝑖𝑎𝜆 sin(ℎ𝜉)| ≤ 1, |𝑎𝜆| ≤ 1 

Now the sign of wave speed does not matter. However, this method is still first order in	ℎ 
 
Ø CFL condition (Courant-Friedrichs-Lewy) 
The numerical stencil support should include the characteristics (or domain of dependence) 

𝜆 =
𝑘
ℎ <

1
𝑎 , 𝑘 <

ℎ
𝑎 

However, this is not sufficient for stability, only a necessary condition. 
 
Similarly for heat equation, the explicit scheme requires 

𝜆 =
𝑘
ℎ/ ≤

1
2 

This can be understood as the CFL condition in the limiting sense. For the implicit scheme, 
its domain of dependence includes every grid points on the previous time step, since it solves 
the linear system 
 
Ø Lax-Wendroff method 

𝑢(𝑥, 𝑡 + 𝑘) = 𝑢(𝑥, 𝑡) + 𝑘𝑢4(𝑥, 𝑡) +
𝑘/

2 𝑢44
(𝑥, 𝑡) + 𝑂(𝑘0)	

= 𝑢(𝑥, 𝑡) + 𝑘𝑎𝑢5(𝑥, 𝑡) +
𝑘/

2 𝑎
/𝑢55(𝑥, 𝑡) + 𝑂(𝑘0) 

 



Now we consider the following scheme 

𝑈!"#(𝑥) = 𝑈!(𝑥) + 𝑎𝑘 ⋅
𝑈!(𝑥 + ℎ) − 𝑈!(𝑥 − ℎ)

2ℎ
+
𝑘$𝑎$

2
⋅
𝑈!(𝑥 + ℎ) − 2𝑈!(𝑥) + 𝑈!(𝑥 − ℎ)

ℎ$
 

We apply the central difference for spatial derivatives. We thus obtain 

𝑈"#$(𝑥) = (1 − 𝑎/𝜆/)𝑈"(𝑥) +
𝑎𝜆 + 𝑎/𝜆/

2 𝑈"(𝑥 + ℎ) +
−𝑎𝜆 + 𝑎/𝜆/

2 𝑈"(𝑥 − ℎ) 

The operator norm becomes 

I𝐸G%&(𝜉)I = |1 − 𝑎/𝜆/ + 𝑎/𝜆/ cos(ℎ𝜉) + 𝑖𝑎𝜆 sin(ℎ𝜉)| 

The stability condition again indicates 

|𝑎𝜆| ≤ 1,
𝑘
ℎ ≤

1
|𝑎| 

It can be shown that Lax-Wendroff method is second order in	ℎ 
  



Week 7: Lecture 13.1. FDM for wave equations 
Ø 1D multi-component system 

𝜕𝒖
𝜕𝑡 = 𝐴

𝜕𝒖
𝜕𝑥 , 𝐴	is	symmetric 

When	𝐴	is symmetric, this is a system of several advection equations. (If not, then this is the 
Cauchy-Riemann equation.) 
 
For the Friedrichs and Lax-Wendroff schemes, we have 

𝑼"#$(𝑥) =
1
2
(𝐼 + 𝐴𝜆)𝑼"(𝑥 + ℎ) +

1
2
(𝐼 − 𝐴𝜆)𝑼"(𝑥 − ℎ) 

𝑼"#$(𝑥) = (𝐼 − 𝐴/𝜆/)𝑼"(𝑥) +
1
2
(𝐴𝜆 + 𝐴/𝜆/)𝑼"(𝑥 + ℎ) +

1
2
(−𝐴𝜆 + 𝐴/𝜆/)𝑼"(𝑥 − ℎ) 

 
Stability condition 

In the Fourier domain, now	𝐸G%&(𝜉)	is a matrix, and we need 
𝑼E"#$(𝜉) = 𝐸G%&(𝜉)mno

6×6

𝑼E"(𝜉), D𝐸G%&(𝜉)D8"→8" ≤ 1 

For Friedrichs method we have 

𝐸G%&(𝜉) = 𝐼 cos(ℎ𝜉) + 𝑖𝜆𝐴 sin(ℎ𝜉) 
Based on diagonalization, we have 

𝐼 cos(ℎ𝜉) + 𝑖𝜆𝐴 sin(ℎ𝜉) = 𝑄[𝐼 cos(ℎ𝜉) + 𝑖𝜆𝐴: sin(ℎ𝜉)]𝑄; 
So we can only require 

‖cos(ℎ𝜉) + 𝑖𝜆𝐴: sin(ℎ𝜉)‖8"→8" ≤ 1, max
+,!

Icos(ℎ𝜉) + 𝑖𝜆𝑎! sin(ℎ𝜉)I ≤ 1 

The stability condition is 

𝜆 =
𝑘
ℎ ≤

1
max
!
I𝑎!I

=
1

‖𝐴‖8"→8"
 

For Lax-Wendroff method, we have the same result. 
 
Ø 1D wave equation 

𝑤44 = 𝑤55 , given		𝑤(0, 𝑥)		and		𝑤4(0, 𝑥) 
We write it into a system and then apply either Friedrichs or Lax-Wendroff method. 

𝒖 = u
𝑢$
𝑢/v = u

𝑎𝑤5
𝑤4 v 

Therefore, each component satisfies 
𝜕𝑢$
𝜕𝑡 = 𝑎𝑤54 = 𝑎

𝜕𝑢/
𝜕𝑥 ,

𝜕𝑢/
𝜕𝑡 = 𝑤44 = 𝑎/𝑤55 = 𝑎

𝜕𝑢$
𝜕𝑥  

 



The system can be written as 

𝜕
𝜕𝑡 u

𝑢$
𝑢/v = u0 𝑎

𝑎 0v ⋅
𝜕
𝜕𝑥 u

𝑢$
𝑢/v ,

𝜕𝒖
𝜕𝑡 = 𝐴

𝜕𝒖
𝜕𝑥 , 𝒖(0, 𝑥) = w𝑎

𝜕𝑤(0, 𝑥)
𝜕𝑥

𝑤4(0, 𝑥)
x 

 
Ø Multi-dimension, multi-component system 
Now consider	𝒖(𝑡, 𝑥$, 𝑥/, ⋯ , 𝑥=) 

𝜕𝒖
𝜕𝑡 =y𝐴!

𝜕𝒖
𝜕𝑥!

=

!>$

, 𝐴! 	is	symmetric 

Friedrichs method gives 

𝑼"#$(𝒙) −
1
2𝑑 |

𝑼"(𝑥 − 𝑒$ℎ) + 𝑼"(𝑥 + 𝑒$ℎ)
⋮

𝑼"(𝑥 − 𝑒=ℎ) + 𝑼"(𝑥 + 𝑒=ℎ)
~ =y𝐴!

𝑼"2𝑥 + 𝑒!ℎ3 − 𝑼"2𝑥 − 𝑒!ℎ3
2ℎ

=

!>$

 

𝑼"#$(𝑥) =
1
2y�P

𝐼
𝑑 + 𝜆𝐴!Q𝑼

"2𝑥 + 𝑒!ℎ3 + P
𝐼
𝑑 − 𝜆𝐴!Q𝑼

"2𝑥 − 𝑒!ℎ3�
=

!>$

 

The Fourier transform in	𝑑-dimension is 

𝐸G%&(𝝃) =y�
𝐼
𝑑 cos2ℎ𝜉!3 + 𝑖𝜆𝐴! sin2ℎ𝜉!3�

=

!>$

 

 
Stability condition 
To ensure the operator is bounded, we can choose	𝜆	such that 

max
+#

�
𝐼
𝑑 cos2ℎ𝜉!3 + 𝑖𝜆𝐴! sin2ℎ𝜉!3�8"→8"

≤
1
𝑑						∀𝑗 = 1,2,⋯𝑑 

						𝜆 ≤
1

𝑑D𝐴!D
						∀𝑗 = 1,2,⋯𝑑		 ⇒ 		𝜆 ≤

1
𝑑 ⋅ maxD𝐴!D

 

This is due to that	𝐴! 	does not necessarily commute with each other. Therefore, we make sure 

each one of them is bounded. 
 
Ø 2D wave equation 

𝑤44 = 𝑤55 +𝑤?? 

Similarly, we write the wave equation into a system 

𝒖 = (𝑢$, 𝑢/, 𝑢0); , 𝑢$ = 𝑤5 , 𝑢/ = 𝑤? , 𝑢0 = 𝑤4 

Therefore, each component satisfies 
𝜕𝑢$
𝜕𝑡 = 𝑤54 =

𝜕𝑢0
𝜕𝑥 ,

𝜕𝑢/
𝜕𝑡 = 𝑤?4 =

𝜕𝑢0
𝜕𝑦 ,

𝜕𝑢0
𝜕𝑡 = 𝑤44 = 𝑤55 +𝑤?? =

𝜕𝑢$
𝜕𝑥 +

𝜕𝑢/
𝜕𝑦  



The system can be written as 

𝜕
𝜕𝑡 |

𝑢$
𝑢/
𝑢0
~ = |

0 0 1
0 0 0
1 0 0

~ ⋅
𝜕
𝜕𝑥 |

𝑢$
𝑢/
𝑢0
~ + |

0 0 0
0 0 1
0 1 0

~ ⋅
𝜕
𝜕𝑦 |

𝑢$
𝑢/
𝑢0
~ ,

𝜕𝒖
𝜕𝑡 = 𝐴$

𝜕𝒖
𝜕𝑥 + 𝐴/

𝜕𝒖
𝜕𝑦 



Week 7: Lecture 13.2. Conservation law 
Ø Nonlinear wave equation (Conservation Law) 

𝑢! + [𝑓(𝑢)]" = 0 
The function	𝑓(𝑢)	is convex or concave. Integrating over space gives 

+ (𝑢! + [𝑓(𝑢)]")	d𝑥
#

$
= 0,

d
d𝑡 + 𝑢d𝑥

#

$
+ 𝑓[𝑢(𝑏, 𝑡)] − 𝑓[𝑢(𝑎, 𝑡)] = 0 

The physics interpretation is the conservation law: The rate of total mass change is equal to 
the net flux. In this simple model, the flux is a function of local density. 
 
Examples 
1. Transport equation:	𝑓(𝑢) = 𝑎𝑢 
2. Burgers’ equation:	𝑓(𝑢) = 𝑢%/2 

𝑢! +
𝜕
𝜕𝑥 6

𝑢%

2 7 = 0, 𝑢! + 𝑢𝑢" = 0 

3. Consider	𝑢 ∈ [0,1]	is the car density. One simple model for speed is	𝑣(𝑢) = 1 − 𝑢	and 
the flux is	𝑓(𝑢) = 𝑢 ⋅ 𝑣(𝑢) = 𝑢(1 − 𝑢). The traffic flow equation is 

𝑢! + [𝑢(1 − 𝑢)]" = 0 
 
Characteristics 
The characteristic	𝑥(𝑡)	satisfies 

d𝑥(𝑡)
d𝑡 = 𝑓&[𝑢(𝑥(𝑡), 𝑡)] 

Along	𝑥(𝑡)	we can show that	𝑢	is conserved: 
d
d𝑡
[𝑢(𝑥(𝑡), 𝑡)] = 𝑢! + 𝑢"

d𝑥
d𝑡 = 𝑢! + 𝑓&(𝑢) ⋅ 𝑢" = 𝑢! + [𝑓(𝑢)]" = 0 

 
For Burgers’ equation, the characteristics are straight lines: 

d𝑥(𝑡)
d𝑡 = 𝑓&[𝑢(𝑥(𝑡), 𝑡)] = 𝑢(𝑥(𝑡), 𝑡) ≡ const.CDDDDDEDDDDDF

'()*+,-+.	01()2	"(!)
 

The slope will depend on initial conditions. 
 
Two issues: 
1. If two solutions (characteristics) collide, the above analysis fails 
2. There is vacuum between two lines 
 



Shock formation 
When two characteristics collide, a shock is formed. Assume that 
the initial condition is step-like with	𝑢5	and	𝑢6	(Riemann Problem) 
 
Integral form of the conservation law is 

0 =
d
d𝑡+ 𝑢(𝑥, 𝑡)	d𝑥

#

$
+ 𝑓[𝑢(𝑏, 𝑡)] − 𝑓[𝑢(𝑎, 𝑡)] 

The integral can be decomposed into 

0 =
d
d𝑡 G+ 𝑢(𝑥, 𝑡)	d𝑥

7(!)

$
++ 𝑢(𝑥, 𝑡)	d𝑥

#

7(!)
H + 𝑓[𝑢(𝑏, 𝑡)] − 𝑓[𝑢(𝑎, 𝑡)] 

From the Leibniz rule we have 
d
d𝑡
# 𝑢(𝑥, 𝑡)	d𝑥
!(#)

%
= # 𝑢#	d𝑥

!(#)

%
+ 𝑢&(𝑠(𝑡), 𝑡) ⋅ 𝑠'(𝑡)	

	
d
d𝑡
# 𝑢(𝑥, 𝑡)	d𝑥
(

!(#)
= # 𝑢#	d𝑥

(

!(#)
− 𝑢)(𝑠(𝑡), 𝑡) ⋅ 𝑠'(𝑡) 

Adding and subtracting terms	𝑓[𝑢5(𝑠(𝑡), 𝑡)]	and	𝑓[𝑢6(𝑠(𝑡), 𝑡)], we can use the conservation 
law on both sides 

0 = 0# 𝑢#	d𝑥
!(#)

%
+ 𝑓[𝑢&(𝑠(𝑡), 𝑡)] − 𝑓4𝑢(𝑎, 𝑡)67 + 0# 𝑢#	d𝑥

(

!(#)
+ 𝑓4𝑢(𝑏, 𝑡)6 − 𝑓[𝑢)(𝑠(𝑡), 𝑡)]7	

+𝑓[𝑢)(𝑠(𝑡), 𝑡)] − 𝑓[𝑢&(𝑠(𝑡), 𝑡)] − 𝑢)(𝑠(𝑡), 𝑡) ⋅ 𝑠'(𝑡) + 𝑢&(𝑠(𝑡), 𝑡) ⋅ 𝑠'(𝑡) 

This leads to the Rankine-Hugoniot jump condition: 

𝑠&(𝑡) =
𝑓(𝑢6) − 𝑓(𝑢5)

𝑢6 − 𝑢5
 

For Burger’s equation, we have 

𝑓(𝑢) =
𝑢%

2 , 𝑠&(𝑡) =
𝑢6 + 𝑢5

2  

 
Rarefaction wave 
For traffic flow equation, the characteristics are also straight lines with slope 

𝑓(𝑢) = 𝑢(1 − 𝑢),
d𝑥(𝑡)
d𝑡 = 𝑓&[𝑢(𝑥(𝑡), 𝑡)] = 1 − 2𝑢 

For the same initial condition	𝑢5 = 1, 𝑢6 = 0, now we have	𝑓&(𝑢5) < 𝑓&(𝑢6)	and there is a 
vacuum. We have two ways to construct a weak solution. 
 
 



 
The shock wave solution (left) becomes non-physical and entropy-violating. Another solution 
is the rarefaction wave (right), which is physical and fills the vacuum.  



Week 8: Lecture 14. Finite volume method for conservation law 
Ø Review on conservation law 
Physics derivation of Rankine-Hugoniot jump condition 
The weak form of conservation law for any	[𝑎, 𝑏]	is 

d
d𝑡 + 𝑢(𝑥, 𝑡)	d𝑥

#

$
= 𝑓[𝑢(𝑎, 𝑡)] − 𝑓[𝑢(𝑏, 𝑡)] 

Locally at a shock, we have 
𝑢5Δ𝑥 − 𝑢6Δ𝑥

Δ𝑡 = 𝑓(𝑢5) − 𝑓(𝑢6), 𝑠 =
Δ𝑥
Δ𝑡 =

𝑓(𝑢5) − 𝑓(𝑢6)
𝑢5 − 𝑢6

≡
⟦𝑓(𝑢)⟧
⟦𝑢⟧  

 
Shock & Rarefaction wave 
Consider Burger’s equation with initial condition	𝑢5 = −1	and	𝑢6 = 1. One weak solution is 
the artificial shock 

𝑢(𝑥, 𝑡) = N−1, 					𝑥 < 0
1, 		 𝑥 > 0 

Remark. At a shock,	𝑢	is a weak solution if and only if	𝑢	satisfies the RH condition. 
 
Another weak solution is the rarefaction wave 

𝑢(𝑥, 𝑡) = P
−1, 			 𝑥 ≤ −𝑡
𝑥/𝑡, 	−𝑡 < 𝑥 < 𝑡
1, 		𝑥 ≥ 𝑡

 

This is a continuous solution, and we can directly check it by 

S
𝑥
𝑡T!

+ 6
𝑥%

2𝑡%7
"
= −

𝑥
𝑡% +

2𝑥
2𝑡% = 0 

The derivative is not defined at the kinks, and thus we call it a weak solution 
 
Remark. For the artificial shock, we can switch to the rarefaction wave at any later time	𝑡. 
However, rarefaction wave cannot go back to the artificial shock. Therefore, macroscopically 
we only observe the rarefaction wave, which is stable in terms of entropy. 
 
Principle. The characteristic can only enter the shock and never leave from the shock. 
 
Artificial viscosity 

𝑢!8 + [𝑓(𝑢8)]" = 𝜀𝑢""8  
The viscosity solution	𝑢8 	is smooth and never has a shock. In the limit	𝜀 → 0, viscosity 
solution	𝑢8 	converges to the rarefaction wave in	𝐿9	norm. 



Theorem. Consider the two equations 
𝑢! + [𝑓(𝑢)]" = 0, 𝑤! + [𝑓(𝑤)]" = 0 

We have the	𝑳𝟏-contractivity 
‖𝑢(𝑡,⋅) − 𝑤(𝑡,⋅)‖;!(ℝ) ≤ ‖𝑢(0,⋅) − 𝑤(0,⋅)‖;!(ℝ) 

This indicates that all the details will be smeared out eventually at long enough	𝑡. 
 
 
 
 
 
Ø Finite volume method (FVM) for conservation law 
Start from the weak form of conservation law 

d
d𝑡 + 𝑢(𝑥, 𝑡)	d𝑥

#

$
= 𝑓[𝑢(𝑎, 𝑡)] − 𝑓[𝑢(𝑏, 𝑡)] 

The domain is decomposed into cells, and the solution is approximated with piecewise 
constant function (cell averages) 

d
d𝑡 [Δ𝑥 ⋅ 𝑈=] = 𝑓 S𝑢[𝑥=59/%, 𝑡]T − 𝑓 S𝑢[𝑥=69/%, 𝑡]T 

1
Δ𝑡 ^Δ𝑥 ⋅ 𝑈=

?69 − Δ𝑥 ⋅ 𝑈=?_ = 𝑓 S𝑢=59/%(𝑡)T − 𝑓 S𝑢=69/%(𝑡)T	 

Therefore, we obtain 

𝑈=?69 − 𝑈=? =
Δ𝑡
Δ𝑥 `𝑓 S𝑢=59/%

(𝑡)T − 𝑓 S𝑢=69/%(𝑡)Ta 

However, we still need to approximate the fluxes at grid points. 

𝑓 S𝑢=59/%(𝑡)T ≈ 𝑓c[𝑈=59? , 𝑈=?], 𝑓 S𝑢=69/%(𝑡)T ≈ 𝑓c[𝑈=?, 𝑈=69? ] 

Our numerical scheme now becomes 

𝑈=?69 − 𝑈=? =
Δ𝑡
Δ𝑥 ^𝑓

c[𝑈=59? , 𝑈=?] − 𝑓c[𝑈=?, 𝑈=69? ]_ 

This is the conservative schemes or the finite volume method. Different schemes construct 

the numerical flux	𝒇e	in different ways to evaluate the flux at the interface. 
 
Ø Godunov scheme 
1. When	Δ𝑡	is sufficiently small, we can neglect the information from nearby cells 

Because the wave speed is bounded by initial	max|𝑓&(𝑢@)|, we have the CFL condition 

Δ𝑡 ≤
Δ𝑥

max
A(!B@)

|𝑓&(𝑢)| 



2. Now the local problem becomes the Riemann’s problem 
Consider	𝑓(𝑢)	is convex, i.e. the derivative	𝑓&(𝑢)	is monotone. We have in total two 
categories (rarefaction wave & shock) and five cases. 

 

 
Therefore, solution of the Riemann’s problem gives 

𝑓c = P
min

A∈[A",A#]
𝑓(𝑢) , 𝑢; < 𝑢G

max
A∈[A#,A"]

𝑓(𝑢) , 𝑢; > 𝑢G
 

3. Godunov scheme 

𝑈=?69 − 𝑈=? =
Δ𝑡
Δ𝑥 [𝑓

c=59/%? − 𝑓c=69/%? ] 

 
Ø Lax-Friedrichs scheme 

𝑓c=69/% =
1
2 ^𝑓[𝑈=] + 𝑓[𝑈=69] − 𝛼[𝑈=69 − 𝑈=]_, 𝛼 = max

A
|𝑓&(𝑢)| 

On the other hand, the localized version chooses	𝛼	by 

𝛼 = max
A∈HA$,A$%!I

|𝑓&(𝑢)| 

 
  

Rarefaction wave: 𝑢; < 𝑢G 	⟹ 	𝑓&(𝑢;) < 𝑓&(𝑢G) 

𝑓&(𝑢;) < 𝑓&(𝑢G) < 0 0 < 𝑓&(𝑢;) < 𝑓&(𝑢G) 𝑓&(𝑢;) < 0 < 𝑓&(𝑢G) 

𝑓c = 𝑓(𝑢G) 𝑓c = 𝑓(𝑢;) 𝑓c = 𝑓(𝑢J) 
   

Summary: 𝑓c ≡ min
A∈[A",A#]

𝑓(𝑢) 

Shock: 𝑢; > 𝑢G 	⟹ 	𝑓&(𝑢;) > 𝑓&(𝑢G) 

𝑓(𝑢;) < 𝑓(𝑢G) 𝑓(𝑢;) > 𝑓(𝑢G) 

𝑠 = ⟦𝑓(𝑢)⟧/⟦𝑢⟧ < 0 𝑠 = ⟦𝑓(𝑢)⟧/⟦𝑢⟧ > 0 

𝑓c = 𝑓(𝑢G) 𝑓c = 𝑓(𝑢;) 

Summary: 𝑓c ≡ max
A∈[A#,A"]

𝑓(𝑢) 



Week 8: Lecture 15.1. Analysis of finite volume method 
Ø Analysis of monotone schemes 

𝑈=69? = 𝑈=? +
Δ𝑡
Δ𝑥 ^𝑓

c[𝑈=59? , 𝑈=?] − 𝑓c[𝑈=?, 𝑈=69? ]_ 

We can consider this scheme as a nonlinear operator (stencil) 

𝑈=?69 ≡ 𝐺[𝑈=59? , 𝑈=?, 𝑈=69? ] 

The entropy solution indicates that 

𝑈=59? ↑		⟹		𝑈=?69 ↑, 𝑈=69? ↑		⟹		𝑈=?69 ↑, 𝑈=? ↑		⟹		𝑈=?69 ↑ 

Definition. The scheme is called monotone if	𝐺(↑, ↑, ↑). This is also the stability condition. 
 
Monotonicity requires the numerical flux to satisfy all the conditions below 

𝜕𝐺
𝜕𝑈=59?

=
Δ𝑡
Δ𝑥 𝑓

c9[𝑈=59? , 𝑈=?] ≥ 0,
𝜕𝐺
𝜕𝑈=69?

= −
Δ𝑡
Δ𝑥 𝑓

c%[𝑈=?, 𝑈=69? ] ≥ 0 

𝜕𝐺
𝜕𝑈=?

= 1 +
Δ𝑡
Δ𝑥 ^𝑓

c%[𝑈=59? , 𝑈=?] − 𝑓c9[𝑈=?, 𝑈=69? ]_ ≥ 0 

Therefore, for any	𝑢, 𝑣, 𝑝 ∈ ℝ, we require 

𝑓c9(𝑢, 𝑣) ≥ 0, 𝑓c%(𝑢, 𝑣) ≤ 0, 1 +
Δ𝑡
Δ𝑥 ^𝑓

c%(𝑝, 𝑢) − 𝑓c9(𝑢, 𝑞)_ ≥ 0 

 
Lax-Friedrichs scheme 

𝑓c(𝑝, 𝑞) =
1
2
[𝑓(𝑝) + 𝑓(𝑞) − 𝛼(𝑞 − 𝑝)], 𝛼 = max

A	K)KL.
|𝑓&(𝑢)| 

The first two conditions are automatically satisfied based on the chosen	𝛼 

𝑓c9 ≡ 𝜕9𝑓c =
1
2
[𝑓&(𝑝) + 𝛼] ≥ 0, 𝑓c% ≡ 𝜕%𝑓c =

1
2
[𝑓&(𝑞) − 𝛼] ≤ 0 

The final condition gives the constraint on time step 

1 +
Δ𝑡
Δ𝑥 ^𝑓

c%(𝑝, 𝑢) − 𝑓c9(𝑢, 𝑞)_ = 1 − 𝛼
Δ𝑡
Δ𝑥 ≥ 0, Δ𝑡 ≤

Δ𝑥
𝛼 =

Δ𝑥
max
A	K)KL.

|𝑓&(𝑢)| 

Now we prove that Lax-Friedrichs scheme is monotone 
 
Convergence of monotone scheme 
Now suppose the numerical solution	and we define its discrete	𝐿9-norm as 

‖𝑈‖;! = Δ𝑥r|𝑈N|
N

 



Theorem. If	𝐺	is monotone, then consider two numerical schemes 

𝑈=?69 ≡ 𝐺[𝑈=59? , 𝑈=?, 𝑈=69? ], 𝑉=?69 ≡ 𝐺[𝑉=59? , 𝑉=?, 𝑉=69? ] 

We similarly have the discrete	𝐿9-contractivity 

‖𝑈? − 𝑉?‖;! ≤ ‖𝑈@ − 𝑉@‖;! 

 

Theorem. [Crandall-Majda] If	𝐺	is monotone (stable), then	t𝑈=?u	converges to the entropic 

solution as	Δ𝑡, Δ𝑥 → 0. The entropic solution is the limit of viscosity solution with	𝜀 → 0. 
 
Theorem. Any monotone scheme has only	𝑂(ℎ)	accuracy. 
Proof scheme. The local error is	𝑂(ℎ%)	and thus the total error is	𝑂(ℎ%) ⋅ 𝑇/ℎ → 𝑂(ℎ) 
 



Week 8: Lecture 15.2. Monte Carlo method 
Computational methods for stochastic system and for probability-related problems 
 
Ø Example problems 
Numerical integration 

! 𝑓(𝑥)	d𝑥
!

"
= (𝑏 − 𝑎)!

𝑓(𝑥)
𝑏 − 𝑎 	d𝑥

!

"
 

With the uniform distribution	𝑝(𝑥)	over interval	[𝑎, 𝑏], we have 

! 𝑓(𝑥)	d𝑥
!

"
= (𝑏 − 𝑎)! 𝑓(𝑥)𝑝(𝑥)	d𝑥

!

"
 

Now if we can sample	𝑋 ∼ 𝑝(𝑥)d𝑥, the integral becomes the expectation 

! 𝑓(𝑥)	d𝑥
!

"
= (𝑏 − 𝑎) ⋅ 𝔼#∼%(')𝑓(𝑋) 

We can thus calculate the integral by sampling	𝑋), 𝑋*, ⋯𝑋+ ∼ 𝑝(𝑥) 

𝐼(𝑓) ≈ 𝐼7+(𝑓) = 8
1
𝑁;𝑓(𝑋,)

+

,-)

< (𝑏 − 𝑎) 

According to Law of Large Number (Central Limit), this approximates the expectation 
 
Estimation of	𝝅 
We can estimate	𝜋	by randomly sample points within a square with area 4, and count how 
many samples fall into the circle with radius 1. 
 
Optimization and sampling 
Given the energy function	𝐸(𝑥), the Boltzmann distribution is (𝛽	is inverse temperature) 

𝑝(𝑥) =
1
𝑍 𝑒

./0('), 𝑍 ≡ ! 𝑒./0(1)	d𝑦
23

4
, 𝛽 =

1
𝑇 

To sample from this distribution	𝑝(𝑥), the usual method is Metropolis-Hastings, which is an 
example of Markov Chain Monte Carlo (MCMC) method.  
 
Sampling problems can be naturally linked to optimization problems, as the densely sampled 
region corresponds to where the energy is low 
 
 



Ø Monte Carlo method (MC) 
Now assume	[𝑎, 𝑏] = [0,1]. The expectation of the numerical integral is 

𝔼H𝐼7+(𝑓)I = 𝔼 8
1
𝑁;𝑓(𝑋,)

+

,-)

< =
1
𝑁;𝐸[𝑓(𝑋,)]

+

,-)

= 𝐸[𝑓(𝑋)]JKKLKKM
5.5.7.

= 𝐼(𝑓) 

This shows that our estimation is unbiased. However, we also need to study the variance. 

var(𝑍) = 𝔼 QR𝑍 − 𝔼(𝑍)S*T = 𝔼(𝑍*) − [𝔼(𝑍)]* 

For our numerical integral, we have 

varH𝐼7+(𝑓)I = 𝔼H𝐼7+(𝑓) − 𝐼(𝑓)I
* = 𝔼 8

1
𝑁;R𝑓(𝑋,) − 𝐼(𝑓)S

+

,-)

<

*

	

=
1
𝑁* ⋅ 𝔼 ;[𝑓(𝑋,) − 𝐼(𝑓)]H𝑓R𝑋8S − 𝐼(𝑓)I

+

,,8-)

	

=
1
𝑁* ⋅ 𝑁 ⋅ 𝔼[𝑓(𝑋) − 𝐼(𝑓)]

* =
1
𝑁 var

[𝑓(𝑥)] 

Therefore, the convergence rate is 

U𝐼7+(𝑓) − 𝐼(𝑓)U ∝
1
√𝑁

 

 
Remark. This method works for any dimension as long as	var[𝑓(𝑥)]	is not large in terms of 

dimension. With	𝑁	samples, the convergence rate	1/√𝑁	is independent of dimension. This is 

the foundation of success for machine learning techniques. 
 
However, for Riemann sum when there are	𝑁	cubes in	𝑑-dimension, we have	𝑁)/; 	samples 
for each dimension. The quadrature error scales as 

Integration	error ∝ a
1

𝑁)/;b
*

=
1

𝑁*/; 

When dimension	𝑑 ≫ 1, the Monte-Carlo method is always better. 
 
Ø Sampling from 1-D distribution 
We first construct the CDF	𝐹(𝑥). The sampling procedure is 

1. Sample	𝑈	uniformly in	[0,1] 
2. Calculate	𝑋 = 𝐹.)(𝑈) 
3. Return	𝑋 ∼ 𝑝(𝑥) 

 
 



For efficient sampling of Gaussian distribution, we consider a pair	𝑥), 𝑥* ∈ 𝑁(0,1) 

𝑝(𝑥))𝑝(𝑥*) =
1
2𝜋 𝑒

.'!
"2'""
* 	d𝑥)d𝑥* =

1
2𝜋 𝑒

.<
"

* 	𝑟d𝑟d𝜃 = 𝑒.
<"
* dj

𝑟*

2 k ⋅
1
2𝜋 d𝜃 

Therefore, the sampling procedure for a pair of Gaussian is 

1. 𝑋 ∼ [0, 1], 𝐺 = − ln(1 − 𝑋) 2. 𝑅 = √2𝐺 

3. 𝜃 ∼ [0, 2𝜋] 4. 𝑋) = 𝑅 cos 𝜃 , 𝑋* = 𝑅 sin 𝜃 

Ø Analysis of Monte Carlo method 

𝐼7+(𝑓) ≡
1
𝑁;𝑓(𝑋,)

+

,-)

≈ ! 𝑓(𝑥)	d𝑥
)

4
 

The variance of our estimation is 

varH𝐼7+(𝑓)I =
1
𝑁 var

[𝑓(𝑥)], var[𝑓(𝑥)] = 𝔼[𝑓*(𝑋)] − (𝔼[𝑓(𝑥)])* 

We hope the variance of	𝑓(𝑋)	is small. However, consider the following	𝑓(𝑥) 

𝑓(𝑥) =
1
𝜀 , 𝑥 ∈ [𝑥4, 𝑥4 + 𝜀] 

The expectation and variance of	𝑓(𝑥)	are 

𝔼[𝑓(𝑋)] = 1, 𝔼[𝑓*(𝑋)] =
1
𝜀 , var[𝑓(𝑥)] =

1
𝜀 − 1 → +∞ 

For a narrow function (which is often the case in high dimension), the variance of estimation 
can be large and requires to be improved for real applications. 
  



Week 9: Lecture 16. Rejection sampling & Markov chain Monte Carlo 
Ø Acceptance-Rejection sampling 
If the CDF or its inverse is very difficult to compute, we use alternative methods. Consider 
our PDF	𝑝(𝑥)	is supported in	[𝑎, 𝑏]	with	0 ≤ 𝑝(𝑥) ≤ 𝑑. The idea is to sample uniformly in 
the box	[𝑎, 𝑏] × [0, 𝑑]. If the sample is under the curve, accept it. Otherwise, repeat.  
 
The algorithm is written as: 

1. 𝑋 ∈ Unif[𝑎, 𝑏], 𝑌 ∈ Unif[0, 𝑑] 
2. If	𝑌 < 𝑃(𝑋), accept and go to 4 
3. Otherwise, reject and go to 1 
4. Return	𝑋 ∼ 𝑝(𝑥) 

 
Bad examples:  

a. Narrow distribution: Rejection rate is too high 
b. Distribution defined on	ℝ: Not possible for an infinite support 

 
Modified rejection sampling 
Require	𝑓(𝑥) = 𝐶𝑔(𝑥)	with the distribution	𝑔(𝑥)	easy to sample. 

1. Sample	𝑋 ∼ 𝑔(𝑥)	and sample	𝑌	uniformly between	[0, 𝑓(𝑋)]. This allows us to 
sample uniformly under the curve	𝑓(𝑥) 

2. If	𝑌 ≤ 𝑝(𝑋), accept and go to 4 
3. Otherwise, reject and go to 1 
4. Return	𝑋 ∼ 𝑝(𝑥) 

Remark. We need	𝑔(𝑥)	which is easy to sample, and	𝑓(𝑥)	does not waste too much 
 
Ø Importance sampling for integration 

𝐼(𝑓) ≈ 𝐼7+(𝑓) =
1
𝑁;𝑓(𝑋,)

+

,-)

, 𝔼H𝐼7+(𝑓)I = 𝐼(𝑓), varH𝐼7+(𝑓)I =
1
𝑁 var

[𝑓(𝑥)] 

For a narrow function, the variance is very large. We can use a normalization as follows 

𝐼(𝑓) = !𝑓(𝑥)	d𝑥
ℝ

= !
𝑓(𝑥)
𝑔(𝑥)𝑔

(𝑥)	d𝑥
ℝ

= 𝔼#∼>(') �
𝑓(𝑋)
𝑔(𝑋)�	 

We want	𝑔(𝑥)	to look like	𝑓(𝑥)	up to a scaling factor. Now we sample	𝑋), 𝑋*, ⋯ , 𝑋+ ∼ 𝑔(𝑥) 

𝐼+(𝑓) =
1
𝑁;

𝑓(𝑋,)
𝑔(𝑋,)

+

,-)

 



The variance of	𝑓/𝑔	is calculated as 

		var#∼>(') �
𝑓(𝑋)
𝑔(𝑋)� = 𝔼 8j

𝑓(𝑋)
𝑔(𝑋)k

*

< − j𝔼 �
𝑓(𝑋)
𝑔(𝑋)�k

*

= 𝐶*!
𝑓7*(𝑥)
𝑔(𝑥) 	d𝑥ℝ

− [𝐼(𝑓)]* 

We now obtain an optimization problem (with	𝑓7	the normalized version of	𝑓) 

min
>
!
𝑓7*(𝑥)
𝑔(𝑥) 	d𝑥ℝ

, !𝑔(𝑥)	d𝑥
ℝ

= 1, !𝑓7(𝑥)	d𝑥
ℝ

= 1 

According to Cauchy-Schwartz inequality 

!
𝑓7*(𝑥)
𝑔(𝑥) 	d𝑥ℝ

⋅ !𝑔(𝑥)	d𝑥
ℝ

≥ j!
𝑓7(𝑥)

�𝑔(𝑥)
�𝑔(𝑥)	d𝑥

ℝ
k
*

= 1 

The minimum is obtained when	𝑔(𝑥) = 𝑓7(𝑥) 
Remark. We need to choose	𝑔(𝑥)	to be close to	𝑓(𝑥), up to a normalization factor 
 
Ø Variance reduction techniques for Monte Carlo method 
Control variates 
If	𝑓(𝑥)	is hard to work with, we choose	ℎ(𝑥)	that is close to	𝑓(𝑥)	and is easy to compute. For 
a given distribution	𝜋, we can calculate the expectation as 

		𝔼'∼?(𝑓) = 𝔼'∼?(𝑓 − ℎ) + 𝔼'∼?(ℎ) 
The first part can be applied with MC method, since the variance now becomes much smaller 

var'∼?(𝑓 − ℎ) ≪ var'∼?(𝑓) 
 
Antithetic variates 
If we know	𝑓(𝑥)	is (approximately) symmetric, we can sample symmetrically. For example, 
after sampling	𝑋), ⋯ , 𝑋+, include	−𝑋), ⋯ ,−𝑋+. 
 
Ø Metropolis algorithm 
We usually want to sample	𝜋(𝑥)	based on some energy function	𝐻(𝑥) 

𝜋(𝑥) =
1
𝑍 𝑒

./@(') 

However, we have no access to the renormalization constant	𝑍, i.e., we don’t know how “tall” 
our target distribution is. 
 
Markov chain Monte Carlo (MCMC) 
For a state space	𝑆, the transition matrix	𝑃,8 	with	𝑖, 𝑗 ∈ 𝑆	denotes the probability of going 

to	𝑗	if currently at state	𝑖 
𝑃,8 = ℙ(𝑋A2) = 𝑗 ∣∣ 𝑋A = 𝑖 ) 



The complicated path is hard to describe, but we can study the equilibrium distribution	𝜋, 

𝑃,(𝑇) = ℙ(𝑋B = 𝑖) 				→ 				 𝜋, =
1
𝑍 𝑒

./@# 

MCMC designs	𝑃,8 	such that the limit distribution is	𝜋, 	(up to a constant factor	𝑍) 

 
The probability flux is written as 

𝐹,8 = 𝜋,𝑃,8 , 𝐹8, = 𝜋8𝑃8, 

One way to make	𝜋, 	stationary is detailed balance 
𝐹,8 = 𝜋,𝑃,8 = 𝜋8𝑃8, = 𝐹8, 

Therefore, the renormalization constant does not matter anymore 

1
𝑍 𝑒

./@# ⋅ 𝑃,8 =
1
𝑍 𝑒

./@$ ⋅ 𝑃8, ,
𝑃,8
𝑃8,

= 𝑒./C@$.@#D 

 
Metropolis-Hastings algorithm 
Now we design the transition matrix	𝑃,8. There are two conditions to be satisfied 

;𝑃,E
E

= 1,
𝑃,8
𝑃8,

= 𝑒./C@$.@#D 

We also want the implementation of	𝑃,8 	to be easy. Define a simple matrix	𝑄,8, which is the 

proposal distribution. An example is the symmetric one 

𝑄,8 ≈
1
𝑁 , 𝑁 = degree	of	freedom 

With the acceptance rate	0 ≤ 𝐴,8 ≤ 1, we design the following transition matrix	𝑃,8 

𝑃,8 = �
𝑄,8𝐴,8 , 𝑖 ≠ 𝑗

1 −;𝑃,8
8F,

, 𝑖 = 𝑗 

To satisfy the second condition (detailed balance, equilibrium	𝜋,), we require 

𝐴,8
𝐴8,

= 𝑒./C@$.@#D ⋅
𝑄8,
𝑄,8

 

Now consider	𝑄,8 = 𝑄8,. For the Metropolis strategy, the acceptance rate is defined as 

𝐴,8 = min�1, 𝑒./C@$.@#D� 

As an example, we have 

𝐴,8 = 𝑒./C@$.@#D, 𝐴8, = 1, when		𝐻8 > 𝐻, 

𝐴,8 = 1, 𝐴8, = 𝑒./C@#.@$D, when		𝐻8 < 𝐻, 



In this case, we have the detailed balance 

𝜋,𝐴,8 = a
1
𝑍 𝑒

./@#b ⋅ 𝑒./C@$.@#D =
1
𝑍 𝑒

./@$ = 𝜋8 

 
𝐻8 > 𝐻, State	𝑖 State	𝑗 
Energy Low High 

Probability High Low 
 
If	𝑄,8 ≠ 𝑄8,, then we need to adjust	𝐴,8 	slightly. For the Metropolis strategy, we have 

𝐴,8 = min �1,
𝑄8,𝑒./@$

𝑄,8𝑒./@#
� 

This choice of	𝐴,8 	ensures detailed balance, and thus the Metropolis algorithm converges to 

the equilibrium distribution 
 
Glauber dynamics 
The acceptance rate is defined similar to a sigmoid function 

𝐴,8 =
1

1 + 𝑒/C@$.@#D
< 1 

The detailed balance is also satisfied 

𝜋,𝐴,8 =
1
𝑍 𝑒

./@# ⋅
1

1 + 𝑒/C@$.@#D
=
1
𝑍 𝑒

./@$ ⋅
1

1 + 𝑒/C@#.@$D
= 𝜋8𝐴8, 

 
Ø Example application of Metropolis-Hastings algorithm 
Consider the following graph	𝐺	of electron spins.  
 
 
 
 
 
The state space is defined as	𝑆 = {(𝑥), 𝑥*, ⋯ , 𝑥G), 𝑥, = ±1}, which is the set of all possible 
binary strings of length	𝑚. Then we have	|𝑆| = 2G, which is a very large space. 
 
The Hamiltonian is described as (with	𝑎 ∼ 𝑏	denotes an edge in the graph) 

𝐻(𝒙) = −;𝑥"𝑥!
"∼!

 

 



The goal is to sample	𝒙 ∈ 𝑆	with probability  

𝑝(𝒙) =
1
𝑍 𝑒

./@(𝒙) 

Metropolis-Hastings algorithm uses the following acceptance rate 

𝐴𝒙𝒚 = min �1,
𝑄𝒚𝒙𝑒./@(𝒚)

𝑄𝒙𝒚𝑒./@(𝒙)
� 

To make it efficient, the proposal distribution	𝑄𝒙𝒚	is selected as symmetric 

𝑄𝒙𝒚 = �𝑚
.)						if	𝒙	and	𝒚	differ	by	1	slot
0						otherwise

, 𝑄𝒙𝒚 = 𝑄𝒚𝒙 

Therefore, we have 

𝐴𝒙𝒚 = min¡1, 𝑒./[@(𝒚).@(𝒙)]¢ 

 
Suppose that	𝒙	and	𝒚	differ at slot	𝑝 

𝐻(𝒚) = ; 𝑦"𝑦!
"∼!
",!F%

+ ; 𝑦"𝑦!
"∼!

"	MN	!-%

 

𝐻(𝒙) = ; 𝑥"𝑥!
"∼!
",!F%

+ ; 𝑥"𝑥!
"∼!

"	MN	!-%

 

The first term in the above expressions is the same. Since we only care about the energy 
difference, we can just calculate 

𝐻(𝒚) − 𝐻(𝒙) = ; (𝑦"𝑦! − 𝑥"𝑥!)
"∼!

"	MN	!-%

 

This is much more efficient than evaluating	𝐻(𝒙)	and	𝐻(𝒚)	separately, which contain many 
pairs in the summation. 



Week 10: Lecture 17. Introduction to stochastic differential equations 
Ø Wiener process (Brownian motion, BM) 
Consider the random walk	𝜉! = {1,−1}	with equal probability 

𝑆" =*𝜉#

"

#$%

∼ 𝑁(0, 𝜎&) 

The variance is given as 

𝜎& = var(𝑆") = 𝔼 56*𝜉#

"

#$%

76*𝜉'

"

'$%

78 = 𝔼 5*𝜉#&
"

#$%

8 = 𝑛 ⋅ 𝔼[𝜉!&] = 𝑛 

Now consider the scaled version	𝜉=! = >√Δ𝑡, −√Δ𝑡B	with time step	Δ𝑡. 

Within time	𝑇, there is a total of	𝑇/Δ𝑡	steps 

𝑊( = * 𝜉#

(/*+

#$%

, var(𝑊() =
𝑇
Δ𝑡 ⋅ 𝔼F𝜉

=!&G = 𝑇 

Therefore, we obtain a random variable 
𝑊( ∼ 𝑁(0, 𝜎& = 𝑇) 

Another prospective is to consider different trajectories. The BM can 
be viewed as a “path-wise distribution” such that 

𝔼[𝑊+] = 0, 𝔼[𝑊+
&] = 𝑡 

The local increment is 
𝔼[d𝑊+] = 0, 𝐸[(d𝑊+)&] = d𝑡 

A typical path of BM is fractal, and we should be careful when taking derivatives 
 
Ø Stochastic differential equations (SDEs) 
Two perspectives on SDEs: 

SDE is a map from BM paths to another set of paths 
SDE is a change of probability measure over the paths 

 

ODE: Deterministic SDE: System with noise using BM 

d𝑥 = 𝑣(𝑥)d𝑡,				𝑥(0) = 𝑥, 
 

d𝑥 = 𝑣(𝑥)d𝑡 + d𝑊,				𝑥(0) = 𝑥, 
 
 
 
 
 



Ito’s formula 
For usual derivative, the chain rule is 

d𝑓(𝑥) = 𝑓-(𝑥)d𝑥 = 𝑓-(𝑥)𝑣(𝑥)d𝑡 
However, for SDEs we have 

	(d𝑥)& = [𝑣(𝑥)d𝑡 + d𝑊]& = 𝑣&(𝑥)(d𝑥)& + 2𝑣(𝑥)d𝑡d𝑊 + (d𝑊)& 
The leading term is	(d𝑊)& = d𝑡. Therefore, we need to analyze the second order term in the 
Taylor’s expansion 

d𝑓(𝑥) = 𝑓-(𝑥)d𝑥 +
1
2𝑓

--(𝑥)(d𝑥)& = 𝑓-(𝑥)𝑣(𝑥)d𝑡 + 𝑓-(𝑥)d𝑊 +
1
2𝑓

--(𝑥)d𝑡 

 
Example: Consider 

𝑥 = 𝑊, d𝑥 = d𝑊, 𝑓(𝑥) = 𝑥& 
Newton’s calculus gives 

d𝑓(𝑥) = 𝑓-(𝑥)d𝑥 = 2𝑥d𝑥 = 2𝑊d𝑊 
Ito’s calculus gives 

d𝑓(𝑥) = 𝑓-(𝑥)d𝑥 +
1
2𝑓

--(𝑥)(d𝑥)& = 2𝑥d𝑥 + (d𝑥)& = 2𝑊d𝑊 + d𝑡 

 
Example: Consider 

d𝑥 = −𝑥d𝑡, 𝑥(0) = 1				 ⟹ 				𝑥(𝑡) = 𝑒.+ 
For SDE, we have 

d𝑥 = −𝑥d𝑡 + d𝑊, 𝑒+d𝑥 + 𝑒+𝑥d𝑡 = 𝑒+d𝑊, d(𝑒+𝑥) = 𝑒+d𝑊 
Integrating both sides gives the analytic solution 

𝑒+𝑥(𝑡) − 𝑥(0) = Q 𝑒/	d𝑊(𝑠)
+

,
, 𝑥(𝑡) = 𝑒.+ +Q 𝑒.(+./)	d𝑊(𝑠)

+

,
 

There are very few SDEs that can be analytically solved. In most cases, we need to solve the 
SDEs using numerical methods. 
 
Ø Euler-Maruyama method for SDE 
Discretize time into small intervals of	Δ𝑡. The approximate solution	𝑋"	is given as 

𝑋" ≈ 𝑋(𝑛Δ𝑡), 𝑋"2% = 𝑋" + Δ𝑡 ⋅ 𝑣(𝑋") +𝑊("2%)*+ −𝑊"*+ 

The BM part follows the normal distribution 
𝑍" = 𝑊("2%)*+ −𝑊"*+ , 𝑍" ∼ 𝑁(0, Δ𝑡) 

Therefore, the Euler-Maruyama (E-M) scheme gives 
𝑋"2% = 𝑋" + Δ𝑡 ⋅ 𝑣(𝑋") + 𝑍", 𝑍" ∼ 𝑁(0, Δ𝑡) 

 



Accuracy analysis 
Order	𝛼	strong error: 

𝔼[|𝑋" − 𝑋(𝑛Δ𝑡)|] ≲ Δ𝑡3 
Order	𝛽	weak error (based on a smooth function): 

𝔼FZ𝑓(𝑋") − 𝑓[𝑋(𝑛Δ𝑡)\ZG ≲ 𝐶4Δ𝑡5 

E-M method has the following accuracy orders 

𝛼 =
1
2 , 𝛽 = 1 

  



Week 10: Lecture 18. Introduction to wavelets 
Ø Wavelets 
Consider functions in	𝐿&(ℝ), the pseudo-basis can be selected as 

1. Delta functions: Spikes, good for signals sparse in time domain 
2. Fourier basis: Plane waves, good for signals sparse in frequency domain 

However, they are not	𝐿&(ℝ)	functions, so they are called pseudo-basis. 
 
We want to construct wavelets, which are good for signals sparse in both time and frequency 
domains. We also require the wavelets to be self-similar, as it is for spikes and plane waves 
 
Ø Haar wavelets 

Scaling functions  Wavelets 

𝑉% 
 

𝑊% 

 

𝑉, 

 

𝑊, 

 

𝑉.% 

 

𝑊.% 

 

 
Each subspace is the span of the functions. The subspaces of scaling functions have the 
following properties 

𝑉62% ⊆ 𝑉6 , lim
6→28

𝑉6 = {0}, lim
6→.8

𝑉6 = 𝐿&(ℝ) 

The wavelet subspaces	𝑊6 	satisfy 
𝑉6 ⊥ 𝑊6 , 𝑉6.% = 𝑉6 	⨁	𝑊6 

Recursively doing the direct sum, we have 
𝑉, = 𝑊%	⨁	𝑊&	⨁	⋯ 

The Haar wavelet is discrete self-similar. It has both time and frequency localization 



Theorem. The function space	𝐿&(ℝ)	is the direct sum of all subspaces	𝑊6 

𝐿&(ℝ) = ⋯	⨁	𝑊.%	⨁	𝑊,	⨁	𝑊%	⨁	⋯ 
 
Ø Generalization of wavelets 
The Haar wavelet is not smooth, which leads to bad approximation property. To construct 
smoother wavelet	𝜓(𝑡), we follow the procedure below. 
 
Choose scaling function	𝝓(𝒕) 
We want	𝜙(𝑡)	and its translation to form an orthonormal basis	𝑉,. Given a function	𝜃(𝑡), we 
hope to obtain an orthonormal copy of it. 
 
We claim that	𝜙(𝑡)	can be represented by a linear combination of	𝜃(𝑡 − 𝑛) 

𝜙(𝑡) =*𝑎"𝜃(𝑡 − 𝑛)
"∈ℤ

			⟺ 				𝜙o(𝜔) = 𝑎q(𝜔)𝜃o(𝜔) 

This corresponds to a convolution. Because coefficients	𝑎"	are discrete, 𝑎q(𝜔)	is	2𝜋	periodic. 
The orthonormality of	{𝜙(𝑡 − 𝑘)}#∈ℤ	requires 

〈𝜙(𝑡), 𝜙(𝑡 − 𝑘)〉 = Q 𝜙(𝑡)𝜙∗(𝑡 − 𝑘)	d𝑡
28

.8
= 𝛿# 

In the Fourier domain, this condition becomes 

	*Z𝜙o(𝜔 + 2𝜋𝑘)Z&

#∈ℤ

= 1 

Now we construct	𝜙o(𝜔)	as the following to satisfy the above condition 

𝜙o(𝜔) =
𝜃o(𝜔)

w∑ Z𝜃o(𝜔 + 2𝜋𝑘)Z&#∈< y
%/& 

 
 
 
 
 
 
 
 
 



Scaling equation 
The multiresolution causality	𝑉62% ⊆ 𝑉6 	requires 

1
√2

𝜙 z
𝑡
2{ =*ℎ"𝜙(𝑡 − 𝑛)

"∈ℤ

 

Again taking the Fourier transform and using recursion gives  

𝜙o(2𝜔) =
ℎo(𝜔)
√2

𝜙o(𝜔), 𝜙o(𝜔) = }~
ℎo w𝜔2=y

√2

8

=$%

� 𝜙o(0) 

This states that any scaling function	𝜙(𝑡)	is specified by a discrete filter	ℎ". Note that	ℎo(𝜔)	is 
also	2𝜋	periodic. 
 
Theorem. The orthonormality of	{𝜙(𝑡 − 𝑘)}#∈ℤ	is equivalent to 

Zℎo(𝜔)Z
&
+ Zℎo(𝜔 + 𝜋)Z

&
= 2, ℎo(0) = √2 

Comment. ℎ"	having finite support is a non-trivial property. 
 
Construct wavelets	𝝍(𝒕) 
The multiresolution causality	𝑊62% ⊆ 𝑉6 	requires 

1
√2

𝜓 z
𝑡
2{ =*𝑔"𝜙(𝑡 − 𝑛)

"∈ℤ

, 𝜓o(𝜔) =
1
√2

𝑔q w
𝜔
2y𝜙

o w
𝜔
2y 

The orthonormality of	{𝜓(𝑡 − 𝑘)}#∈ℤ	requires 

* Z𝜓o(𝜔 + 2𝜋𝑘)Z&
28

#$.8

= 1				 ⟺				 |𝑔q(𝜔)|& + |𝑔q(𝜔 + 𝜋)|& = 2 

The orthogonality condition	𝑉6 ⊥ 𝑊6 	requires 

* 𝜓o(𝜔 + 2𝜋𝑘)𝜙o∗(𝜔 + 2𝜋𝑘)
28

#$.8

= 0				 ⟺				 𝑔q(𝜔)ℎo∗(𝜔) + 𝑔q(𝜔 + 𝜋)ℎo∗(𝜔 + 𝜋) = 0 

We thus have the following solution 

𝑔q(𝜔) = 𝑒.!>	ℎo∗(𝜔 + 𝜋) 
 

Wavelets 
1
√2

𝜓 z
𝑡
2{ =*𝑔"𝜙(𝑡 − 𝑛)

"∈ℤ

								𝜓o(𝜔) =
1
√2

𝑔q w
𝜔
2y𝜙

o w
𝜔
2y 

Steps to construct 
𝜃(𝑡)  𝜙(𝑡)  ℎ"  𝑔" 

𝜃o(𝜔) → 𝜙(𝜔) ↔ ℎ(𝜔) → 𝑔q(𝜔) 

 



Example: Haar wavelets 

ℎo(𝜔) =
1
√2

+
1
√2

𝑒.!> , 𝑔q(𝜔) = 𝑒.!>ℎo∗(𝜔 + 𝜋) = −
1
√2

+
1
√2

𝑒.!> 

 

 
 
 
Example: Meyer wavelets 
Meyer wavelet is very localized in the frequency domain, but its convolution kernel is infinite 
as	ℎ" ≠ 0	for all	𝑛 
 
 
 
 
 
 

 
 
 
 



Example: Daubechies compactly supported wavelets 
For any given number	𝑝	of vanishing moments, Daubechies wavelets	𝜓(𝑡)	have a support of 
minimum size	[−𝑝 + 1, 𝑝]. The scaling function	𝜙(𝑡)	has a support of	[0,2𝑝 − 1]. 
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