Asymptotic Analysis of Differential Equations (1): Linear ODE

We analyze the asymptotic expansion of the solution for linear ODE on the complex plane.
Denote the domain Q € C, the meromorphic function domain m(£2) and holomorphic function
ring ©(Q), the n X n matrix M(m(Q), n) with its elements composed of function f € m(Q).
For a matrix A € M(m(Q), n), a linear ODE can be represented by
y'(z) =A@)y(2), yel

Based on variation of parameters, we only need to study the homogeneous equation. For an
initial value problem y(z,) = y,, we can first solve for the matrix equation

Y'(2) =AY (2), Y(z)=1I ()
With this fundamental matrix, we have y = Yy,. Hence, we will focus on this matrix equation.

»  Qualitative theory of solutions (6.1)
Cauchy Theorem

Fory' = f(z,y) with y(z,) = y,, if f is analytic then there exists a unique analytic solution.

Consider (*) has a solution Y; around z,. For a path y starting from z,, we can perform analytic
continuation of Y into a neighborhood of y. When y goes back to z,, we can obtain another
solution Y,,. Then we state that there exists an invertible C,, € GL(C, n) such that ¥, = Y,C,.
We define a mapping p4: ¥ + C,, and when y,; and y, are homotopic, we have C,, = C,,. This
implies that p,: 7, (Q%, z,) = GL(C, n), with Q* is the domain with poles removed. Moreover,

ify = y1 oy,, thenC, = C,, C),. So p, is a group homomorphism and a representation of 7z;.

For the matrix equation (), consider a transformation P € GL(Q(L),n) and denote Z = PY.
Z'=P'Y+PY' = (P'P"'+PAP™1)Z = BZ
The two mappings p4 and pg are equivalent. P’P~1 + PAP~! is a meromorphic connection on

vector bundles on a complex manifold, an example of Riemann-Hilbert correspondence.

Local problem
Let z, is a pole of A, with r denoted as the Poincaré rank. This implies that
A(2) = (z — zy)TA(2), A(z) € M(0(zy),n), A(zy) # 0
Without loss of generality, take z, = 0 and we have
z'Y'(2) = A(2)Y(2)
Since z, is a pole, Y (z,) may not exists, and we only focus on the equation. The solution is

highly influenced by the Poincaré rank r.



When r = 1, consider a constant matrix A and we have

zY'(z) = AY (2)
Select a branch cut C from z = 0, we have Inz € O(Q \ €) and Y (2) = e“4!"%. Consider A has
the Jordan normal form A = PJP~! with ] = A + N. Then we can write

n

In* z
Y(Z) — P(ejlnz)P—l’ e]lnz = AZ (Z o Nk>

k=0

The singularity is regular for r = 1. Going around z = 0, we obtain C,, as follows

YO(Zezm) — eA(lnz+2n:i) — YO(Z)eZn:iA’ Cy — eZTriA

When r = 2, still consider a constant matrix A and we have
z%Y'(z) = AY (2), Y(z) = e74/%
Now z = 0 becomes an essential singularity, and the solution only exists in a sector. We cannot

go around z = 0 as in the previous case. For r > 2, the singularity is irregular.

» Majorant series & Cauchy theorem
Let Q € C4*! with coordinates ¥ = (z,y) with z € C, y € C% and a function f € Q(Q, C%).
y’=f(Z,y), 5]0=(Z0'y0)E'Q
The function f is analytic when there exists r > 0 such that when y € B(J,, ), the following
series 1s convergent
FO =Y G5, =l
=0
The neighborhood is B(§y, 1) = {y € Q| |y — J,| < r} with the L, norm |y| = max|y;|. The

above notation means

f@ = Z Cioja(Z — 2p)7°(y1 — Y1)t - (Vg — Yao)’@

Jor+jaz0

Majorant series
Consider a formal power series f(7). If there exists another series F(¥) such that Vj we
have |a;| < A;, then F (¥) is a majorant series of f ().
fO =Y aqG-5), FG) =) 4F-5)
720 720
If F (¥) converges in B(J,, ), then f (¥) also converges. We can then call F(J) as the majorant
function of f ().



Corollary. If f(§) is analytic around ¥, i.e., it can be expanded on B (¥, R) into a convergent
series, then for any r € (0, R), there exists a constant M > 0 such that we can write down the

majorant function F(¥) as

F(y)—M]_[ P2 Doy 5 e B(5om)

Proof. Since f converges in B(¥,, R), then it absolutely converges in B(§,, 7). If we select a

y € 0B (J,, r) on the boundary, we have the following convergent series

Then there exists M > 0 such that
” M L _
|la;|rV! < M, |a,-|sm, il =jo+ - +ja

Now we can construct a majorant function

P = 3 25— 300 - an oy (-2

j=z0 =0 jx=0 k=0

Corollary. For F (¥) defined above, consider the Cauchy problem
yi=Fzy), vi@) =y Jj=12,,d

There exists p > 0 such that it has a unique analytic solution on B(z,, p).

Proof. Denote u(z) = y,(z) — y;o. Based on the Cauchy problem, we have

(yi — Yj), =0, u(z) = y;(2) — yio, vi,j=12,---,d
The ODE for u(z) can be obtained as

u’(z)=F(z,y)=M(1—Z_rZO)_ (1—2) . u(ze) = 0

The solution is

1

u(z)=r—7~[1+(d+1)M1n(1_Z—7‘Zo)]m

To guarantee convergence, we can obtain the radius p as

|Z_ZO

|<1 |(d+1)M1n( Z_TZO)|<1, p=rl1—e_ﬁl [ ]



Cauchy theorem
Let QO € C%*! and denote analytic functions f: Q — C% with a point (z,,y,) € Q. There exists
p > 0 such that the Cauchy problem has a unique analytic solution in B(z, p).

vi=fiy), y@)=yjo j=12,,d

Proof. Without loss of generality, assume z, = 0 and y, = 0. We consider the solution in the

form of a power series
FO) =@ =Y ayd, 3@ = guz™,  j=12,,d
J=0 m=0

Then we have

yi = Z Cierny(k + D)zF = Z aJ'JZ]oJﬁh "'Yéd =i

k=0 J=0

Substitute y;(z) into the RHS and compare the coefficients. We can obtain

Cjm = P (a; | ]l s m —1)

The polynomial Pj,,, has positive coefficients. To prove the solution is convergent, consider

d —_
9 =F(zy) =Mn(1—¥) '
k=0

Here M is sufficiently large such that F(z, y) is the majorant function for all f;, -+, f;. We have
H@ =Y Gmz™, G = B4y 1 <m—1)
mz0
A is the coefficient for the majorant series F (). Since
|5jm| = 1Pm(@;)] < Prm(lay]) < Prm(4)) = &m

Therefore, the formal series y;(z) converges. ]

Corollary. For the matrix equation
Y'(2) =A@)Y(2), Y(z) =1

If A is analytic near z,, then there exists a unique analytic solution.

Theorem. Consider F € M(Q(Q), d) with the following equation and its formal solution

' =Fy, Y@ =) al-m)k, e
k=0

There exists p > 0 such that y(z) converges in B(z,, p) and thus is an analytic solution.



Proof. Assume z, = 0. Consider F(z) can be expanded as

F(z) = Z F.zk, F, € M(C,d) = Cxd@
k=0

The equation becomes

> i = (3 B ) (et = Y 3 o

m=0 k=0 =0 m=20 \k+l=m

Comparing the coefficients gives

m
méy, = Z Fycp, (Fo_ml)cm=_szCm—k
k=1

k+l=m
For m = 0 we have Fyc, = 0. While form = 1, we have
¢, = Fycq + Ficy, (Fy — D¢y = —Fycy
If F, does not have 1 as an eigenvalue, we can obtain the unique solution of ¢;. We take k € N
that is sufficiently large such that for all A > k, the matrix F, — Al is invertible. Denote
fO=1F—AD e, 1>k

Then we have f € C(k, +) continuous, and when A — +oco we have f(1) — 0. This implies
that there exists C > 0 such that f(m) < C for all m > k. The coefficients c,, are bounded as

|l

m m
~(Fy =D ) Feemoi| <€) [Felalen il
k=1 k=1

[0e]

Define v,, = |cp |0 form < k, and

m
vm=CZ|Fj|mvm_j, m>k
j=1
This guarantees |c,,| < v,,,. We want to show that {v,,} corresponds to a convergent series.

U@ = ) vnz™, 9@ = ) [Fluz™

m=0 m=1

We can show that (all norms are |-|)

k l
u(z) = (1= Cp@I™ |leol + Y. [ el = ¢ Y | llewy] |
=1 =1

This is proved by comparing the coefficients, after multiplying 1 — c¢p(z) to the LHS.

m m
™) v =€ ) [Blomy = leml = € Y [Bllemy,  m<k
j=1 j=1

m
[z™]: vm—CZ|Fj|vm_j=O, m>k
=1



The numerator of u(z) is a polynomial which is convergent. As ¢(0) = 0, there exists §; > 0
such that when |z| < &§;, we have 1 — C¢p(z) # 0 and (1 — C¢p(z)) ! is analytic on B(0, §;).

Therefore, we prove the majorant u(z) is analytic, and thus y(z). ]

» Asymptotic behavior near ordinary and regular singular points (6.2)

zy'(z) = F(2)y(z), FeM(B(0,1),n)
Now consider the matrix equation

zY'(z) = A(2)Y(2), A e M(O(Q),n)
We require A(0) # 0 which implies that z = 0 is a singular point. The domain Q: |z| < p. Our
goal is to find a transform P € GL(Q(L), n) such thatY = PX and

zX'(z) = B(2)X(2), B =P AP — zP1p’
We want to choose B to be as simple as possible. The matrix equation to be solved is
zP'(z) = A(2)P(2) — P(2)B(z)

With the formal power series, the equation becomes

T;)umzm = (; Akzk> (; Plzl> - (; Plzl> (; Bkzk>

Taking the coefficient of z™, we obtain

m
um = AOPm - PmBO + Z(Akpm—k - Pm—kBk)
k=1

m
(Ag —mI)P,, — P,By = Z(Pm_kBk — A Pri)
k=1

Form = 0, we have B, = Py *A,P,. One choice is Py = I and B, = A,. Another better one is

to choose P, such that By, = ] is the Jordan normal form of 4,.

Corollary 1. For A, B € M(C, n), define the following map
®as: M(C,n) »> M(C,n), P - AP - PB

Then @45 is injective if and only if A, B do not share the same eigenvalue.

Proof. When ¢, is injective, assume that A is the common eigenvalue. Then there exist non-
zero v,w € C" such that Av = Av and BTw = Aw. Take P = vw’, and we obtain

AP — PB = AvwT —vw™B = AvvT — AwvvT =0
This is contradictory to @45 being injective. On the other hand, when there are no common

eigenvalues between A and B, denote V = C™ and we can write

V=V, ®V, & DV, Vi =Ker(B-NI)"



We can obtain a basis for V by picking from each root subspace V;. Let v be the basis of I/;.
If P satisfies AP — PB = O, we have

(B—AD™v =0, PB—-—A)"v=(A—-AD)"Pv=0
Note that A is not the eigenvalue of A, so (A — AI)™ is invertible and thus Pv = 0. Since v can

be any vector of the basis, P = O and thus ¢ 5 is injective. ]

Resonant matrix
With this corollary, we need to see if A, — ml and B, share the same eigenvalue. We call a

matrix A as resonant if there are two eigenvalues A, u such that A — u € Z,.

Theorem 2. For zY' = AY, if A, is non-resonant, then there exists a transformation Y = PX
with P(0) = I and P(z) analytic around z = 0 such that
zX' = AX, Y(z) = P(z)z%

Proof. Since A, is non-resonant and P, = I, we know that A, — ml and B, = A, do not share

the same eigenvalue. We can then choose B,, = O form > 1, and there are corresponding P,

m
Pm = (pggl—mI,BO (— Z AkPm—k> ) ZX’ = AOX
k=1

Therefore, we obtain a formal solution Y (z) = P(z)z“°. The equation for P(z) is
zP'(z) = A(z2)P(2) — P(2)A,

Now take a basis ey, ..., e,2 for M(C,n), and we have

PO =) v, P@=MDP@, M@ Para,
j=1

From the existence of an analytic solution for the matrix equation, P(z) is analyticatz = 0. m

If Ay is resonant, then (Ay — mI)PB,, — P, B, is not an isomorphism, so we cannot ensure the

existence of P, for arbitrarily chosen B,,.

m
(Ag —mI)P,, — P,By = Z(Pm_kBk — A Pri)
k=1

As an example, we can choose

m—1

Z(Pm—kBk_AkPm—k)'l'Bm_Am=0; b,=0
k=1

In this case, we can obtain the following solution.



Proposition 3. For zY' = AY, we have a resonant A,. Let M be the largest positive integer such

that M = A — u for the eigenvalues. Then there exists Y = PX with analytic P(z) such that

M
ZX, = (AO + Z Bkzk>X
k=1

By, is non-zero only when there are eigenvalues such thatk = 4 — p.

A better choice is given as follows. For zY’ = AY, consider A, = PyJoP; ! with J, as the Jordan
normal form. Take Y = PyX, and then we have
zX = (PyAP)X = (Jo + Az + -+ Apz™X
Without loss of generality, assume A, = A + N, already the Jordan normal form (P, = I), and
its eigenvalues are ordered by decreasing Re 4,. As N, is strictly upper triangular, we have
(NO)O{ﬁ = OI Q= ﬁl (No)a[? * 0' Aa * Aﬁ
When m = 1, the matrix equation becomes
(Ao —DP, — PlAg =B, — Ay

Using Einstein summation notation, the (@, §) element becomes
Aay(Pl)yﬁ + (No)ay(Pl)yﬁ - (Pl)aﬁ - (Pl)ay(A)yB - (Pl)ay(NO)yﬁ = (Bl)aﬁ - (Al)aﬁ

For the diagonal matrix, we have A;; = 4;8;;, which leads to

(Aa - AB - 1)(P1)a[3 + (No)ay(Pl)yﬁ - (Pl)ay(NO)yﬁ = (Bl)aﬂ - (Al)a[?
For (n, 1) element, we have (Ng),,, = (Np),1 = 0, which leads to

(An — A1 = D(Pp1 = (Bn1 — (A)na
If A, — 4; # 1, we can choose
(Al)nl

(B1n1 =0, (Pn1 = _m
If 1, — A, = 1, we can choose (B;),,; = (A1)n1, and (P;),, is arbitrary. We can continue this
process for (n, 2) element and so on using previously determined P;. This implies that we can
find B; and P;, and (B;);; # 0 only possible when A; — 4; = 1. In general, B,, and P,, exist,
and (By,);; # 0 only possible when 4; — 4; = m.

Proposition 3°. With this new choice of B,,, (now denoted as N,;;) and B,,, we have
zX'=(A+ Ny + N, z+ -+ N,z™X
(Ni)ij # 0 only possible when 4; — A; = k. This implies that non-zero elements are possible

only when i < j since we have ordered the eigenvalues, and N, are strictly upper triangular.



Corollary 4. With this new choice of A and Ny, we have

zAN, = Npzkz%

Proof. Note that
(¢ =23 —k)(Ni)ap =0, ANy — NyA— kN, =0

Therefore, we have

In z)! Inz)!
ZANk = Z ( nUZ) AlNk = Z ( l'Z) Nk(A + k)l = NkZA+k ]

[=0 120

Corollary 5. For the following equation
zX'=(A+ Ny + N, z+ -+ N, z™X
Its solution is

€=ZAZN' N=N0+N1+"'+Nm

Proof. Using the previous Corollary, we can directly calculate
z& = (Az")zN + z2(NzV) = AE + (Ny + Nyz + -+« + N,,z™)¢& ]

Theorem 6. For matrix equation zY’ = AY, assume that A, has a Jordan normal form A + N,
with the eigenvalues ordered by Re A,. Then there exists P(z) € GL(Q(Q),n) and a strictly
upper triangular constant matrix N € M(C, n) such that

Y(2) = P(2)z"zV
(N)i; # 0 only possible when A; — 4; € Z,.

To calculate the solution, since N is a nilpotent matrix with N**1 = 0, we have

= (In 2)!
7" = diag(z%«), zN = z 7 N!

1=0
For any 6, € R, the solution Y (z) is analytic in S(6,) ={z € Q| 6, < argz < 0, + 2r}.

Consider z = ze?™ the solution becomes
Y(zez’”) — P(Z)ZAeZ”iAZNeZ”iN

From Corollary 4, with z = e?™ we have

eZTriANk — NkezmkeZniA — NkeZm'A’ e2TAN = Ne2miA



This shows that 24 commutes with N, and thus M = e2™A¢27N Based on this property, we
call M the monodromic matrix of the matrix equation, and (A, N) the monodromic data that

determine the multivalued properties of the solution.

Example: Bessel equation
2yn + xyl + (xz _ aZ)y =0

We define the vector Y as

Y=[y,], Y'= ]—a—x

Xy xy

o Rk
<
—

Then we obtain the corresponding matrix equation

: 0 1
XY’ =AY, A(x)=[a2_x2 .

The coefficients of the power series of A(x) are

I R

To diagonalize A, (which also set P, = I), consider the following transform
_ [ tey] e 1 ,_fre 07, * -1 1
_[XY'—OC}’ _[05 —1]Y' x® _<[0 - +2a[—1 1)(1)

When A4, is non-resonant, we have 2a & Z and the solution can be obtained from Theorem 2.

When 4, is resonant with 2a € Z:
If 2« is 0odd, as A; = O we can choose B; = P; = 0, and then for all m > 2 we can similarly

set B,, = O and solve for P,,. The solution can still be written as Y (z) = P(z)z".

If 2a is even, for m = 2 the equation is
(Ao — 2P, — P,Aq = B, — A
As an example, consider « = 1 and we have
-1 0 1 07_ Ir—1 1
[ 0 —3]P2_P2 [0 —1] =B _E[—1 1]

Explicitly writing out the elements for P,, we have

_[a b —2a 5 111
P = [c al’ [—4c —Zd] =B —3 [—1 1]
This constrains (B,);, and a valid choice is
1o 1 Ir-2 0
BZ_E[O ol’ P2_§[_1 2

For m > 3 we can still set B, = O and solve for P,,. This implies that the final matrix N is



n
1 In z)!
N=_[O : Z"’=E—( Z)Nl=
l!
1=0

1
1 =Inz A
2lo ol 2 ] z

0 1

We know that for @ = 1 the solutions are /; (z) and Y; (z). The term In z contributes to Y; (2).

[g 291

In general, for a linear ODE of the form
xmy® +p ()XY e+ p ()Y =0

We can choose vector Y as
Y = [y, xy, x2y", -, x"1y@-D]"
For each element y;, we can obtain the recursive relation
yi=xI7yU, xyi = (= Dy + v

This leads to the matrix equation

o 1 0 0 - 0
o 1 1 0 - 0
w=apy=| © 0 2 L 0 Y
n—2 1
=pp(x) e =P () =1 =y ()

Global problem

Consider the extended complex plane C = C U {o0}, and the only meromorphic functions on C
are the rational functions, denoted as K. For matrix A € M(IK,n) and Y'(2) = A(2)Y (2), we
want to know when the equation only has regular singular points. For rational functions, we

can write the matrix A(z) as

k
Pi(2)
A(z) = ;(z—]—;)m’ + Py(2), deg(p;) <m,

If z; are regular, we have m; = 1 and P, is a constant matrix. To study the behavior at z = oo,
consider w = 1/z and

y 1 av 1 /1 1 1y,

T =r(5) g=w’ ()= G) T
If z= oo (w = 0) is a regular singularity, we require w™1A(w™1) to be analytic atw = 0,
which is equivalent to zA(z) having a limit as z — oo, and this requires Py(z) = 0. Therefore,

if the equation only has regular singularities on C, we have wY’ = AY with
K

K k
P; - P; -
A(Z)=Zz—jz-' A(W)=ZWZ-]—1' A(O)=_ij

=1 7 j=1

j=1 g

We can then use a linear fractional transformation to obtain



N

Y'(2) = A(2)Y(2), A(z)=z 4 ZAj=o
j=1

= zZ -z
Now z = oo is regular. The singularities z; decompose C into simply connected polygons Uy,
and there is an analytic solution of the equation in each of them. Every side z;z;, corresponds
to a monodromic matrix Mj;, and thus define a map (4;) » (M), which is related to the

Riemann-Hilbert problem.

» Asymptotic behavior near irregular singular points (6.3)
2"y (z) = A(2)Y (2), r € N, r=1

We call r as the Poincaré rank, and recall the following classification:
r = —1: Ordinary point r = 0: Regular singularity ~ r > 1: Irregular singularity

First, we can consider the scalar equation with dimension n = 1. We have

-1
. Y _a®d T o  a s
a(Z) = akZ B ; = ZT+1 = ZT+1_k + 7 + akZ
k=0 k=0 k2r+1
The solution is
r—1 1
Ay Ay _ -1
lny(z)=zk_rzr_k+arlnz+ k—er r, y(z) = P(z) zP €?(z™)
k=0 kzr+1

The exponent is p = a,., and the analytic function P(z) and polynomial Q (w) are defined as

r—1
a
k=0

k=r+1

For the matrix case, we still want to find a transformation P such that Y = PX with
Z"1X'(z) = B(2)X(2), B(z) = P7AP — z"*1p~1p’
The matrix B(z) should be as simple as possible. For the equation of B(z), we similarly obtain
z"t1p’ = AP — PB
Written in formal power series, the coefficients for z™™ are

[z™] z"t1P’ = [z™] Z kP, z*¥*" = (m —1)P,,_,, P, =0 for j <0
k=0

(2] (AP = PB) = " (AP — Pr_iB)
k=0

Therefore, we obtain the following set of equations



m
AOPm - PmBO = Z(Pm—kBk - Akpm—k) + (m - r)Pm—r
k=1

We want to properly choose B,,, to make the equations simple. Consider 4 is already reduced
to its Jordan normal form, which also gives P, = I and By = Ay. We need to iteratively solve

the matrix equation of the form
m-1
AoBy — Prlo = By — Ay + (Pm-kBx — AxPm_i) = By + Fpy
k=1
The LHS is always resonant. For simplicity, we assume that A, has n different eigenvalues and

is already diagonalized as A = 4;6;;. For each element («, ), we have

(Aa - AB)(Pm)aB = (Bm)aﬁ’ + (Fm)aﬁ
When a # [ (off-diagonal elements), we can choose

(Fm)aﬁ
Ao — Ag

(Bm)aﬁ =0, (Pm)aB =

When a = [ (diagonal elements), we can choose

(Bm)aﬁ = _(Fm)aﬁ: (Pm)aﬂ =0

Theorem 1. For the matrix equation z"+*1Y’(z) = A(2)Y (2), consider that A, has n different
eigenvalues. There exist an invertible P(z) and a diagonal B(z) such that Y = PX and
Z"1X'(z) = B(2)X(2)

Corollary 2. With a diagonal B(z), similar to the scalar case, we can define

Q(w) = Z kB_krwr‘k, p =B, F'(z) = ( z Bkzk‘r‘1> F(2), F(0)=1
k=0

k2r+1

Note that p is a constant diagonal matrix, Q (w) is a diagonal matrix with each element being

a polynomial of degree r. Then the solution can be written as
X(2) = F(2) z° e, Y(2) = P(2) F(2) zP €2z

The result uses the property that p and Q are commutable since they are diagonal.

Theorem 3. For an analytic A(z) with rank r > 1, consider that A, has n different eigenvalues.

The formal solution of the matrix equation z"*1Y’(z) = A(2)Y (z) is given as

Y(z) =V(2) z° ), P(0) =1



For arbitrary 8,, 0, € R with 0 < 8; — 8, < m/r, there exists R > 0 such that the equation has
an analytic solution in S(6,, 8,) N B(0, R), where S(6,, 8,) denotes the sector

5(0,,0,) ={z€C| 6, <argz < 6,}
Also, as z — 0 within the domain S(6,, 8,), the asymptotic behavior should be interpreted as

Y(2)z7P e ™) < ¥(2)

For an irregular singularity at z = oo, similarly consider w = 1/z and we have

The formal solution can be written as
Y(w) = Y(w) wP e?W)
The solution is analytic within the domain S(6,,68,) N{w € C| |w| > R}.

Theorem (Sibuya 1962). For 8, € R, there exists a sufficiently small § > 0 such that there is
a solution Y(z) in S(8, — 6,6, + m/r) N B(O,R).

Corollary 4. There exists § > 0, R > 0 such that there is a solution Y (z) satisfying Theorem 3

in the following domain

T
S ={ZE(C* Ig(l—l)—S<argz<;l}nB(0,R), =12, 2r

Stokes phenomenon

Now consider the intersection
T T
SUL+1) = {z €C |18 <argz < ;z} N B(0,R)

Corollary 4 indicates that there are solutions Y; and Y, in this domain S(I, [ + 1). Hence, there

is a constant matrix C;, the Stokes multiplier, such that Y;,,(z) = Y;(2)C,.

In S; and S}, respectively, we have
V@ zPe @)~ 7@, Y@z e ) ~P@, z-0
Multiply the second equation with the inverse of the first one, and we have
ez ) zrc, z7Pe=E") < ) z-0, ze€SLI+1)
For each element (@, 8), we have

(Cag pda(z™)-ag(z™) ,pa—pp Sapp  z—0, zeSUI+1)



When a = f (diagonal), we have (C;),, = 1. When a # B (off-diagonal), note that
Ag — Aq
r

Aa(z™") —qp(z™) = z7"+o(z7)

Consider aray y € S(I,1 + 1). If there exists a ray ¥ such that as z — 0 along y, we have
Re{(2 —24)z "} >0,  then (C)gp =0
If there does not exist such a ray y for the exponent, then nothing can be said about (C;);;. If

the eigenvalues 4,, are sorted by lexicographic order (4, 4;), then C; must be an upper or lower

triangular matrix, dependent on [ being odd or even.

We define the Stokes ray as those that lead to
Re{(A5 — 1)z} = 0

There are M = n(n — 1)r Stokes rays in total. Each ray corresponds to a Stokes factor.

Example: Airy equation

y =zy
The corresponding matrix equation is

v=[l v=D=)=0 ol

To analyze the behavior at z = oo, we rewrite it as

z7Y'(2) = [(1) 1621 Y, r=2

> Exercise

Regular singular point

_[n@ O — [—1/2 tz  z ] _
YA =1, @@= 7, 1/2 4 2|Y@ = Al2)y(2)
z = 0 is a regular singularity. The coefficients of the power series of A(z) are
_[-1/2 0 o1 _
a0=|" 1/2], a=ly 5] a=o0 k=2

We already have a diagonal A, which implies P, = [ and B, = A,. Form = 1 we have
(Ao — DPy — P Ag = By — Ay
Explicitly writing out the elements for P;, we have
_[a b —-a —-2b1_, 1 1
rele ol [0 Zdl=m-l g
We can obtain a lower triangular B;, as well as the corresponding P; as

el L el



Form > 2, there is no resonance and we can choose B,, = 0. As an example, form = 2
(AO_ZI)PZ_PZAO =B2+P1B1_A1P1
We can solve for P, as
P [1 /4 12
27 [ o 3/4)

Repeat this process and we can also obtain

p. — [—1/12 5/16
37 [-1/4 5/12)

The monodromic data (A, N) are then given as

11
A=dig(~35). N=Bi=[] g

B,=0

B;=0

The transformation P(z) is given as

1+ +12 13+ 1+12+53+
_ e | TR T12” 27727 T16”
P(z) = Pz = 1 3 5
> 2,34 2,242 34 .
k=0 4z+ 1+z+4z +1ZZ+

The fundamental solution matrix becomes

Y(z) = P(2)z0zV, 2z = diag (%\E) ZN — ; (lnl!z)lNl = [11112 2]

Bessel equation
We consider the Bessel equation with integer order
x2y" +xy' + (x? —n?)y =0, n € N*

The matrix equation is

_ [y +ny , (m 07,X -1 1
¢_[xy’—ny’ *® _<[0 —n+2n[—1 1)¢
We already have a diagonal A,, which implies P, = I and B, = A,.

_m 0 _ 1101
AO_[O —nl’ 41 =0, AZ_Zn[—l 1

Now A, is resonant, and the difference in eigenvalues 2n is even. For each order m, we need

to solve the following matrix equation

m
(Ag —mI)P,, — P,By = Z(Pm_kBk — A Pri)
k=1

The LHS is injective whenever m # 2n. We can set B,, = O for 1 < m < 2n — 1 and obtain
(AO _mI)Pm - PmAO == 677’1,2an _AZPm—Zr m= 2,4,"',21’1
We also know that B,,, is upper triangular, and denote (B,,)1, = k,. Explicitly writing out the

elements of P,,, from this recursive formula we have



—ma,, (2n — m)bm] _ [0 6m,2nKn]
—(2n + m)cy, —md, 1

This leads to

il [am—z —Cm-2 bmo— dm—z]
2nlam—2 —Cn2 by —dm

mam = (Zn + m)cm = (Cm_z - am_z), m = 2’4’ cee 'Zn

2n
1
(m - Zn)bm = mdm = ﬂ (dm—z - bm—z)' m= 2I4’ o Izn - 2
The special case m = 2n gives

1
by, =0, Kn = 2ndy, = %(dZn—Z - b2n—2)

Note that the monodromic data (A, N) are given as

_ _n 0 _ _ [0 Kk,
A_AO_[O —nl’ N_BZ"_[O 0
Hence, we only need b,, and d,,,. With the initial conditions by = 0 and dy, = 1, we have
dm—2 = b (n—1-1)!
—_ - —_ = < -1
dm = bm m(2n—m) ’ dar = bz 4t - (n—1V b<n
Therefore, we obtain
n *
KTl = m, n E N
The fundamental solution matrix is obtained as
noo - (In x)l 1 Kl
— AyN A |X K,lnx
®(x) = P(x)x™x", xh = [O ol Z = [0 1

1=0
The leading order term is

®(x) = [xO”

K,x"Inx
"o ] (1+0x?), z-0
Note that each column of ®(x) is a linearly independent solution of ¢p(x). We want to see how

®(x) is related to the Bessel functions, which satisfy the following recurrence relation

[xZ,’l(x) + nZn(x)] [ XZp_1(x)
xZp(x) —nZy ()] 1=xZp11(x)

Here Z,, (x) can be either J,,(x) or Y, (x). Focusing on the leading order term, we have

x™ 5
Jn () = o )

2" (n — 1)! x*In% D) +yn+1) ,
) = |- zn_l.i!—ll’ znl”fnr!l | (1+0Gc2))

For J,,(x), it is obvious to see

]n—l( ) 1 n n42
[_xx]n+1zcx) - m [XO ] +0(x"™"%)

For Y, (x), we can neglect the third term since it is related to x™, which is the other solution.



For the other two terms x ™™ and x™ In x, we have

Yo (x) x"Inx n
[_ - O~ (77—t =2 [fex" 0%)
X1 (X 2n+1 Ix— 1 x

Hence we check the factor k,, and show how ®(x) is related to J,,(x) and Y,,(x).

Linear fractional transformation
Consider Y'(2) = A(2)Y(z) defined on C = C U {0} with rational function A(z). The linear

fractional transformation is given as
aw + b dz ad — bc

= w+d E=(cw+d)2
We thus have
_ dF  ad—b d be
Pw) =Y(zw), (ZW - d§2 v (2(w)) = — — d)ZA(z(w))Y(w)

The transformed equation becomes

V'(w) = AwW)Yw), Aw) =

ad — bc (aw + b)
(ew+d)? \ew+d
The new coefficient A(w) is still a rational function.



Asymptotic Analysis of DEs (2): Linear ODE with Parameters

Forx € I € Randy € Q) € R", consider the following ODE with respect to a small parameter
€ € B*(0, ) given as
F(xry'y,'€)=01 Y(x0)=3’0

We want to study the asymptotic behavior of its solution y(x; ) as € - 0%,

» Formal power series expansion (7.1)
Assume that the solution can be written as

y(;€) = yo(x) + ey1(x) + &2y, (x) + -
The ODE now becomes

F(x,yo+ ey, +-,yp+ey; ++-;6) =0

The Taylor expansion with respect to € around py = (x, Yo, Vg; 0) is

oF oF . OF
F = F(po) + &[5 (olyn + 5.5 (po) i + 5 (o)

=0

2|22 i — T 0T ’
+e y2+ay,y2+2y1 ayayy1+2yl ay,ay/

OF L OF 1 O 1 . 9% 10%
dy Y17 5 9e2

For each order of &, we have

€% F(x%,50,50:0) =0,  yo=1y0(x)

Ly = Ay + By () 4 (GF)_IOF 5 _ (aF)_laF
L Y1 = AX)Y 1(X), = 3y’ dy’ 1= y’ de

Note that for [e1], the derivatives are evaluated at (x, yo(x), y5(x), 0). For [¢2] we have

F\ "
£ yp =A@y, + B0, B =—(55) ()

As long as the fundamental matrix of y' = A(x)y is known, we can recursively solve y,, (x).

There are several issues arising

¢ F may not be defined at € = 0.

¢  F(x,50,¥0,0) may not have a solution (e.g., boundary layer equation).
¢ The Jacobian dF /0y’ is not invertible at p, = (x, Vo, y4; 0).
¢

The properties of the formal power series are bad.

Now simply consider a function y(x; €) with its formal power series

y(x;€) = Zyn(x)e", -0

n=0



The equivalent statement is that for VN € N we have

1imy(x; €) = Yn-oyn()e" _ 0
£~0 yn(x)eN

If the function series has pointwise but not uniform convergence, then the remainder depends

on x and is unbounded at some points. The partial sum is thus not practical to use.

Example: Duffing equation
y'+y+ey}=0, y0)=1  y'(0)=0
Multiplying y' gives

112 12 <c'.4,_ N2 2 84_ €
(Ey +5y +Zy) =0, O Hy t+oyt=1+7

The constant is determined from the initial conditions. This leads to an elliptical integral

y d
x = ij 24
1 E\_ 2 _E 4
\[ (1+3)-y2 -3
We notice that y,;, = —1 and y,,.x = 1. The period of the oscillator is
Ymax dy
T=2 j
Ymin £ — 12 _E 4
\[ (1+3)-y2 -3

If we directly expand it into a formal power series, we have
o +eyi' +e?yy +- )+ Goteyi+ ety +)+e(o+ ey + €%y, +)° =0
The initial conditions are
() =1, y(0=0  y»0)=0  »(0)=0 k=1
For each order of &, we have

% vy +y,=0, y,=cosx
1
ey’ +y1+y; =0, V1 =§(c053x—cosx)—§xsinx

The x sin x term gives an increasing amplitude with x. We can similarly obtain

9 3

—__ 7 2 =GNy — —— x Si
Vo 128x cosx+32xsmx 256x51n3x+

The secular terms such as x™ cos x make the partial sum useless for computation. The reason
for this behavior is the resonance with the forcing term involving y, to y,,_;. Now we consider

a simpler version of the Duffing equation
y'+y+ey=0, y(x;e) =cos(Vl+ex)

The period deviates slightly from 2m, and the Taylor expansion will lead to secular terms. This

shows the limitation of the method of direct expansion.



» Poincaré-Lindstedt, Poincaré-Lighthill-Kuo (PLK), Strained coordinate method (9.3)
Consider the following example (Tsien, 1956)
x+ewu +u=0, u(l) =1
First we try using the formal power series
U =uy+ euy + %uy + -

For each order of &, we have

% xug+ug =0, u(1)=1, 1y =%
el xuy + uguy + uy =0, u; (1) =0, Uy =i(1—i)
2x x?
We can similarly obtain
€% xuy + uy + uguy +uuy =0 u2=—i(1—1)
’ 2x3 x?

The solution is ordinary around x = 1, but is singular at x = 0. In other words, the solution is

uniformly convergent in [a, +o0) for any a > 0, but not in (0, +0).

Strained coordinate (9.3.3)
We introduce the strained coordinate x = x (&) with the formal power series
ux; ) = up(§) + eug (§) + euy (§) + -
x(;8) =&+ exy(§) + e2x2(8) + -+
Now we denote u’ and x" as the derivatives with respect to . The operator becomes
d dxd 1 d
dx ~dede x'(©)de

Then the ODE becomes
(x+ew)u' +x'u=0

For each order of €, we have

1
€% &uy +uy =0, u0=g
el &ul +uy = —xqul — xjup — Uy, x (1) =u,(1)=0

Here both x; and u; are unknowns. We require that the singularity of u; at £ = 0 is not higher
than the singularity of u,. We want to find x; such that the RHS is ordinary at £ = 0. A simple

choice is to let the RHS be zero, which gives

G =~(or3) =0 nd). o

We can similarly obtain

€2 (x, +upug + (g + ug)uy + Euh + uy + upxy +ugx; =0
Xy  Xg

?—?; (1) =u(1)=0

Suy +u, =



The choice x, = u, = 01is valid. For n > 2, the equation is homogeneous with respect to x,,,
and we can always choose x,, = u,, = 0. Hence, we obtain an exact solution
1 € 1
u@Ge) =z x@e) =¢+5(¢-5)

Writing as u = u(x; €), we have

Example: Duffing equation
d?y s
Lz tytey' =0 y@©=1 »(0)=0
Now we consider the solution
y(x;€) = y0(§) + ey1(§) + 2y, () + -
x(x;€) =&+ ex1(§) + 2%, () + -

The second-order derivative operator becomes

d?y 1 g(y’(5)) _Yx =y
dx?  x'(§)d&é\x'(§) (x')3

The equation then becomes
y'x' —y'x" + x>y +ey3)=0
The initial conditions are
y0(0) =1, y(0 =0, ¥ =y0)=0  x(0)=0 k=1
There is no constraint on x;(0) and we can set x;,(0) = 0. For each order of €, we have
e ¥y +¥0=0,  y,=cos¢
el y1 +y1 = yoxi' + 2y5x1 — ¥5
Using the solution y,, we have
yi +y,=—sinéx; —2cosé x; —%cosf —%cosSE
The forcing term cos ¢ leads to resonance, and we want to suppress the secular term by setting

3 3
sinfx{’+2cos€x{+zcos€=0, x1=—§§‘

Then the equation for y; becomes

1 1
y{'+Y1=—ZCOS3f. y1=3—2(C0335—cosf)

We can further obtain (e.g., Fourier series expansion)

e yy + v, = yixg +yoxs + 26 x5 + 2y1'x] — 3y9 (x1)? — 3yoxoxs — 3¥5¥s
: 11 ! 1
= —sinéx; —2coséx, +mcosf +1—6c053€ —FSCOSSf



To suppress the secular term, we need to set

: " , 57 57
—sm€x2—2cosfx2+ﬁ8cosf=0, X =5ee

With this choice of x,, we can solve for y,. Eventually, the solution is

x=f(1—%e+%ez—---)=E<1+Zwksk>

k=1

This is the typical form of the strained coordinate for weakly nonlinear oscillations.

» Method of multiple scales (9.3.4)
y'+2ey'+y =0, y(0) =1, y'(0)=0

The exact solution is obtained from the characteristic equation
12+2€/1+1=0, Al'z=_£ii\/1_82

y(x) = e %* cos (\/ 1—e2x+ 90), 6, = —arctan d

1 — g2

First we try using the strained coordinate method
y'x" —y'x" +2e(x)?y" + (x)3y =0
For each order of &, we have
e ¥y +¥0=0,  y,=cos¢
el y/'+y, =—sinéx] —2cos&x; — 2siné
We still want to suppress the secular term, but now x; (§) becomes singular at & = 1
x; =1—¢&coté

The issue is due to the lack of amplitude information (e ~¥*) in the strained coordinate method.

In this damped oscillation, there are two (time) scales for the fast oscillation and slow damping,
respectively. We introduce a number of scales
Ty = x, T, = x, T, =c¢

Consider the solution of the form

y(x;€) = Y(Ty, Ty, -+, Ty; €) = Yo + €Y + £2Y, + -+
The goal is to convert the original ODE into PDEs with more degrees of freedom introduced.
With the notations D,, and 0y, the derivative operator becomes

ny—d—y— GY%—ZskaY—ZekakY

Tax T Lo ox LS o,
dx kZOa k 0x k=0 J k k=0

The damped oscillation equation then becomes
[02 + 28000, + €2(2040, + 02) + 2e(0y + £0;) + 1](Yy + €Y; + €2Y,) = 0(e?)



The initial conditions are analyzed as
y(0) =Y (To(0),T1(0),-+-;€) =Y(0;¢) = ¥,(0) + ¥, (0) +--- =1

y'(0) = (Z e"ak> (Z elYl(0)> =0

k=0 120
This leads to the initial conditions for Y, (0) given as
Y,(0) =1, Y,(0) =0, k=1

For the derivatives, the first several orders give the initial conditions

00Y,(0) =0, 0,Y,(0) + 0,Y;(0) = 0, 00Y,(0) +0,Y;(0) +0,Y,(0) =0
For £° term, we have

g% 0%Y,+Y, =0, Yo = Ag(Ty, ) cos Ty + By(Ty, -+ ) sin T,

For € term, we have

el 0%Y, + Y, = —20,0,Yy — 20,Y, = 2(0,40 + Ag) sinTy — 2(0,B, + B,) cos Ty
To suppress the secular terms, we set the coefficients of the resonant forcing as zero

0,40+ 4, =0, 0By +B, =0
We can update the general solutions for 4, and By, as
Ag(Ty, ) = eTNAy(Ty, ), Bo(Ty, ) = e 1 By(Tz, )
The equation of Y; then gives
08V, +Y, =0, Y, =A (T, )cosTy+ By(Ty, ) sinT,
For €2 terms, we can further obtain
05Y, + Y, + 2(0,0; + 09)Y; + (2040, + 02 + 20,)Y, = 0
Note that from previous results, we already have
Yo = e A (T,, ) cosTy + e T1By(T,, -+ ) sin T,
0,00,Yy = —e~T1(0,4,) sinTy + e~"1(9,B,) cos Ty, (02 + 20,)Y, = -Y,
(090, + 09)Y; = —(0,4; + Ay)sinTy + (0,B; + B;) cos T,
The equation for Y, is thus obtained as
05V, +Y, = (20,40 + By)e Tt sinTy + (—20,B, + Ag)e T cos T,
—(0,A, + A))sinTy + (0,B; + By) cos T,

To remove these secular terms, we require

1 1 L1
azAO = —EBo, azBO - EA(), azAO + ZAO = O
61A1 + A1 = O, alBl + Bl =0

We can update the general solutions of the coefficients as

1 1
Ao(Tl’ ---) = AO(T3’ -..)e_Tl cosS (ETZ) + BO(T3, "')e_Tl Sln (ETZ)

1 1
BO(T1; ---) = AO(T?”-..)e_Tl Sln (ETZ) — BO(T3, "')e_Tl cos (ETZ)



Ay (Ty, ) = e "1 A(Ty, ), B,(Ty,++) = e B (Ty, )
The equation of Y, then gives
agYZ + YZ = O, Yz = Az(Tl,"')COS TO + Bz(Tl,"‘)SinTO

As a summary, now we obtain

1 1
Yy = [AO(T3, +)e T cos (E TZ) + By(T3,+-)e T sin (E Tz)] cos T,

+ [Ao(Tg, -)e T sin (%Tz) — By(T3,-+-)e 1 cos (%Tz)] sin T,
Y, =e 1A (Ty, - )cosTy + e 1B (T,, -+ ) sinT,
At the initial x = 0, we have
Y0(0) = Ap(T5,++) =1, 00Y9(0) = —B(T3,-) =0
Y1(0) = Ay(Tp,++) =0, 0,Y5(0) + 0,Y1(0) = —Ao(T5,-+) + By(T3,) = 0

With these coefficients, we have

Y,=e™ 1 cos(T —lT) Y, =e TtsinT
0 0o~ 512), 1 0

The summary of the current solution is
1

y;e) =Yy +e¥y+--=e ¥ [cos (x —Eszx + ) + esin(x + )] + -
Example 1: Van der Pol oscillator (p397)
y'+e(? -1y +y=0
We want to obtain a general solution. The equation becomes
[ag + 286061 + 82(26062 + 612) + ](YO + EYl + SZYZ + )
+ S(YOZ + 2€Y0Y1 - 1)(60 + 561)(Y0 + EYl) + (YO + €Y1 + EZYZ + ) = 0
For €° term, we still have
e’ agYo +Y =0, Yo = A(T,, Ty, "')COS(TO + By (T4, Ty, ))
For £! term, denote & = T, + B, and we have
81: agyl + Yl - _26061YO - (YOZ - 1)60Y0
= 2(0,4,)sin8 + 24, cos 8 (0;B,) + (A% cos? 0 — 1)A; sin 8

1 1
- (261A1 — A+ ZAi) Sin 0 + 24, (3, B,) cos 0 + 7 A sin 36
To suppress the secular terms, we require
1
261141 - A1 + ZA% = 0, alBl =0

We can then solve for A; and B; as

L1 (CieT 4+ 1) A 2
- = e I} = ]
Ai 41 1 \/1 + C,(T,, -+ )e T

B, = Bz(Tz; )




Now the equation for Y; can be solved as
3

2 1 3 : Al .
ogY1 +Y, = ZAl sin 36, Y, = —3—251n(39) + C, cos 6

The summary of the current solution is

_ 2
J1+ G (e2x, -+ )e=x

y(x;€) cos(x + B,(g%x,++)) + €¥; + o(¢)

Example 2: Mathieu equation (9.2)
y"'+ () +ecosx)y=0
We want to properly choose § () such that the solution still has a period of 27r. Consider
5(e) =6y + &6, + 26, + -
Directly expanding y(x; €) into the formal power series, we have
g +ey! + )+ 6y +e6++ecosx)yg+ey; +--) =0

For £° term, to keep the 2m-periodicity we have

€% yo' + 6y = 0, Yo = Ao COS(\/‘S_OX) + By sin(\/é‘_ox) ) 8o =n* mneN*
Take 8, = 1, and for £! term we have
et yi' + 6oy = —81¥y — Yo cosx
yi' 4+ y1 = —(8; + cosx) (4, cos x + By sin x)

To suppress the secular terms, we require §; = 0 and then y; is solved as

AO AO BO . .
Yy = —7+?0032x+?sm2x+A1 cosx + By sinx

For €2 term, we have

g% y)' +y, = —=6,(Ay cosx + By sinx)

Ay A By . :
—COSX(—7+?COSZX +?sm2x + A, cosx + B, smx)
To suppress the secular terms, we have
A 8 °) = 0 By (6 A 0
0(_2+12)_ ’ _°(Z+12)_

Therefore, since the initial conditions determine A, and B, not all conditions will lead to the

same period of 2r. When A, or B, is zero, it is possible to keep the same period.

Now we study the Mathieu equation using the method of multiple scales. Directly set §, = 1
and 6; = 0, and we have
(02 + 2£0,0; + €2(20,0, + 02)](Y, + €Y; + £2Y,)
+ (1 4+ ecosTy + £28,) (Y, + &Yp + £2Y,) = o(&?)

For €9 and ¢! terms, we have



50: agY0+Y0 =O, YO =A0(T1,"')COST0+B0(T1,"‘)SinT0
) . 1+cos2T, By .
51: ao Y1 + Y1 = _2(_61140 Sin TO + alBo CoS To) - AO # - 751“ 2T0

To suppress the secular terms, we require
0140 =0, 01By =0, Ay = Ao(T, ), By = Bo(Tz, ")
The general solution to Y; is the same as previous
A, A B
Y, = —7" + ?Ocos 2T, + zosin 2Ty + A, (Ty, ) cos Ty + By (Ty, ) sin T,
For €2 term, we have
g% 02Y, + Y, = —2(—0,A, sinTy + 0,B; cosTy) — 2(—0,4, sin Ty + 9,B, cos Ty)

B,

1 1
+-AgcosTy — —AycosTy ——sinT, — 6,4, cosTy — 8,BysinTy + -+

2 12 12
The non-resonant forcing terms are neglected. To suppress the secular terms, we require
1 5
261141 + 262140 = (E + 62) Bo, —26131 - 26230 = (_E + 52)140

Note that from & term, we have A, and B, depending on T, and further. Consider a simpler

case with A; = B; = 0, which correspond to specific initial conditions. This gives

1/1 1/5
0,40 = E(E + 52) By, 0,By = E(E - 52)140

This leads to a second-order equation for A, as
622140 + KZAO = 0, KZ = —

Depending on the sign of K,, we have

1 5

AO = C1 COS“Ksz + CZ Sin‘/Ksz y 62 < _E or 52 > E
1 5
Ay = CleV_KZTZ + Cze_V_KZTZ, —E <6, < E

The summary of the current solution is
y(x;€) = AgcosTy + BysinTy + €Y + -+
For the exponential case, the finite energy of the system implies C; = 0, while the exponential

decay cannot be observed. This corresponds to the band gap.

» Exercise
Method of multiple scales 1
u"(t) + w?u = eud, u(0) = q, u'(0)=0

We introduce a new timescale t and the solution of the form

o]

t=t+efi(t)+-, u= Ze”un(ﬂ, t(0)=0

n=0



The derivative operator becomes

W eI e 4

dt i’ de? de2
For £° term, we have
d?u du
g0: F 20 + w?uy, =0, ue(0) = a, —0(0) =0, uo () = acos(wt)
For £ term, we have
. d?u, d?u, 5
€ = + w?uy, = ul — 2f] R = a3 cos3(wt) + 2f] (t)w?a cos(wt)
To suppress the secular term, the coefficient of cos(wt) should be zero, which gives
3a® , ) 3a? 3a?
THAO0a=0,  fO=-1— AO=-:

Therefore, the asymptotic solution is

3a?
u(t;e) ~acos|wt(1—e—+- ||, e->0
8w

Method of multiple scales 2: Damped van der Pol equation
u'(t) +u=¢e(1—u?)u'(t) — eu?, u(0;¢) = q, u'(0;e) =b

We can look for an asymptotic solution in the form

u(t; €) ~ Z e"u, (t*, 1), T = &t, t* =t(1 4+ wye? + )
n=0

The derivative operator becomes

du — 1+ L) u au

= A Hweet Frar™
d?u 0%u 0%u 0%u
—_— = 2 2 2

2 (1+2wye? + )at*2 + 2e(1 + wye? + )at*aT + € 5.2

For £° term, we have

0.

du
+uy =0, u(0,0) =aq, d—EO(O,O) =b

The leading order term in the solution is given as
uy(t*,t) = Ag(t) cost* + By(1) sint*, Ay(0) =a, B,(0) =b
For € term, we have
S 2 DL (1 gy 2
at* ot*ot at
The coefficients of the secular terms need to be zero, which leads to

+u =— —uo

1
sint”: 245 — Ag + 7 (45 + B§) (Ao — 3B,) = 0

1



We still have
d 2 2 2 2 1 2 2
dT(AO+BO)= (A0+Bo) 1_Z(A0+B0):|

This inspires the following transformation

Ag(1) =R(D) cos (1),  Bo(1) = R(1) sin (1)
The ODE system then becomes

2

(R?)' = R? (1 - %) P = —%RZ, R(0) =+ a? + b?, tan p(0) =

Hence we obtain

R B 2 @ = " b 31 (eT+C) 4
() = T Co o(t —arcana 2n T1c)

The leading order term of the asymptotic solution is

2
u(t; e) ~ \/ﬁcos(t —¢(0), e-0

Ast — oo, we have R(t) — 2 indicating a limit cycle.

2_
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Asymptotic Analysis of Differential Equations (3): WKBJ method

Forx € I = [a,f] € Randy € Q € R", consider the following ODE with respect to a large
parameter A given as

y')+ ) yx) =0, 21—+
The function f (x; A) has the asymptotic expansion

Flx 1) ~ A2 an(x)an(/l), Ao+, x€l

n=0

This method originates from the analysis of Schrodinger equation

n: _ 5 ., 2m({V —E) “ o
—%’JJ + VY = EY, Y +T¢—

The classical limit corresponds to i = 0% (1 = A~ - +0). The issue of this problem lies in
the function f(x; ) — oo as A —» +oo. Note that

14

y_+y=0 = y=0 when A - 4o

f

We cannot obtain a useful solution from £° term, since e = 171 - 0% is in the highest-order

derivative term, unlike the ODE with parameters analyzed by previous methods.

» WKBJ method (7.2)
We first transform the ODE into the Riccati equation

!

u=(lny)’=y;, u+ut+f=0

From the solution of the Riccati equation, the solution of the original equation is

y = exp (jxu(s; A) ds)

u(x; 1) ~ Zun(x)bn(/l), Flos ) ~ 22 Z fi0a, (D), A - +oo

n=0 nz0

Consider the asymptotic series

This implies the following constraints

aM) =1, a1 (D) =0(an (D), bpei(@) = 0(by (D)), A1 +oo
The Riccati equation becomes
[0 (X)bo () + uy (X)by () + -+ 1" + [ug ()b (1) + uy ()b (A) + -+ ]2
+ 2[fo()ao(D) + fi(x)a; (1) ++-1=0

The leading order terms are

up()bo (D) + u§ (Vb (D) + A fo(x) = 0(bo(D)) + 0(bF (D)) + 0(4?)



We analyze the dominant balance among these three terms, and we need to set

boM) =24, uf() + fo(x) =0(2?),  ue(x) = +/—fo(x)

The turning points at which f,(x) = 0 govern the behavior of the solution in different regimes.

The next order terms give

uh (O + 2uy ()uy (x)Aby (1) + 22£, () a; (A1) = o(A) + 0(Ab, (1)) + 0(2%a, (1))

There are several cases depending on the order of a, (1):

¢ Case 1: Dominant balance of term I and II (special C = 0 of Case 3)

2a; (D) = o(h), al()l)=o(1), b =1 w(d) =0

A 2uy
¢ Case 2: Dominant balance of term II and III
f
=o(Xa (M), b)) =2a,A), w)=-5-
0
¢ Case 3: Dominant balance of all three terms
_ uy + Cf;
AmAa@=C b=l w)=-—7=

This process ends when we reach by (1) = 0(1), and this gives
N

w2 ~ Y un(b () +0(D), A e

n=0

y(x; 1) ~ exp (Z b, (1) jxun(s) ds) (1 + 0(1)), A— +oo
n=0 *o

Usually, we study the case with a,,(1) = 17", from which we choose u(x; 1) as

ulx; ) ~ A Z U, (x)A™™

nz0

The Riccati equation becomes

Z W (A + (Z Uy (x)/l‘k> (Z ul(x)/'l‘l) + Z £,00A™ = 0

nz0 k=0 =0 n=0

For each order of A, we have

22 uf+f=0, u==+J-fp

n n-1
1
AT Up_q + E Uplp—k + fn =0, Up = — u (un—l + E UgUp— + fn)
0
k=0 k=1

Consider x, € (a, B) such that f(x,) # 0, and assume that we can further find § > 0 such that
fo(x) > M or f,(x) < —M when x;, € B(x,,5). We also assume f,, € C*, and we have



u(x; 1) ~ Aug(x) + u;(x) + 0(A71), A > +o
The first two terms are given as

w+fi_ 1fi A
2u, 4fy 2u

uy(x) = £/ —fo, u(x) = —
Therefore, we have the solutions
f ) fi
iyt 2J~fo
1 x 1 r* 1
yE( ) = f, Yexp (ij AJ—fo ds iij \/f_f ds) (14 0(D)
X0 X0V~ Jo

More specifically, depending on the sign of f,(x) on B(x,, §), we have

ut(A) = £A—fo —

yE(; ) = f, *exp (ii/lj Jiods+= j — ds) (140(0),  folxe) >0

_1 x _1
yEQ; ) = |fol 48Xp<i/1j VIfol d5+§
X0 X0

ds) (140(1), folxe) <O

Example
y'(0) + 2+ eu(@)]y(x) =0, 24— +oo
This describes the propagation of light in a medium with spatial variation in the refractive index

given by eu(x). For this equation, we have

fo=1, fi=0, f2 = eu(x), fn=0 n=3
Directly from the WKBJ method, we can obtain

urf() =4+i, U@ =0 W)=+ u(x)

Since f, > 0, the solution is
+ ] ie (*
yEi(x; 1) = exp| £id(x — x) * 2—/1] p(s)ds |- (1+o0(x™1), 21—+
Xo

The dominant term is a high-frequency oscillation.

Consistency of WKBJ asymptotic series
We first study the case with f;(x,) > 0, which gives

W = 2VhHM, W@ =- (u » +Zuk & +fn>

Denote the exact solution as u(x; 1). We want to know if there exists & > 0 such that



u(e; ) — AYN_ju, (x)A™™

1-N-1

30, N - oo, x € B(xy,6)

Denote the partial sum as uy (x; A) and the difference as Ay (x; A1) = u(x; 1) — uy(x; A). The
initial value of the error at x = x satisfies
Uy(A) = Ay(xo; 1) = 0(A7Y), A - +oo
With u = uy + Ay, substituting it into the Riccati equation leads to
Ay +uy + A% + 2uyAy +ud + =0, Ay + A% + 2AugAy + AyAy = By

We organize some terms into Ay and By with the following behaviors
N
Ay ) =2 Z u, A7 =0(1), By(; ) =uy +ud +f=0@A"N)
n=1
Introduce an exponential integrating factor

E(x,y; 1) = exp (2/’1 jxuo(s) ds) = exp (21’/1 jx\/fo (s) ds), g—i = 2Auy(x)E
y y

Apply it to the Riccati equation, we obtain

d
dx [E (x, x0; DAy (x; D] = 2AuoAyE + AYE = (By — AyAy — ARDE

Integrate both sides, and with the initial values we have

X
E(x, %03 Dy (5 2) — Uy(A) = j E(s,x0: ) By — Axdy — A%) ds
X0
Since E(y, x; 1) = E~1(x, y; 1), this leads to

Ay (e 2) = Ty[Ay] (x5 2) = Uy(DE (x0, % 4) + ij(S, x; 1) (By — AyAy — AF) ds

X0
The nonlinear integral operator is denoted as Ty. The above expression implies that Ay is a

fixed point of Ty. For two functions wy, w, € {f € C° |||f|l = sup|f(x)| < M}, we have

”TN[Wl] - TN[WZ]” < ”Wz - W1|| < C15||W2 - W1||

X
j (Anl + ] + Iw,]) ds
X0

We can choose 6 such that ||Ty[w,] — Ty [w,]|| < |lw, — wy ||, which is a contraction mapping.

Eventually, we have

C
1ax 1l = 1Ty A1 < 57 = 0@™)

This proves that if initially we have O (A™V) error at x = x,, then it holds uniformly over (a, f8).

In terms of the case with f;;(x,) < 0, for the + solution we have

ug () = Ifo ()l



The integrating factor now becomes

E*(x,y; 4) = exp (zz j JH® ds)
y

When A - +o0, it is an exponential growth (x > y) or decay (x < y). In this case, y*(x; 1) is
consistent only in [x,, X, + &). Similarly, y~ is consistent only in (x, — &, x,]. The validity of

WKBJ asymptotics is in the direction of exponential growth.

Turning points
Consider the following example
floA) =22x, y"+2xy=0
The ODE can be transformed into
z = —21%/3x, Y'(z) —zY(2) =0
This is the Airy equation, from which we can write down the general solution as
Y(z) = C,Ai(2) + C,Bi(2)
Forx <0, f(x) < 0, when A - +00 we have z - +o0

1 1 _2
Ai(z) = ﬁzl/“ e 323/2 (1 + 0(2_3/2))
1 1
Bi(z) = —_1—/4e 3 (1 + 0(2_3/2)) , Z—> 4o

Forx > 0, f(x) > 0, when A - +o0 we have z > —oo
1 1 2 T
Ai(z) = TIIT [sin (— |z|3/2 + —) + 0(|Z|—3/2)]

Bi(z) = [cos( |z|3/2 + 4) +0(|zI~ 3/2)] Z—> —

T| |1/4

Near the turning point, the transition from exponential to oscillatory behaviors is connected by
the Airy function. We can define three regimes: left (y;, exponential), middle (y,,;, Airy) and
right (yg, oscillatory). The connection problem is to find a proper yz given the solution y;,

such that there exists y,, to form a smooth solution near the turning point x,.

Consider another example

fl; ) =2sgn(x), ¥+ flD)yx) =0
We can obtain the exact general solution as
y=Ae** +Be ™, x<0, y=Ce*®+De ™, x>0
The connection conditions can be chosen as y(0~) = y(0*) and y'(07) = y'(0*). This gives
C=1—iA+1+iB D=1+iA+1—iB
2 2 2 2
For asymptotic analysis, we first need to choose a solution in x < 0 such that




yi=eM(1+0(1), x<0, 1-+m

In this case, the connection problem is well-posed and we obtain
a=1, B=0, =L p-lLf!
I - Y, - 2 ) - 2

However, if we choose the other solution in x < 0 such that

yi =e(1+0(1), x<0, A-+w

Since e?* = e *0(1) for x < 0, the coefficient A is arbitrary and thus we cannot determine a
unique oscillatory solution in x > 0 to form the connection. Vice versa, if we choose a solution
in x > 0 such that

yr = Ce** + De * +0(1), x>0, A- 4o
The connection conditions give

A_1+iC+1—“) B_l—iC+1+i
) 2 2 2

The asymptotic behavior for the solution in x < 0 is

y, =Ae?™ + Be™ =Be™*(1+0(1)), x<0, 1- 4w

If B = 0, then we need to refer to higher order terms to pose the connection problem.

We assume that I = (a, 8) only has one turning point x, such that with f; (x,) = v? > 0. The
functions are smooth with f,, € C*(I). For f,(x), near the turning point we have
folx) =v?(x —x.) + o(x — x.)

We want to find 6 (1) such that there exists a consistent asymptotic solution within the region
x € (x1,x. — 8 U (x, + (D), x7)

Based on WKBJ results, we first obtain

up () = /2 (e —x) +olx —x) = 0 (VIx = x.])

Specifically, we have

Uy = v Ix—x*|+0(\/|x—x*|), x < X,
uy = tivy/x — x. + o(/x — x.), x> x,

Since f,, is finite, by induction we can further estimate
up + fi

up(x) = — = 0(lx — x.|™)

2u,
1 , = 1-3n
u,(x) = BN Up_q + Zukun_k +f|=0 (Ix - x| 2 )
0
k=1



To obtain a valid asymptotic series, we require

13

_ 2 2(n+1) ,—
U AT |x = x, |22
lim =

3
= =AYx—-x.]2=0
A—>+00 unﬂ_(n_l) | |

3

This leads to the condition on 6(4) as

3 2
lx —x.]72 =0(1), 6(1) =217P, 0<p<§

In the outer region, it can be shown that the consistent solution exists for 0 < p < 2/3.

For x € (xy,x, — A17P), we have

1 X 1 X 1 3p_,
YI(x:/'l)=|fo(x)I_ZeXp</1 j JH@lds - j %m)(uo(ﬂ’ ))
X X« 0

Forx € (x, + A7P, x,), we have

YECG D) = fol) ¥ exp (J_rujx\/fo(s) ds + %jx h(s) ds) (1 +0 (/137”-1))

Across the turning point for x € (x, — §(4), x, + 6 (1)), we need to directly solve the equation.
We assume that for sufficiently large A, f (x; A) only have one zero point x,(1). As A - +oo,

x,(4) becomes the turning point x,. For sufficiently small |x — x,|, we uniformly have
folx; ) = v (x = x.(1) + o(x — x.(1))

fo) =22 (x —x.(D)(1 + (x —x.(D)h(x; 1), h=0(1)

With the same transformation
x =x,(1) — az, a = ()23, Y(z; 1) = y(x, (1) —az; 1)

The original ODE is converted into the Airy equation

Y —zY = 272822g(z; )Y, g=0(Q), z-0
Consider the general solution satisfying

Y(z;A) = a(z; 1) Ai(z) + b(z; 1) Bi(z), Y'(z; 1) = a(z; A) Ai'(z) + b(z; 1) Bi'(2)
This implies that we choose the coefficients under the following constraint
a'(z; 1) Ai(z) + b'(z; 1) Bi(z) = 0

Now the Airy equation becomes
a'(z; 1) Ai'(z) + b'(z;2) Bi'(z) = 172322g(z; 1) (a(z 1) Ai(z) + b(z; 1) Bi(2))

Using the asymptotic behaviors of the Airy functions and their derivatives, the determinant of

the Wronskian and its inverse are obtained as

1 (Bi’(z) —Bi(z))

1
detW = Ai(z) Bi'(z) — Ai’'(2) Bi(z) = pr w-1= W \-A' (D) Ai(2)



These lead to an ODE system for a(z; A) and b(z; 1)

' _2 , (Ai(z) Bi(z) [Bi(2)]?
(Z) =-mA sy ( —l[ZAi(zl)]Zz —Ai(lz)z Bi(z)) (»)

With initial conditions at x — x, (1) = £A7P1 given by the outer solution, we want to show that
the coefficients a, b are nearly constant when 4 — +o0, as indicated by the ODE system.
x—x,() = —az = FA17P1, z = +v?/3)2/3-P1 = +C 24
The initial values at the left endpoint can be written as
a(CA% ) =1+ 6a, b(CA9; 1) = 0+ C6b, da,8b = 0(1)
Integrate the ODE from CA? to an arbitrary z with |z] < CA?

a(zzA)—1—6a\ _ 2% , C(AI(Q)Bi({)  [Bi()]? a({)
( b(z;A) — C6b )‘ A3 ) b g@”u(—[Ai(g)]z —Ai(0) Bi(()) (b(()

From this integral equation, it can be shown that

)

5q9_2 =
lall = lla(z A) — 11l < |8al + ¢ A2 73(llall + ||B]| + 1)

7 59 _2 -
IB]| = W @b (z DI < 16b] + ¢,42 3(llall + [|B]| + 1)

The function W (z), which describes the order of [Bi(z)]?, is defined by

4,372
W(z) =e3" , z>0, W(z) =1, z<0

For the norm to be bounded by a finite value when A = +oc0, we require
5¢ 2 0 2 < 4 S 2
2 3°0 9737h<1p P2y

Therefore, the overlap domain between the inner and outer regimes is

A28 < |x —x,| < 173/5

Suppose that x;, = x,(1) — A7P with2/5 < p < 2/3, as A —» 4+ it can be shown that

HeIs =yt (1roam +ow ), [ Las=o(1h)

x. A fo(s)l

x 2 3p
A [ V@l as = 22 2(1 + oG + 0r1)
Xk
With these results, we have

a0 7)) = 1.p _E 1-32 -2 37”—1 1—571”
yi (x;A) =v72 A4 exp 31//1 2 J{1+0(22)+0(A +0(1

d 1 2 3 5 S
Y Gy = vz 2 exp (— §V/11‘Tp) (1 ro(12)+o0 (ﬁp-l) +0 (,11-7”))

In the overlap domain, y;" can be represented by a linear combination of the Airy functions.



From previous analysis, the coefficients are given as

a(z; 1) = nBi'(2)Y(z; 1) — nBi(z) % (z; 1)

dy
b(z; 1) = mAi(z) P (z; 1) — mAi'(2)Y(z; 1)
For the connection problem, we have
Y(z; 1) =y (CA%; 0), x, —x. (1) = —az, = —A7P1, z, = v2/3)%2/37p1 = C 4
At the left endpoint of the overlap domain, we obtain
11 Voo 11 4 3 3q
a(C2%1) = 2T v 3 25 (1+6a),  b(CATA) =073 Asexp (—gc:za 2 ) (1+ 8b)

Hence, in the neighborhood |x — x,(41)| < A7P1, or equivalently |z| < CA9, we have

VG A) = Y (z;2) = 29w v3 45 [1 + E, ()] Ai2)

+2VT V73 25 WL(2) E, (A) Bi(2)

For the asymptotic expression of dY;" /dz, just add a derivative to the Airy functions. The error

term E, (1) represents a possibly different function satisfying
E,(1) = 0(4=7/2) + 0(%/>1) + 0(1=572), 1> +oo

The optimal error is obtained when p = 1/2, which leads to an estimate of 0 (A~1/4).

We also need to represent y; as a linear combination of the oscillatory solutions at the right

endpoint xz. Specifically, take xz = x,(41) + A7P1 (equivalently zz = —CA%) and we have

1 2 3
i Gegi A) = 2v72 A4 [sin (§ ) s %) +E, (/1)]

d 1 ..p 2 3p W
— vyt (xp: ) = 2v2 1174 [ (_ =7 _) ]
Pl (xg; A) =2v2 A cos |3 vA + 2 + E,(1)
The oscillatory solutions are given as

1 210 3
ya(xg; 1) =v72 /’l% exp (iévll_Tp) (1 + E, (/1))
d 1P 2i ;3
ayg(x,;;/l) =tiv2 1 4exp (i gv)l 2 ) (1 + Ep(/l))
Hence, we have
yi (s ) = (7™ + B, (D) v (6. 1) + (€™ + E, (D) vz (5 2)

This is similar to the result of a previous example where f (x; 1) = 12sgn(x).

For f,(x) with the following form at the turning point x,

fo(x) = (x —x,)™g(x)

The procedure remains similar, but instead of Airy functions, we need others for connection.



» Langer transformation (7.2.5)
For simplicity, consider f(x; 1) = A% f,(x) that only contains the leading order term
Y'() + 2 f(x)y(x) =0, A-+oo
We consider the nonlinear transformation
vy ) =a@vxD),  x=g6), V(D =v;D)
Eventually, we obtain an ODE of the form
a' (x)

V'(§D —228V(ED) =FOVED,  F@) = OICIOE

x=g~1(§)
Langer’s method provides a uniformly small error of 0(A71) over a fixed-size interval around
the turning point, and can give more accurate information in the neighborhoods than techniques

based on rescaling and matching to WKBJ formulae.

» Exercise
Wave equation in a medium with vertically varying property

Assume a medium with vertically varying phase speed c¢(z). For a propagating wave solution

of the form ¢ (z)e!**+-»8) the wave equation becomes
2
m?(z
— k% —12 =m§-£=m§fﬁ2(z)

(@) +mA(DP(2) =0, M) = 5 —

Here ¢p(z) can be interpreted as the mode coefficient and m(z) the vertical wavenumber. We

consider a reference value m, > 1 (z) as the parameter. Under the high frequency limit w —
+00, we also have f(z;m,) = m?(z) - +, which can be studied by the WKBJ method. We

consider the following asymptotic solution

!

u(z;m,) ~m, Z u,(z)m;", u(z;m,) = % = (In¢)’

n=0

We recognize the expansion of f(z; m,) as

_ m?(z)
fime) =m3 ) fu@dm",  fo@) = () = —
nz0 0
We always have f;;(z) > 0. Hence, the WKBJ result gives
So _h __fo

U@ =y~fo =M@, wm@=-r-5-=-g=

The positive root is chosen for uy(z). The solution for ¢(z) is

¢(z) ~ fo_Z exp (imoj \/ﬁds) = mné) exp (lj m(s)ds)

-1/2

The amplitude is proportional to m~"/4, which arises from u; term. The phase is accumulated

along the vertical propagation path that comes from u, term.



Eikonal equation

Consider the 3D acoustic wave equation for pressure p(x, w) under the high frequency limit
(1)2
V2ﬁ+ﬁﬁ=0, w — +00
We assume that the density p is constant, and the phase speed c(x) varies in space. The WKBJ
solution seeks for one that consists of an oscillatory exponential factor modified by slowly

varying amplitude. The asymptotic series for the solution takes the form

j A
plx, w) = elwt™® Z(lnT()xg

nz0
The assumption here is that only one geometrical wavefront passes through each point. If there
are several wavefronts, the solution can be represented by the addition of such series. The phase
factor wt(x), where T(x) denotes the travel time, can also be written as kyL(x), e.g., in optics

where L(x) denotes the optical path. Now consider the general case

. fo ()

VZp ;w)p =0, sw) = (Iw)? ) ——

P+ f(x;w)p O w) = (iw) o)

n=0
The equation becomes
A VA VA
. 2 2 2 n . n n
— E 2 .

(iwV*T — w?|VT|?) (iw)n+ iwVTt o) Gy

n=0 n=0 n=0

A
+(w)? [Z (iﬁ)k] G| =

k=0 120

Each order gives the following equation
(iw)z: |VT|2 + fO = 0, (l(l))l A()VZT + A1|VT|2 + 2Vt - VAO + (f0A1 +f1A0) =0

n
(i0)2™: A, V2T + A,|VT|2 + 2z - VA,_, + VA, , + Z fhy =0, n>2
k=0

For our specific case, we have

1
fO(x)=_c2—(x)' frn(x) =0, n>1

The highest order leads to the eikonal equation, with 7(x) contours being the wavefronts
1
c?(x)
The next order gives the first transport equation, which is the conservation law of amplitude.
AVt +2VT-VA; =0, V-(43V1) =0

|V|? =



Asymptotic Analysis of Differential Equations (4): BV Problems

Forx € I = [a,B] € Rand a(x), b(x) € Cla, B], consider the boundary-value problem with
respect to a small parameter € given as
ey +alx)y’'+ b(x)y =0, y(a) = A4, y(B) = B, - 0"

» Existence of solutions for BVP (8.1)
For a fixed I = [a, B] with y(a) = A and y(B) = B, denote this problem as BVP(4, B).

Theorem. BVP(4, B) has a unique solution is equivalent to BVP(0,0) has a unique solution,

which is the trivial solution y(x; 1) = 0.

Proof. When BVP(4, B) has a unique solution, it is obvious that y = 0 is the unique solution
for BVP(0,0). Now consider BVP(0,0) has a unique trivial solution. We start from the solutions
of the following initial-value problems (IVP)

eyi’ +ay; +by; =0, yi(@) =0,  yi(a) =1

ey; +ay, +by,; =0,  y,(B)=0, y,(f)=1
We say that y,(B8) # 0 and y,(a) # 0. If not, then y; becomes the solution of BVP(0,0) but
with non-zero y; at the boundary, which contradicts the uniqueness of the trivial solution. Then
we can construct the solution of BVP(4, B) as

B A
y(x) = m)ﬁ(x) + m}’z(x)

This solution is unique since BVP(0,0) only has the trivial solution. ]

Now we only need to study when BVP(0,0) has a unique solution

ey +a(x)y' +b(x)y =0, y(a) =y(B) =0, e—0*
First we introduce a transformation y = g(x)w to remove the y’ term, which gives

1 X
2eg' +ag =0, g(x) = exp (—z—gj a(s) ds)
a

The ODE becomes
1 1
ew" +fw=0,  f(x)=b(x)-7a'(x) —4—ga2(x)

The boundary values are still zero with w(a) = w(B) = 0. Multiply by w(x) and integrate the

equation. Using the boundary conditions, we obtain

B B
sj [w'(x)]? dx =j fx)w?(x) dx



If f(x) < 0, then w = 0 is the unique trivial solution of BVP(0,0). To satisfy this requirement,

we notice two different cases.

1
la(x)| =m >0, f(x)~—4—€a2(x)SO, e-> 0"

1 1
b(x)—za’(x) <0, fx) =b(x)—§a’(x)—4—1€a2(x) <0

» Boundary layers (8.2)
We start with the following example

ey'"+(1—-¢gy —-(1-9y=0, y0)=y1)=1
The characteristic roots are

e—1++vV1+2e—3¢2
2¢
As € — 0%, only one of the two roots remains finite

my(e) =

1
my(e)=1—¢c+e?2-2e3+0(e*), m_(¢e) = —otes g2 +2e3-0(eY

The general solution is
y(x;€) = C,em+©x 4 ¢_em-(e)x

The coefficients are solved from the boundary conditions as

1 —em-() em+(&) _1q

C, C

T emi® _ gm(®’ ~ T emi@® _ gm-(®

Outer solution

When 0 < x < 1and lete - 0%, we can decompose the solution as

©-1) o M9 -1 (o €MHOGTD — o

. — pmy(e)(x— m_(&)x m_\&

y(x; ) = e™ te o ® —em_@® ¢ em+(e) — em-(2)
— em+(£)(x—1) + O(Ep), Vp (= N’ £ > 0+

If we consider the asymptotic series by {¢"}, we only need to expand the first term in its Taylor

series. The outer expansion is obtained as

82
Your(;8) = e* 1 —e(x — De* 1+ —(x2 — 1)e* 1 + 0(e3), x>0, - 0"

2
If we do not know the exact solution, we can still obtain the outer solution by considering the
formal power series of y(x; €) as
y(x;€) = Zyn(x)s”, Yo =1,  y@®=0, n=z=1
nz0
Note that we can only consider one of the two boundary conditions, since

e yi—v% =0 y@D) =1 yx)=e""



It is a first-order ODE. In general, we cannot obtain a solution that satisfies both boundary
conditions for this type of problem. However, using the condition at x = 1 successfully gives
the outer solution.

ey +yi-y=0 »n1=0  y(x)=—-(x-1De*?
Using the condition at x = 0 will not lead to a meaningful result. The comparison of the exact

solution (solid) and the outer expansion (dashed) is shown below.
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Inner solution
The outer expansion fails near x = 0 because the term e ~*/¢ that arises from m_(g) does not
converge uniformly for x = 0(¢) and fora fixed 0 < x < 1. To enlarge the thin boundary layer,

we introduce an inner variable z, and the ODE becomes

X

z=", Y(z;€) = y(ez; €), Y'+(A=-8Y —e(1—-e)Y =0

For our example, given the exact solution, we have

em+(&) _ 1 em+()(ez=1) _ pmy(e)

Y(Z; 8) — em+(£)(£z—1) + em_(e)sz + em_(s)

em+(€) —_ em—(f) em+(£) —_ em—(f)

The term e™-(®)¢Z is no longer singular in the exponent as € — 0*. For a fixed z > 0, we have

Y(z; ) = em+@Ez=1) 4 om-(@)ez(] — o~m+(&)) 4 g(¢P), VpEN
Again, consider the asymptotic series by {e™}, the inner expansion is
1 11 z+1—e7?
Y(z;¢) = [(1 - E) e + E] e+ 0(e?)
1\ x 11 e/mx X 2 +
yin(x;s)=[(1—g)e £+Z]+E(E+1_e s)+0(s ), -0

»  Outer asymptotics (8.3)
We use the formal power series to study the general BVP(4, B) given as

ey +a()y +b@y =0, y(rie) ~ S = ) yC0e”

nz0



For each order of &, we have

€% ayh+ by, =0 = C, ex —jx@ds
s ayo Yo =V, Yo = Lo €Xp a(s)

a
€™ Yyp1+ayn + by, =0
Let D be the domain of convergence of S(x). If @ € D, the condition y(a) = A can be used to
determine the coefficients {C,,}, with y,(a) = A and y,(a) = 0 for n > 1. Hence we obtain an

outer solution around «. Similarly, we can solve the case with § € D.

Depending on the domain D, we have two simple scenarios. First, if D = [a, ) or D = (a, B],
then a boundary layer is present at the endpoint. If D = [a, x,) U (x4, 8], then an internal layer

is present at the transition point x,.

» Inner asymptotics for boundary and internal layers (8.4)

Denote the layer thickness around x, as §(&) = 0(1) as € » 0*. The inner variable is
X — X
T80
With this rescaling, the ODE becomes

lz| <1

& a
Y(z;¢) = y(xo + z6(g); €), 52(8) Y'" + myl +bY =0

Note that a(z) and b(z) are given as
a(xo + 26(g)) = alx,) + a'(xy)z8(e) + 0(8%(¢))

If a(x,) # 0, the dominant balance gives

€ a(xo)
§2(e)  6(e)’
If a(x,) = 0 buta’(x,) # 0, the dominant balance gives

5~ @ )z~ bx), 5(e) ~ e

The scaling relation of the layer thickness §(€) can be analyzed in general from the Taylor

6(e) ~¢

series of a(z) and b(z).

Assume a(x,) # 0 for simplicity, we take §(¢) = € and the ODE becomes
Y’ +aYy' +ebY =0, Y(ze) = Z Y, (2)e"
nz0

The leading-order inner equation is

0. YO” + a(XO)YO, =0, YO(Z) =c + Cze—a(xo)z



In order to match with a reasonable outer solution, we need to choose the exponential decay
solution within the inner layer. The sign of a(x,) then governs the existence of possible
boundary or internal layers:

¢ Boundary layer at the left endpoint x = a with z > 0 can exist when a(a) > 0

¢ Boundary layer at the right endpoint x = 8 with z < 0 can exist when a(f) < 0

¢ Internal layer at an interior point x = X, can exists when a(x,) = 0, but a different scaling

may be required to achieve the dominant balance

» Matching of inner and outer asymptotic expansions (8.5)
Consider a possible boundary point x, € [a, f] with thickness & (). The inner solution Y (z; €)

and the outer solution y(x; €) are given as

V@e) = ) h@me),  z=75st Yo = ) e

nz0 n=0

We introduce an intermediate variable w defined as
xX—x, 0(e) (&) >0 6(g)
= = _Z’ E ﬁ ) N _)
@ 7 * 1©®
The intermediate scale y (&) is limited by §(¢) < y(¢) « 1, and it can define an overlap

0, e— 0t

domain to connect the inner and outer expansions. Now we truncate both solutions as

(@) = ) Ya@in@,  w058) = ) y(0e"
m=0 n=0

We want to find a matched expansion yxM . (w; €) such that

yn(xw); &) =y (wse) + o(un(e)),  Yu(z(w);e) = yi 4 (w; &) + o(eV)

Specifically, if there is only one boundary point x,, we can construct a single formula uniformly

valid for the whole interval [a, B] as

X=X X—Xx
NM (o o) — . Y( 0;)_NM( 0;)
yunlf(xr 8) YN(xr 5) + Yy 6(8) € Ymatch X(S) €
» Examples (8.6)
Example 1. Matching of asymptotics
ey + (1 +x2)y ' +xy=0, y(-1)=0 - y(1)=2
Since a(x) = 1 + x? > 0, we have the left endpoint x, = —1 as a boundary point. The outer

expansion can be solved as

e (L+x)ys+xy0=0, y(1) =2, yo(x) =2 T2



ey + A+ xD)yy+xy, =0,  y,(1)=0

The solution of y; (x) can be obtained as

(@) = [ + darce :
Yi\x)=71¢ 1+x2 (1+x2)2 arctanx — 1 ]

For the inner expansion, with a(—1) = 2 # 0, we take §(¢) = € and the inner equation is

x+1
z=—, Y'+(2—-2ez+€222)Y' +e(ez—1)Y =0

With the choice u,, (¢) = €™, the inner expansion can be solved as
g% Yy +2Yy =0, Y,(0) =0, Yy (2) = ¢, (1 — e™?%)
et Y] +2Y —2zYy — Y, =0, ,(00=0

The solution of Y; (z) can be obtained as

C C C
Yl(Z) = Zl(ZZ — 1) + dl - I:Zl (4‘22 + 2z + 1) + dz] 6_22, dl - dz = 71

Now we need to find the intermediate scale y (&) to match the two expansions.
_x+1 ez

x(&  x(@)’

We assume a fixed w > 0 and let ¢ - 0*. The outer expansion becomes

e yle) k1

2
yow) = 2J1 TG — Dz 2t rE@w 0(x(®?», yiw)=-1 —%+ 0(x(®)

L e+ 0(ex(e)) + 0(x(e)?)

8
Your(x(W); &) =2 + y(e)w — ;

The inner expansion becomes

x(&) x(&)
Yo(w) = ¢, (1 - e_ZWT) =c + 0( _ZW—)

hon = 55D 4, - Do (L)

¢ c x(e) 2(¢ Y&
0=+ B0+ (1, - D w0 o) 0 (EL2e022)

We need to properly choose y(¢) so that all O(-) terms can be controlled. Note that they first
should be o(€), which gives

_owX (&)
x%(e) K g, e K, elne ! < y(e) K Ve

Now comparing the leading-order terms in the outer and inner expansion, we obtain

1 =
=2 d=-(3+)
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Therefore, the approximation in the overlap domain is

8+m 8+m
ymatch(x g)_2+X(5)W_ 3 e=x+3-— 3 £

The uniformly valid approximation is

x+1
yun]f(x 8) yout(X; S) + Yil’l (T ) ) ymatch (x 8)

This result does not satisfy the ODE and boundary conditions, but the error is very small.

Example 2. Different scaling of layer thickness
ey +12x3y"+y=0, y0)=y(1)=1
In this case, we have
1 2
b(x) —Ea’(x) =1-2x3<-1
This shows that the BVP has a unique solution. Since a(x) > 0 for x € (0,1], there will be no

possible boundary point in this interval, hence the only possible boundary point is x, = 0. The

outer expansion can be solved as
1—x%
e 12xPyg +y0=0,  yo(D) =1 yo(x) = exp|—5—

For the inner expansion, we need to use & (&) and find its proper scaling.

1/3
rn

“ 8 8%(9) 5(e)

The dominant balance gives

x e 12(258(¢)) Vv =0

2/3, - o3/4
52() ~ [6(e)]” 6(e) ~¢

The inner equation then becomes
1
Y +1223Y' +eY =0
g% vy + 12z3yy =0, Y,(0) =1



The solution can be obtained as

zZ
Yo(z) =1+ Cj e~ ds
0

The intermediate scale can be denoted as y(g) = €P, and we have
x 3%z
W=

3
= T S ceP K1, 0<p<-

4
We assume a fixed w > 0 and let € > 0F. Since we keep the leading-order term, the matching

condition can be simply written as

lim yo(x) = lim Y,(2) e1/8=1+il"(§)
x—0+7 0 zo40 0 ’ 4\/§ 4

The uniformly valid approximation is

x£_3/4

0,0 1—x?3 —9s%/3 1/8
Vunir(X; €) = exp 3 +1+C e ds —e
0
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Example 3. Internal layer

X
ey +xy' — (1 +Z)y =0, y(-1D=3 y1)=1

In this case, we have

1 3 x 5

——qa' = e e < ——

bx) —ga () =-5-3=-3
The only possible boundary point is x, = 0 where a(0) = 0. This corresponds to an internal
layer point. As a’(0) # 0, the layer thickness scales as §(¢) ~ v¢e. The outer expansions need

to be solved for both regions to the left and right of x, = 0.

X
% xyo - (1 +Z) Yo=0, y(E=D=3 wn@=1

x+1 x=1
yio(x) = —3xe 4, Yro(X) = xe 4

For the inner expansion, we take (&) = Ve, u,(¢) = V¢ and the inner equation is



ZVE
z=—, Y”+ZY’—<1+T\/_>Y=O

ZZ z 52
€% Yy +2Yy - Y, =0, Yo(2) = Ciz+ G, (e‘T + zj 3‘7d3>

The two coefficients are to be determined from the matching conditions. The intermediate scale

can be chosen as y(¢) = /4, and for a fixed w we have

x _\/Ez

i = g1 x -0, z = sgn(w) - o, e—- 0"

w =
The inner and outer expansions become

Vo) = ~3e 4 wellt £ O(VE),  yiow) = w4 + O(vE)

Yow™) = Ce V4w +0(e™W*IVe),  Yow*) = (€, + CV2m)e V4w + 0(e W' /V)

Now comparing the leading-order terms in the outer and inner expansion, we obtain

1 e~1/* + 3el/4
C, = —361\/51 C, = —\/g
' g V2m
The coefficients depend on €. The approximations in the overlap domain are
yl(‘),’r?latch (X; 8) = —381/436, yg:?natch (X; 5) =e iy

The uniformly valid approximation is

X
Yoo (x;€) = yLo(x) + Y, (—

0,0 ]
\/’g) - yL,match(x' g), x <0
X
Ve

An internal layer like this is also called a corner layer.

Vo805 ) = YroG) + Yo (=) = Vehaan(i®), x>0

4. T g T T ] 4: T T T

y(z;€)

-1.0 05 0.0 05 1.0



» Exercise
Right boundary layer
ey’ =y +xty=0, y-D=y@D=1
Since a(x) = —1 < 0, we have a right boundary point at x = 1. The outer expansion is

x5+1

% —yi+xtyy =0,  y(-1)=1, y(x)=e 5
eyl —yi+x*y; =0,  y(-1)=0

The solution of y; (x) can be obtained as-

1 x541
yl(x)=§e 5 (—8+9x* +x°)

For the inner expansion, with a(1) # 0, we take 6(¢) = € and the inner equation is

x—1
<0, Y'—Y +e(ez+ DY =0

7 =
&

With the choice pu,, (¢) = €™, the inner expansion can be solved as
% Y —Y, =0, Y,(0) =1, Yo(z2) =14 c(e”—-1)
e Y —Y/+Y,=0, Y(0)=0
The solution of ¥; (z) can be obtained as
Yi(z) =c,(e?—z—1—2ze?)+z+c,(e?—1)

Now we need to find the intermediate scale y (&) to match the two expansions.
x—1 &z
W = = )
x(€)  x(e)
We assume a fixed w < 0 and let ¢ - 0*. The outer expansion becomes

Yow) = €215 +e¥Sy(w + OGO, (W) = g e+ 0(x(e))

e yle) k1

2
Vour(x(W); €) = e?/5 + e?Sy(e)w + 562/58 +0(ex(e)) + 0(x(e)?»)
The inner expansion becomes

x(€)
Yy(w)=1—-¢; +0 (eWT)

hw) = (- Cl)W@ —(c1+¢)+0 (@ eW@)

Wk WX
Yin(zw);e) =1—c;,+ (1 —cwy(e) — (¢; + c3)e+ 0 (e £ ) +0 ()((e)e € )
We need to properly choose y(¢) so that all O(-) terms can be controlled. Note that they first

should be o(€), which gives
x(€)

wi~=2

x2(e) K g, eV <z, elne ! < y(e) K Ve



Now comparing the leading-order terms in the outer and inner expansion, we obtain

7
c; =1—e?/5, c2=§ez/5—1

Therefore, the approximation in the overlap domain is
yor (0 €) = xe?/5 + ge /Se
The uniformly valid approximation is
Vaunit (6 €) = Your(6; €) + Yiy (x%l ) Voaten (%: €)

As € becomes smaller, the approximation is closer to the numerically solved result.
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Left boundary layer

ey'"+y —xy=0, y(0)=0, y(1)=el/?
Since a(x) = 1 > 0, we have a left boundary point at x = 0. The outer expansion is

1 x2
2, 2

%y —xyo=0, y()=e yo(x) =e

2

1 x*
eyl +yi—xy1 =0, y (D=0, yx)= —zez(—4+3x+ x3)
For the inner expansion, with a(1) # 0, we take 6(¢) = € and the inner equation is
X
Z=E>O’ Y'+Y —e(ez+1)Y =0

With the choice u,, (¢) = €™, the inner expansion can be solved as
% Yy +Y, =0, Y,(0) =0, Y0(z) =c;(1—e7%)
LY +Y Y, =0, Y, (0)=0
The solution of Y; (z) can be obtained as
Vi@)=ce?+z—1+ze ?)+z+c,(1—e7%)
Now we need to find the intermediate scale y (&) to match the two expansions.
X

&Z
=m=m, e yle) k1



We assume a fixed w > 0 and let ¢ - 0*. The outer expansion becomes
4
Yow) =1+0(x(e)?),  yi(w) =3 —x(Ow +0(x*(2))

You W) &) = 1 + & — x(&we + 0(ex2(8)) + 0(x(e)?)

3
The inner expansion becomes

Yo(w) =c¢; + O( _WM)

YVyiw)=(~10+ Cl)w%e) +(c,—c)+0 ()((:) X(g&))

X PO)
Yin(zw);e) =c; + (1 + c)wy(e) + (¢, —c)e+ 0 (e € ) +0 ()((e)e £ )
We can similarly choose y(¢) so thatall O(+) terms are o(&). Now comparing the leading-order

terms in the outer and inner expansion, we obtain
2
g =-1-¢ cz=g—e+§
Therefore, the approximation in the overlap domain is
1,1 4
Viaten (X €) =1+ ZE &

The uniformly valid approximation is

Vit (% €) = Your(x; €) + Yip ( £) = Yosbeen (3 €)

As € becomes smaller, the approximation is closer to the numerically solved result.
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For this problem we can obtain an exact solution. To facilitate comparison, we first write down
Vo) =e*2, Yy =1-e7?  yin(xe) =eX/2—e ¥/

We first introduce the transform to remove the y’ term as

eE" — xE — 4% =0, y(x)=E&()exp (_zig)



Then with a new independent variable, the ODE becomes

EVANELS
t=e\* ") a2 §=

This is the Airy equation. The boundary conditions are modified to
1 4 S 1+¢
fe)=¢(767) =0, @) =¢(eT+ e ) = e ()
We can obtain the exact solution of y(x) as follows

B e+1—x\ Ai(ty)Bi(t(x)) — Ai(t(x))Bi(t,)
y() = eXp( 2¢ ) T Ai(ty)Bi(t,) — Ai(t,)Bi(to)

The asymptotic expansions for Airy functions are

-1/4 c Bi(6) -1/4 p «© 2 32 N
e >, 1(t) ~ e, t)=st"%, t - 4+
2\ T 3

For the outer expansion, assumed a fixed x and let € - 0*. Denote § = t(x) — t, and we have

Ai(t) ~

x  x?
—+—=+0(ex?)

1 -
(t@)) = ¢to) =18 + 565 %6% +0(¢,776%) = -+

1 1
(ty) — ¢(to) = ¢(t(1) — (k) = e300

Therefore, we have

y() ~ exp (o 6 )  TSmhige) — 2]

e+1—x x x* 1 1 x? .
~exp(—)-exp —t5—-—5-—-35]~e2, e—0

e+1— x) . (t(x))% . sinh[¢(t(x)) — {(to)]

2¢€ 2 2 28 2

For the inner expansion, assumed as fixed z = x/¢ and let ¢ » 0. Now we have

g2z

2

1 _ -
{(t(2) = {(to) = 2?6 + 26 252 4 0(t;%%8%) = g +——+0(e*23)

The asymptotic behavior becomes

e+1—ez\ (t(2) 3 sinh[¢(t(2)) — ¢(t)]
2¢ ) . ( ty ) *sinh[7(t,) — {(t)]

~ Ze% sinh (g) =1-—e7? -0t

y(z) ~ exp (

The asymptotic behavior of the exact solution is consistent with the outer and inner expansions.



Different scaling of layer thickness

ey +x3%y' —y=0, y0)=a y@1)=e?*
The BVP has a unique solution since b(x) — a’(x)/2 < 0. Also, with a(x) > 0 for x € (0,1],
there will be no possible boundary point in this interval, hence the only possible one is x, = 0.

The outer expansion can be solved as

12 2
x32y{ —y, =0, 1) = e?/5, x) = ex (———)
Yo — Yo Yo(1) Yo (x) Pl N

For the inner expansion, we need to use & (&) and find its proper scaling.

3/2
x ( 5(e))
z = , Y" Y'-Y=0
6(¢) 9 2( ) 6(¢)
We should take the dominant balance between the first and third term, which gives
&
—~1 ~
57~ b 8(e) ~ Ve

The inner equation then becomes
Y" 4 z32eW4y —y =0, %Yy -Y,=0, Y,(0)=a
The solution can be obtained as
Y0(z) = (@ — C)e* + Ce™*
The intermediate scale can be denoted as y(g) = €P, and we have

x ez 1

== 1/2 p Z

w v e e/t K el K1, 0<p<2

We assume a fixed w > 0 and let ¢ - 0*. Since we keep the leading-order term, the matching

condition can be simply written as
lim y,(x) = lim Yy(2), 0 = lim (a — C)e?, C=a
x—0t Z—+00 Z—+00

The uniformly valid approximation is

( ) = (12 2 ) b e
X, &) =eXp|———= ae
y unif p 5 \/)_C
2 - 2~
Outer Outer
1.8 Inner 1.8 Inner
| nif. | nif.
1.6 - [== Numerical 1.6 - == Numerical




Internal layer

sin x
Ty = O, y(—l) = 1, y(l) =2

This problem has a unique solution because

ey +2xy' +

sinx
2
The only possible boundary point is x, = 0 where a(0) = 0. This corresponds to an internal

b(x) —%a’(x) = -1<0, x € [—-1,1]

layer point. As a’(0) # 0, the layer thickness scales as §(¢) ~ ve. The outer expansions are

0 , Sin x
€% 2xyy +T3’0 =0, y(=1) =1, yr(1) =2

1e . Lrcirn_ *sint
Yo(x) = e_Z[SI(XHSI(l)], Yro(x) = 2¢7al51) Sl(l)]; Si(x) = j t dt
0

For the inner expansion, we take (&) = Ve, u,(¢) = V¢ and the inner equation is

X 1
z=—, Y +2zY" 4+ =sin(zVe)Y =0
- 5 5in(2VE)

C VA
€% Yy + 2zY; =0, Yo(z) =C, + —Zj e~sds
Vi e

The intermediate scale can be chosen as (&) = /4, and for a fixed w we have

X ez

— — . +
w——€1/4——€1/4, x -0, z — sgn(w) - oo, e-0

The inner and outer expansions become

Vo) = e S/ 4+ 0(/%),  ypo(w) = 251D/ 4 0(£1/4)

Yow™) = €+ 0(e™ /%), Yow*) = (€, + C,) + 0(e™W* /%)

Now comparing the leading-order terms in the outer and inner expansion, we obtain

_Si() Si(1) _Si()
Ci=e 4, C,=2e 4 —e 4

This internal layer corresponds to a rapid change in y(x).
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