
Asymptotic Analysis of Differential Equations (1): Linear ODE 

We analyze the asymptotic expansion of the solution for linear ODE on the complex plane. 
Denote the domain	Ω ⊆ ℂ, the meromorphic function domain	𝑚𝑚(Ω)	and holomorphic function 
ring	𝕆𝕆(Ω), the	𝑛𝑛 × 𝑛𝑛	matrix	𝑀𝑀(𝑚𝑚(Ω), 𝑛𝑛)	with its elements composed of function	𝑓𝑓 ∈ 𝑚𝑚(Ω). 
For a matrix	𝐴𝐴 ∈ 𝑀𝑀(𝑚𝑚(Ω), 𝑛𝑛), a linear ODE can be represented by 

𝑦𝑦!(𝑧𝑧) = 𝐴𝐴(𝑧𝑧)𝑦𝑦(𝑧𝑧), 𝑦𝑦 ∈ ℂ" 
Based on variation of parameters, we only need to study the homogeneous equation. For an 
initial value problem	𝑦𝑦(𝑧𝑧#) = 𝑦𝑦#, we can first solve for the matrix equation 

𝑌𝑌!(𝑧𝑧) = 𝐴𝐴(𝑧𝑧)𝑌𝑌(𝑧𝑧), 𝑌𝑌(𝑧𝑧#) = 𝐼𝐼 (∗) 
With this fundamental matrix, we have	𝑦𝑦 = 𝑌𝑌𝑦𝑦#. Hence, we will focus on this matrix equation. 
 
Ø Qualitative theory of solutions (6.1) 
Cauchy Theorem 
For	𝑦𝑦! = 𝑓𝑓(𝑧𝑧, 𝑦𝑦)	with	𝑦𝑦(𝑧𝑧#) = 𝑦𝑦#, if	𝑓𝑓	is analytic then there exists a unique analytic solution. 
 
Consider	(∗)	has a solution	𝑌𝑌#	around	𝑧𝑧#. For a path	𝛾𝛾	starting from	𝑧𝑧#, we can perform analytic 
continuation of	𝑌𝑌# into a neighborhood of	𝛾𝛾. When	𝛾𝛾	goes back to	𝑧𝑧#, we can obtain another 
solution	𝑌𝑌$. Then we state that there exists an invertible	𝐶𝐶$ ∈ 𝐺𝐺𝐺𝐺(ℂ, 𝑛𝑛)	such that	𝑌𝑌$ = 𝑌𝑌#𝐶𝐶$. 
We define a mapping	𝜌𝜌%:	𝛾𝛾 ↦ 𝐶𝐶$, and when	𝛾𝛾&	and	𝛾𝛾'	are homotopic, we have	𝐶𝐶$! = 𝐶𝐶$". This 

implies that	𝜌𝜌%:	𝜋𝜋&(Ω∗, 𝑧𝑧#) → 𝐺𝐺𝐺𝐺(ℂ, 𝑛𝑛), with	Ω∗	is the domain with poles removed. Moreover, 
if	𝛾𝛾 = 𝛾𝛾& ∘ 𝛾𝛾', then	𝐶𝐶$ = 𝐶𝐶$!𝐶𝐶$". So	𝜌𝜌%	is a group homomorphism and a representation of	𝜋𝜋&. 

 
For the matrix equation	(∗), consider a transformation	𝑃𝑃 ∈ 𝐺𝐺𝐺𝐺(𝕆𝕆(Ω), 𝑛𝑛)	and denote	𝑍𝑍 = 𝑃𝑃𝑌𝑌. 

𝑍𝑍! = 𝑃𝑃!𝑌𝑌 + 𝑃𝑃𝑌𝑌! = (𝑃𝑃!𝑃𝑃)& + 𝑃𝑃𝐴𝐴𝑃𝑃)&)𝑍𝑍 = 𝐵𝐵𝑍𝑍 
The two mappings	𝜌𝜌%	and	𝜌𝜌* 	are equivalent. 𝑃𝑃!𝑃𝑃)& + 𝑃𝑃𝐴𝐴𝑃𝑃)&	is a meromorphic connection on 
vector bundles on a complex manifold, an example of Riemann-Hilbert correspondence. 
 
Local problem 
Let	𝑧𝑧#	is a	pole of	𝐴𝐴, with	𝑟𝑟	denoted as the Poincaré rank. This implies that 

𝐴𝐴(𝑧𝑧) = (𝑧𝑧 − 𝑧𝑧#))+𝐴𝐴F(𝑧𝑧), 𝐴𝐴F(𝑧𝑧) ∈ 𝑀𝑀(𝕆𝕆(𝑧𝑧#), 𝑛𝑛), 𝐴𝐴F(𝑧𝑧#) ≠ 0 
Without loss of generality, take	𝑧𝑧# = 0	and we have 

𝑧𝑧+𝑌𝑌!(𝑧𝑧) = 𝐴𝐴F(𝑧𝑧)𝑌𝑌(𝑧𝑧) 
Since	𝑧𝑧#	is a pole, 𝑌𝑌(𝑧𝑧#)	may not exists, and we only focus on the equation. The solution is 
highly influenced by the Poincaré rank	𝑟𝑟. 
 



When	𝑟𝑟 = 1, consider a constant matrix	𝐴𝐴	and we have 
𝑧𝑧𝑌𝑌!(𝑧𝑧) = 𝐴𝐴𝑌𝑌(𝑧𝑧) 

Select a branch cut	𝐶𝐶	from	𝑧𝑧 = 0, we have	ln 𝑧𝑧 ∈ 𝕆𝕆(Ω ∖ 𝐶𝐶)	and	𝑌𝑌(𝑧𝑧) = 𝑒𝑒% ,- .. Consider	𝐴𝐴	has 
the Jordan normal form	𝐴𝐴 = 𝑃𝑃𝑃𝑃𝑃𝑃)&	with	𝑃𝑃 = Λ + 𝑁𝑁. Then we can write 

𝑌𝑌(𝑧𝑧) = 𝑃𝑃Q𝑒𝑒/ ,- .R𝑃𝑃)&, 𝑒𝑒/ ,- . = Λ. ST
ln0 𝑧𝑧
𝑘𝑘!

"
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The singularity is regular for	𝑟𝑟 = 1. Going around	𝑧𝑧 = 0, we obtain	𝐶𝐶$ as follows 

𝑌𝑌#Q𝑧𝑧𝑒𝑒'23R = 𝑒𝑒%(,- .5'23) = 𝑌𝑌#(𝑧𝑧)𝑒𝑒'23%, 𝐶𝐶$ = 𝑒𝑒'23% 

 
When	𝑟𝑟 = 2, still consider a constant matrix	𝐴𝐴	and we have 

𝑧𝑧'𝑌𝑌!(𝑧𝑧) = 𝐴𝐴𝑌𝑌(𝑧𝑧), 𝑌𝑌(𝑧𝑧) = 𝑒𝑒)%/. 
Now	𝑧𝑧 = 0	becomes an essential singularity, and the solution only exists in a sector. We cannot 
go around	𝑧𝑧 = 0	as in the previous case. For	𝑟𝑟 ≥ 2, the singularity is irregular. 
 
Ø Majorant series & Cauchy theorem 
Let	Ω ⊆ ℂ85&	with coordinates	𝑦𝑦Z = (𝑧𝑧, 𝑦𝑦)	with	𝑧𝑧 ∈ ℂ,	𝑦𝑦 ∈ ℂ8 	and a function	𝑓𝑓 ∈ 𝕆𝕆(Ω, ℂ8). 

𝑦𝑦! = 𝑓𝑓(𝑧𝑧, 𝑦𝑦), 𝑦𝑦Z# = (𝑧𝑧#, 𝑦𝑦#) ∈ Ω 
The function	𝑓𝑓	is analytic when there exists	𝑟𝑟 > 0	such that when	𝑦𝑦Z ∈ 𝐵𝐵(𝑦𝑦Z#, 𝑟𝑟), the following 
series is convergent 

𝑓𝑓(𝑦𝑦Z) = T𝑐𝑐9(𝑦𝑦Z − 𝑦𝑦Z#)9
9:#

, 𝑗𝑗 = {𝑗𝑗#, 𝑗𝑗&, ⋯ , 𝑗𝑗8} 

The neighborhood is 𝐵𝐵(𝑦𝑦Z#, 𝑟𝑟) = {𝑦𝑦Z ∈ Ω	|	|𝑦𝑦Z − 𝑦𝑦Z#| < 𝑟𝑟}	with the	𝐺𝐺;	norm	|𝑦𝑦Z| = max|𝑦𝑦3|. The 
above notation means 

𝑓𝑓(𝑦𝑦Z) = T 𝑐𝑐9#⋯9$(𝑧𝑧 − 𝑧𝑧#)9#(𝑦𝑦& − 𝑦𝑦&#)9! ⋯(𝑦𝑦8 − 𝑦𝑦8#)9$
9#,⋯,9$:#

 

 
Majorant series 
Consider a formal power series 	𝑓𝑓(𝑦𝑦Z) . If there exists another series 	𝐹𝐹(𝑦𝑦Z)	such that 	∀𝑗𝑗	we 
have	|𝑎𝑎9| ≤ 𝐴𝐴9, then	𝐹𝐹(𝑦𝑦Z)	is a majorant series of	𝑓𝑓(𝑦𝑦Z). 

𝑓𝑓(𝑦𝑦Z) = T𝑎𝑎9(𝑦𝑦Z − 𝑦𝑦Z#)9
9:#

, 𝐹𝐹(𝑦𝑦Z) = T𝐴𝐴9(𝑦𝑦Z − 𝑦𝑦Z#)9
9:#

 

If	𝐹𝐹(𝑦𝑦Z)	converges in	𝐵𝐵(𝑦𝑦Z#, 𝑟𝑟), then	𝑓𝑓(𝑦𝑦Z)	also converges. We can then call 𝐹𝐹(𝑦𝑦Z)	as the majorant 
function of	𝑓𝑓(𝑦𝑦Z). 



Corollary. If	𝑓𝑓(𝑦𝑦Z)	is analytic around	𝑦𝑦Z#, i.e., it can be expanded on	𝐵𝐵(𝑦𝑦Z#, 𝑅𝑅)	into a convergent 
series, then for any	𝑟𝑟 ∈ (0, 𝑅𝑅), there exists a constant	𝑀𝑀 > 0	such that we can write down the 
majorant function	𝐹𝐹(𝑦𝑦Z)	as 

𝐹𝐹(𝑦𝑦Z) = 𝑀𝑀kl1 −
𝑦𝑦0 − 𝑦𝑦0#

𝑟𝑟 m
)&

8
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, 𝑦𝑦Z ∈ 𝐵𝐵n(𝑦𝑦Z#, 𝑟𝑟) 

 
Proof. Since	𝑓𝑓	converges in	𝐵𝐵(𝑦𝑦Z#, 𝑅𝑅), then it absolutely converges in	𝐵𝐵n(𝑦𝑦Z#, 𝑟𝑟). If we select a 
𝑦𝑦Z ∈ 𝜕𝜕𝐵𝐵(𝑦𝑦Z#, 𝑟𝑟)	on the boundary, we have the following convergent series 

Tp𝑎𝑎9p|𝑦𝑦Z − 𝑦𝑦Z#|9
9:#

= Tp𝑎𝑎9p𝑟𝑟9#5⋯59$
9:#

 

Then there exists	𝑀𝑀 > 0	such that 

p𝑎𝑎9p𝑟𝑟|9| ≤ 𝑀𝑀, p𝑎𝑎9p ≤
𝑀𝑀
𝑟𝑟|9|

, |𝑗𝑗| = 𝑗𝑗# +⋯+ 𝑗𝑗8 

Now we can construct a majorant function 

𝐹𝐹(𝑦𝑦Z) = T
𝑀𝑀
𝑟𝑟|9|

(𝑦𝑦Z − 𝑦𝑦Z#)9
9:#

= 𝑀𝑀k T l
𝑦𝑦0 − 𝑦𝑦0#

𝑟𝑟 m
9%

9%:#

8

01#

= 𝑀𝑀kl1 −
𝑦𝑦0 − 𝑦𝑦0#

𝑟𝑟 m
)&

8

01#

∎ 

 
Corollary. For	𝐹𝐹(𝑦𝑦Z)	defined above, consider the Cauchy problem 

𝑦𝑦9! = 𝐹𝐹(𝑧𝑧, 𝑦𝑦), 𝑦𝑦9(𝑧𝑧#) = 𝑦𝑦9#, 𝑗𝑗 = 1,2,⋯ , 𝑑𝑑 

There exists	𝜌𝜌 > 0	such that it has a unique analytic solution on	𝐵𝐵(𝑧𝑧#, 𝜌𝜌). 
 
Proof. Denote	𝑢𝑢(𝑧𝑧) = 𝑦𝑦&(𝑧𝑧) − 𝑦𝑦&#. Based on the Cauchy problem, we have 

Q𝑦𝑦3 − 𝑦𝑦9R
! = 0, 𝑢𝑢(𝑧𝑧) = 𝑦𝑦3(𝑧𝑧) − 𝑦𝑦3#, ∀𝑖𝑖, 𝑗𝑗 = 1,2,⋯ , 𝑑𝑑 

The ODE for	𝑢𝑢(𝑧𝑧)	can be obtained as 

𝑢𝑢!(𝑧𝑧) = 𝐹𝐹(𝑧𝑧, 𝑦𝑦) = 𝑀𝑀 l1 −
𝑧𝑧 − 𝑧𝑧#

𝑟𝑟 m
)&

l1 −
𝑢𝑢
𝑟𝑟m

)8
, 𝑢𝑢(𝑧𝑧#) = 0 

The solution is 

𝑢𝑢(𝑧𝑧) = 𝑟𝑟 − 𝑟𝑟 u1 + (𝑑𝑑 + 1)𝑀𝑀 ln l1 −
𝑧𝑧 − 𝑧𝑧#

𝑟𝑟 mv
&

85& 

To guarantee convergence, we can obtain the radius	𝜌𝜌	as 

w
𝑧𝑧 − 𝑧𝑧#

𝑟𝑟 w < 1, w(𝑑𝑑 + 1)𝑀𝑀 ln l1 −
𝑧𝑧 − 𝑧𝑧#

𝑟𝑟 mw < 1, 𝜌𝜌 = 𝑟𝑟 x1 − 𝑒𝑒)
&

(85&)?y ∎ 

 



Cauchy theorem 
Let	Ω ⊆ ℂ85& and denote analytic functions	𝑓𝑓: Ω → ℂ8 	with a point	(𝑧𝑧#, 𝑦𝑦#) ∈ Ω. There exists 
𝜌𝜌 > 0	such that the Cauchy problem has a unique analytic solution in	𝐵𝐵(𝑧𝑧#, 𝜌𝜌). 

𝑦𝑦9! = 𝑓𝑓9(𝑧𝑧, 𝑦𝑦), 𝑦𝑦9(𝑧𝑧#) = 𝑦𝑦9#, 𝑗𝑗 = 1,2,⋯ , 𝑑𝑑 

 
Proof. Without loss of generality, assume	𝑧𝑧# = 0	and	𝑦𝑦# = 0. We consider the solution in the 
form of a power series 

𝑓𝑓9(𝑦𝑦Z) = 𝑓𝑓9(𝑧𝑧, 𝑦𝑦) = T𝑎𝑎9/𝑦𝑦Z /
/:#

, 𝑦𝑦9(𝑧𝑧) = T 𝑐𝑐9@𝑧𝑧@
@:#

, 𝑗𝑗 = 1,2,⋯ , 𝑑𝑑 

Then we have 

𝑦𝑦9! = T𝑐𝑐9(05&)(𝑘𝑘 + 1)𝑧𝑧0
0:#

= T𝑎𝑎9/𝑧𝑧/#𝑦𝑦&
/! ⋯𝑦𝑦8

/$

/:#

= 𝑓𝑓9(𝑦𝑦Z) 

Substitute	𝑦𝑦9(𝑧𝑧)	into the RHS and compare the coefficients. We can obtain 

𝑐𝑐9@ = 𝑃𝑃9@Q𝑎𝑎9/	|	|𝑃𝑃| ≤ 𝑚𝑚 − 1R 

The polynomial	𝑃𝑃9@	has positive coefficients. To prove the solution is convergent, consider 

𝑦𝑦z9! = 𝐹𝐹(𝑧𝑧, 𝑦𝑦) = 𝑀𝑀kl1 −
𝑦𝑦0
𝑟𝑟 m

)&
8
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Here	𝑀𝑀	is sufficiently large such that	𝐹𝐹(𝑧𝑧, 𝑦𝑦)	is the majorant function for all	𝑓𝑓&, ⋯ , 𝑓𝑓8. We have 

𝑦𝑦z9(𝑧𝑧) = T �̂�𝑐9@𝑧𝑧@
@:#

, �̂�𝑐9@ = 𝑃𝑃9@Q𝐴𝐴/	|	|𝑃𝑃| ≤ 𝑚𝑚 − 1R 

𝐴𝐴/	is the coefficient for the majorant series	𝐹𝐹(𝑦𝑦Z). Since 

p𝑐𝑐9@p = p𝑃𝑃9@Q𝑎𝑎9/Rp ≤ 𝑃𝑃9@Qp𝑎𝑎9/pR ≤ 𝑃𝑃9@Q𝐴𝐴/R = �̂�𝑐9@ 

Therefore, the formal series	𝑦𝑦9(𝑧𝑧)	converges.         ∎ 

 
Corollary. For the matrix equation 

𝑌𝑌!(𝑧𝑧) = 𝐴𝐴(𝑧𝑧)𝑌𝑌(𝑧𝑧), 𝑌𝑌(𝑧𝑧#) = 𝐼𝐼 
If	𝐴𝐴	is analytic near	𝑧𝑧#, then there exists a unique analytic solution. 
 
Theorem. Consider	𝐹𝐹 ∈ 𝑀𝑀(𝕆𝕆(Ω), 𝑑𝑑)	with the following equation and its formal solution 

𝑧𝑧𝑦𝑦! = 𝐹𝐹𝑦𝑦, 𝑦𝑦(𝑧𝑧) = T𝑐𝑐0(𝑧𝑧 − 𝑧𝑧#)0
0:#

, 𝑐𝑐0 ∈ ℂ" 

There exists	𝜌𝜌 > 0	such that	𝑦𝑦(𝑧𝑧)	converges in	𝐵𝐵(𝑧𝑧#, 𝜌𝜌)	and thus is an analytic solution. 



Proof. Assume	𝑧𝑧# = 0. Consider	𝐹𝐹(𝑧𝑧)	can be expanded as 

𝐹𝐹(𝑧𝑧) = T𝐹𝐹0𝑧𝑧0
0:#

, 𝐹𝐹0 ∈ 𝑀𝑀(ℂ, 𝑑𝑑) = ℂ8×8 

The equation becomes 

T 𝑚𝑚𝑐𝑐@𝑧𝑧@
@:#

= ST𝐹𝐹0𝑧𝑧0
0:#

WST𝑐𝑐B𝑧𝑧B
B:#

W = T S T 𝐹𝐹0𝑐𝑐B
05B1@

W 𝑧𝑧@
@:#

 

Comparing the coefficients gives 

𝑚𝑚𝑐𝑐@ = T 𝐹𝐹0𝑐𝑐B
05B1@

, (𝐹𝐹# −𝑚𝑚𝐼𝐼)𝑐𝑐@ = −T𝐹𝐹0𝑐𝑐@)0

@

01&

 

For	𝑚𝑚 = 0	we have	𝐹𝐹#𝑐𝑐# = 0. While for	𝑚𝑚 = 1, we have 
𝑐𝑐& = 𝐹𝐹#𝑐𝑐& + 𝐹𝐹&𝑐𝑐#, (𝐹𝐹# − 𝐼𝐼)𝑐𝑐& = −𝐹𝐹&𝑐𝑐# 

If	𝐹𝐹#	does not have 1 as an eigenvalue, we can obtain the unique solution of	𝑐𝑐&. We take	𝑘𝑘 ∈ ℕ 
that is sufficiently large such that for all	𝜆𝜆 > 𝑘𝑘, the matrix 𝐹𝐹# − 𝜆𝜆𝐼𝐼	is invertible. Denote 

𝑓𝑓(𝜆𝜆) = |(𝐹𝐹# − 𝜆𝜆𝐼𝐼))&|;, 𝜆𝜆 > 𝑘𝑘 
Then we have	𝑓𝑓 ∈ 𝐶𝐶(𝑘𝑘, +∞)	continuous, and when	𝜆𝜆 → +∞	we have	𝑓𝑓(𝜆𝜆) → 0. This implies 
that there exists	𝐶𝐶 > 0	such that	𝑓𝑓(𝑚𝑚) ≤ 𝐶𝐶	for all	𝑚𝑚 > 𝑘𝑘. The coefficients	𝑐𝑐@	are bounded as 

|𝑐𝑐@|; = �−(𝐹𝐹# − 𝜆𝜆𝐼𝐼))& T𝐹𝐹0𝑐𝑐@)0

@

01&

�
;

≤ 𝐶𝐶T|𝐹𝐹0|;|𝑐𝑐@)0|;

@

01&

 

Define	𝑣𝑣@ = |𝑐𝑐@|;	for	𝑚𝑚 ≤ 𝑘𝑘, and 

𝑣𝑣@ = 𝐶𝐶Tp𝐹𝐹9p;𝑣𝑣@)9

@

91&

, 𝑚𝑚 > 𝑘𝑘 

This guarantees	|𝑐𝑐@| ≤ 𝑣𝑣@. We want to show that	{𝑣𝑣@}	corresponds to a convergent series. 

𝑢𝑢(𝑧𝑧) = T 𝑣𝑣@𝑧𝑧@
@:#

, 𝜙𝜙(𝑧𝑧) = T|𝐹𝐹@|;𝑧𝑧@
@:&

 

We can show that (all norms are	|⋅|;) 

𝑢𝑢(𝑧𝑧) = [1 − 𝐶𝐶𝜙𝜙(𝑧𝑧)])& Ö|𝑐𝑐#| +TÜ|𝑐𝑐B| − 𝐶𝐶Tp𝐹𝐹9pp𝑐𝑐B)9p
B

91&

á𝑧𝑧B
0

B1&

à 

This is proved by comparing the coefficients, after multiplying	1 − 𝑐𝑐𝜙𝜙(𝑧𝑧)	to the LHS. 

[𝑧𝑧@]:						𝑣𝑣@ − 𝐶𝐶Tp𝐹𝐹9p𝑣𝑣@)9

@

91&

= |𝑐𝑐@| − 𝐶𝐶Tp𝐹𝐹9pp𝑐𝑐@)9p
@

91&

, 𝑚𝑚 ≤ 𝑘𝑘	

[𝑧𝑧@]:						𝑣𝑣@ − 𝐶𝐶Tp𝐹𝐹9p𝑣𝑣@)9

@

91&

= 0, 𝑚𝑚 > 𝑘𝑘 



The numerator of	𝑢𝑢(𝑧𝑧)	is a polynomial which is convergent. As	𝜙𝜙(0) = 0, there exists	𝛿𝛿& > 0 
such that when	|𝑧𝑧| < 𝛿𝛿&, we have	1 − 𝐶𝐶𝜙𝜙(𝑧𝑧) ≠ 0 and	(1 − 𝐶𝐶𝜙𝜙(𝑧𝑧)))&	is analytic on	𝐵𝐵(0, 𝛿𝛿&). 
Therefore, we prove the majorant	𝑢𝑢(𝑧𝑧)	is analytic, and thus	𝑦𝑦(𝑧𝑧).       ∎ 
 
Ø Asymptotic behavior near ordinary and regular singular points (6.2) 

𝑧𝑧𝑦𝑦!(𝑧𝑧) = 𝐹𝐹(𝑧𝑧)𝑦𝑦(𝑧𝑧), 𝐹𝐹 ∈ 𝑀𝑀(𝐵𝐵(0,1), 𝑛𝑛) 
Now consider the matrix equation 

𝑧𝑧𝑌𝑌!(𝑧𝑧) = 𝐴𝐴(𝑧𝑧)𝑌𝑌(𝑧𝑧), 𝐴𝐴 ∈ 𝑀𝑀(𝕆𝕆(Ω), 𝑛𝑛) 
We require	𝐴𝐴(0) ≠ 0	which implies that	𝑧𝑧 = 0	is a singular point. The domain	Ω: |𝑧𝑧| < 𝜌𝜌. Our 
goal is to find a transform	𝑃𝑃 ∈ 𝐺𝐺𝐺𝐺(𝕆𝕆(Ω), 𝑛𝑛)	such that	𝑌𝑌 = 𝑃𝑃𝑃𝑃	and 

𝑧𝑧𝑃𝑃!(𝑧𝑧) = 𝐵𝐵(𝑧𝑧)𝑃𝑃(𝑧𝑧), 𝐵𝐵 = 𝑃𝑃)&𝐴𝐴𝑃𝑃 − 𝑧𝑧𝑃𝑃)&𝑃𝑃! 
We want to choose	𝐵𝐵	to be as simple as possible. The matrix equation to be solved is 

𝑧𝑧𝑃𝑃!(𝑧𝑧) = 𝐴𝐴(𝑧𝑧)𝑃𝑃(𝑧𝑧) − 𝑃𝑃(𝑧𝑧)𝐵𝐵(𝑧𝑧) 
With the formal power series, the equation becomes 

T 𝑚𝑚𝑃𝑃@𝑧𝑧@
@:#

= ST𝐴𝐴0𝑧𝑧0
0:#

WST𝑃𝑃B𝑧𝑧B
B:#

W − ST𝑃𝑃B𝑧𝑧B
B:#

WST𝐵𝐵0𝑧𝑧0
0:#

W 

Taking the coefficient of	𝑧𝑧@, we obtain 

𝑚𝑚𝑃𝑃@ = 𝐴𝐴#𝑃𝑃@ − 𝑃𝑃@𝐵𝐵# +T(𝐴𝐴0𝑃𝑃@)0 − 𝑃𝑃@)0𝐵𝐵0)
@

01&

 

(𝐴𝐴# −𝑚𝑚𝐼𝐼)𝑃𝑃@ − 𝑃𝑃@𝐵𝐵# = T(𝑃𝑃@)0𝐵𝐵0 − 𝐴𝐴0𝑃𝑃@)0)
@

01&

 

For	𝑚𝑚 = 0, we have	𝐵𝐵# = 𝑃𝑃#)&𝐴𝐴#𝑃𝑃#. One choice is	𝑃𝑃# = 𝐼𝐼	and	𝐵𝐵# = 𝐴𝐴#. Another better one is 
to choose	𝑃𝑃#	such that	𝐵𝐵# = 𝑃𝑃#	is the Jordan normal form of	𝐴𝐴#. 
 
Corollary 1. For	𝐴𝐴, 𝐵𝐵 ∈ 𝑀𝑀(ℂ, 𝑛𝑛), define the following map 

𝜑𝜑%*:		𝑀𝑀(ℂ, 𝑛𝑛) → 𝑀𝑀(ℂ, 𝑛𝑛), 𝑃𝑃 ↦ 𝐴𝐴𝑃𝑃 − 𝑃𝑃𝐵𝐵 
Then	𝜑𝜑%* 	is injective if and only if	𝐴𝐴, 𝐵𝐵	do not share the same eigenvalue. 
 
Proof. When	𝜑𝜑%* 	is injective, assume that	𝜆𝜆	is the common eigenvalue. Then there exist non-
zero	𝑣𝑣, 𝑤𝑤 ∈ ℂ"	such that	𝐴𝐴𝑣𝑣 = 𝜆𝜆𝑣𝑣	and	𝐵𝐵C𝑤𝑤 = 𝜆𝜆𝑤𝑤. Take	𝑃𝑃 = 𝑣𝑣𝑤𝑤C, and we obtain 

𝐴𝐴𝑃𝑃 − 𝑃𝑃𝐵𝐵 = 𝐴𝐴𝑣𝑣𝑤𝑤C − 𝑣𝑣𝑤𝑤C𝐵𝐵 = 𝜆𝜆𝑣𝑣𝑣𝑣C − 𝜆𝜆𝑣𝑣𝑣𝑣C = 𝑂𝑂 
This is contradictory to 𝜑𝜑%* 	being injective. On the other hand, when there are no common 
eigenvalues between	𝐴𝐴	and	𝐵𝐵, denote	𝑉𝑉 = ℂ"	and we can write 

𝑉𝑉 = 𝑉𝑉D! ⊕𝑉𝑉D" ⊕⋯⊕𝑉𝑉D% , 𝑉𝑉D& = Ker	Q𝐵𝐵 − 𝜆𝜆9𝐼𝐼R
@& 



We can obtain a basis for	𝑉𝑉	by picking from each root subspace	𝑉𝑉D. Let	𝑣𝑣	be the basis of	𝑉𝑉D. 
If	𝑃𝑃	satisfies	𝐴𝐴𝑃𝑃 − 𝑃𝑃𝐵𝐵 = 𝑂𝑂, we have 

(𝐵𝐵 − 𝜆𝜆𝐼𝐼)@𝑣𝑣 = 0, 𝑃𝑃(𝐵𝐵 − 𝜆𝜆𝐼𝐼)@𝑣𝑣 = (𝐴𝐴 − 𝜆𝜆𝐼𝐼)@𝑃𝑃𝑣𝑣 = 0 
Note that	𝜆𝜆	is not the eigenvalue of	𝐴𝐴, so	(𝐴𝐴 − 𝜆𝜆𝐼𝐼)@	is invertible and thus	𝑃𝑃𝑣𝑣 = 0. Since	𝑣𝑣	can 
be any vector of the basis, 𝑃𝑃 = 𝑂𝑂	and thus	𝜑𝜑%* 	is injective.        ∎ 
 
Resonant matrix 
With this corollary, we need to see if	𝐴𝐴# −𝑚𝑚𝐼𝐼	and	𝐵𝐵#	share the same eigenvalue. We call a 
matrix	𝐴𝐴	as resonant if there are two eigenvalues	𝜆𝜆, 𝜇𝜇	such that	𝜆𝜆 − 𝜇𝜇 ∈ ℤE#. 
 
Theorem 2. For	𝑧𝑧𝑌𝑌! = 𝐴𝐴𝑌𝑌, if	𝐴𝐴#	is non-resonant, then there exists a transformation	𝑌𝑌 = 𝑃𝑃𝑃𝑃 
with	𝑃𝑃(0) = 𝐼𝐼	and	𝑃𝑃(𝑧𝑧)	analytic around	𝑧𝑧 = 0	such that 

𝑧𝑧𝑃𝑃! = 𝐴𝐴#𝑃𝑃, 𝑌𝑌(𝑧𝑧) = 𝑃𝑃(𝑧𝑧)𝑧𝑧%# 
 
Proof. Since	𝐴𝐴#	is non-resonant and	𝑃𝑃# = 𝐼𝐼, we know that 𝐴𝐴# −𝑚𝑚𝐼𝐼	and	𝐵𝐵# = 𝐴𝐴#	do not share 
the same eigenvalue. We can then choose	𝐵𝐵@ = 𝑂𝑂	for	𝑚𝑚 ≥ 1, and there are corresponding	𝑃𝑃@ 

𝑃𝑃@ = 𝜑𝜑%#)@F,*#
)& S−T𝐴𝐴0𝑃𝑃@)0

@

01&

W , 𝑧𝑧𝑃𝑃! = 𝐴𝐴#𝑃𝑃 

Therefore, we obtain a formal solution	𝑌𝑌(𝑧𝑧) = 𝑃𝑃(𝑧𝑧)𝑧𝑧%#. The equation for	𝑃𝑃(𝑧𝑧)	is 
𝑧𝑧𝑃𝑃!(𝑧𝑧) = 𝐴𝐴(𝑧𝑧)𝑃𝑃(𝑧𝑧) − 𝑃𝑃(𝑧𝑧)𝐴𝐴# 

Now take a basis	𝑒𝑒&, … , 𝑒𝑒"" 	for	𝑀𝑀(ℂ, 𝑛𝑛), and we have 

𝑃𝑃(𝑧𝑧) = T𝑝𝑝9𝑒𝑒9

""

91&

, 𝑧𝑧𝑃𝑃!(𝑧𝑧) = 𝑀𝑀(𝑧𝑧)𝑃𝑃(𝑧𝑧), 𝑀𝑀(𝑧𝑧):	𝜑𝜑%(.),%# 

From the existence of an analytic solution for the matrix equation, 𝑃𝑃(𝑧𝑧)	is analytic at	𝑧𝑧 = 0. ∎ 
 
If	𝐴𝐴#	is resonant, then	(𝐴𝐴# −𝑚𝑚𝐼𝐼)𝑃𝑃@ − 𝑃𝑃@𝐵𝐵#	is not an isomorphism, so we cannot ensure the 
existence of	𝑃𝑃@	for arbitrarily chosen	𝐵𝐵@. 

(𝐴𝐴# −𝑚𝑚𝐼𝐼)𝑃𝑃@ − 𝑃𝑃@𝐵𝐵# = T(𝑃𝑃@)0𝐵𝐵0 − 𝐴𝐴0𝑃𝑃@)0)
@

01&

 

As an example, we can choose 

T(𝑃𝑃@)0𝐵𝐵0 − 𝐴𝐴0𝑃𝑃@)0)
@)&

01&

+ 𝐵𝐵@ − 𝐴𝐴@ = 𝑂𝑂, 𝑃𝑃@ = 𝑂𝑂 

In this case, we can obtain the following solution. 
 



Proposition 3. For	𝑧𝑧𝑌𝑌! = 𝐴𝐴𝑌𝑌, we have a resonant	𝐴𝐴#. Let	𝑀𝑀	be the largest positive integer such 
that	𝑀𝑀 = 𝜆𝜆 − 𝜇𝜇	for the eigenvalues. Then there exists	𝑌𝑌 = 𝑃𝑃𝑃𝑃	with analytic	𝑃𝑃(𝑧𝑧)	such that 

𝑧𝑧𝑃𝑃! = S𝐴𝐴# + T𝐵𝐵0𝑧𝑧0
?

01&

W𝑃𝑃 

𝐵𝐵0 	is non-zero only when there are eigenvalues such that	𝑘𝑘 = 𝜆𝜆 − 𝜇𝜇. 
 
A better choice is given as follows. For	𝑧𝑧𝑌𝑌! = 𝐴𝐴𝑌𝑌, consider	𝐴𝐴# = 𝑃𝑃#𝑃𝑃#𝑃𝑃#)&	with	𝑃𝑃#	as the Jordan 
normal form. Take	𝑌𝑌 = 𝑃𝑃#𝑃𝑃, and then we have 

𝑧𝑧𝑃𝑃 = (𝑃𝑃#)&𝐴𝐴𝑃𝑃#)𝑃𝑃 = (𝑃𝑃# + 𝐴𝐴&𝑧𝑧 + ⋯+ 𝐴𝐴@𝑧𝑧@)𝑃𝑃 
Without loss of generality, assume	𝐴𝐴# = Λ + 𝑁𝑁#	already the Jordan normal form (𝑃𝑃# = 𝐼𝐼), and 
its eigenvalues are ordered by decreasing	Re	𝜆𝜆G. As	𝑁𝑁#	is strictly upper triangular, we have 

(𝑁𝑁#)GH = 0, 𝛼𝛼 ≥ 𝛽𝛽, (𝑁𝑁#)GH ≠ 0, 𝜆𝜆G ≠ 𝜆𝜆H 

When	𝑚𝑚 = 1, the matrix equation becomes 
(𝐴𝐴# − 𝐼𝐼)𝑃𝑃& − 𝑃𝑃&𝐴𝐴# = 𝐵𝐵& − 𝐴𝐴& 

Using Einstein summation notation, the	(𝛼𝛼, 𝛽𝛽)	element becomes 

ΛG$(𝑃𝑃&)$H + (𝑁𝑁#)G$(𝑃𝑃&)$H − (𝑃𝑃&)GH − (𝑃𝑃&)G$(Λ)$H − (𝑃𝑃&)G$(𝑁𝑁#)$H = (𝐵𝐵&)GH − (𝐴𝐴&)GH 

For the diagonal matrix, we have	Λ39 = 𝜆𝜆3𝛿𝛿39, which leads to 

Q𝜆𝜆G − 𝜆𝜆H − 1R(𝑃𝑃&)GH + (𝑁𝑁#)G$(𝑃𝑃&)$H − (𝑃𝑃&)G$(𝑁𝑁#)$H = (𝐵𝐵&)GH − (𝐴𝐴&)GH 

For	(𝑛𝑛, 1)	element, we have	(𝑁𝑁#)"$ = (𝑁𝑁#)$& = 0, which leads to 
(𝜆𝜆" − 𝜆𝜆& − 1)(𝑃𝑃&)"& = (𝐵𝐵&)"& − (𝐴𝐴&)"& 

If	𝜆𝜆" − 𝜆𝜆& ≠ 1, we can choose 

(𝐵𝐵&)"& = 0, (𝑃𝑃&)"& = −
(𝐴𝐴&)"&

𝜆𝜆" − 𝜆𝜆& − 1 

If	𝜆𝜆" − 𝜆𝜆& = 1, we can choose	(𝐵𝐵&)"& = (𝐴𝐴&)"&, and	(𝑃𝑃&)"&	is arbitrary. We can continue this 
process for	(𝑛𝑛, 2)	element and so on using previously determined	𝑃𝑃&. This implies that we can 
find	𝐵𝐵&	and	𝑃𝑃&, and	(𝐵𝐵&)39 ≠ 0	only possible when	𝜆𝜆3 − 𝜆𝜆9 = 1. In general,	𝐵𝐵@	and	𝑃𝑃@	exist, 
and	(𝐵𝐵@)39 ≠ 0	only possible when	𝜆𝜆3 − 𝜆𝜆9 = 𝑚𝑚. 

 
Proposition 3’. With this new choice of	𝐵𝐵@	(now denoted as	𝑁𝑁@) and	𝑃𝑃@, we have 

𝑧𝑧𝑃𝑃! = (Λ + 𝑁𝑁# + 𝑁𝑁&𝑧𝑧 + ⋯+ 𝑁𝑁@𝑧𝑧@)𝑃𝑃 
(𝑁𝑁0)39 ≠ 0	only possible when	𝜆𝜆3 − 𝜆𝜆9 = 𝑘𝑘. This implies that non-zero elements are possible 

only when	𝑖𝑖 < 𝑗𝑗	since we have ordered the eigenvalues, and	𝑁𝑁0 	are strictly upper triangular. 
 
 



Corollary 4. With this new choice of	Λ	and	𝑁𝑁0, we have 
𝑧𝑧I𝑁𝑁0 = 𝑁𝑁0𝑧𝑧0𝑧𝑧I 

 
Proof. Note that 

Q𝜆𝜆G − 𝜆𝜆H − 𝑘𝑘R(𝑁𝑁0)GH = 0, Λ𝑁𝑁0 − 𝑁𝑁0Λ − 𝑘𝑘𝑁𝑁0 = 𝑂𝑂 

Therefore, we have 

𝑧𝑧I𝑁𝑁0 = T
(ln 𝑧𝑧)B

𝑙𝑙! ΛB𝑁𝑁0
B:#

= T
(ln 𝑧𝑧)B

𝑙𝑙! 𝑁𝑁0(Λ + 𝑘𝑘)B
B:#

= 𝑁𝑁0𝑧𝑧I50 ∎	

 
Corollary 5. For the following equation 

𝑧𝑧𝑃𝑃! = (Λ + 𝑁𝑁# + 𝑁𝑁&𝑧𝑧 + ⋯+ 𝑁𝑁@𝑧𝑧@)𝑃𝑃 
Its solution is 

𝜉𝜉 = 𝑧𝑧I𝑧𝑧J , 𝑁𝑁 = 𝑁𝑁# + 𝑁𝑁& +⋯+𝑁𝑁@ 
 
Proof. Using the previous Corollary, we can directly calculate 

𝑧𝑧𝜉𝜉! = (Λ𝑧𝑧I)𝑧𝑧J + 𝑧𝑧I(𝑁𝑁𝑧𝑧J) = Λ𝜉𝜉 + (𝑁𝑁# + 𝑁𝑁&𝑧𝑧 + ⋯+ 𝑁𝑁@𝑧𝑧@)𝜉𝜉 ∎	
 
Theorem 6. For matrix equation	𝑧𝑧𝑌𝑌! = 𝐴𝐴𝑌𝑌, assume that	𝐴𝐴#	has a Jordan normal form	Λ + 𝑁𝑁#, 
with the eigenvalues ordered by	Re	𝜆𝜆G. Then there exists	𝑃𝑃(𝑧𝑧) ∈ 𝐺𝐺𝐺𝐺(𝕆𝕆(Ω), 𝑛𝑛)	and a strictly 
upper triangular constant matrix	𝑁𝑁 ∈ 𝑀𝑀(ℂ, 𝑛𝑛)	such that 

𝑌𝑌(𝑧𝑧) = 𝑃𝑃(𝑧𝑧)𝑧𝑧I𝑧𝑧J 
(𝑁𝑁)39 ≠ 0	only possible when	𝜆𝜆3 − 𝜆𝜆9 ∈ ℤ:#. 

 
To calculate the solution, since	𝑁𝑁	is a nilpotent matrix with	𝑁𝑁"5& = 𝑂𝑂, we have 

𝑧𝑧I = diagQ𝑧𝑧D'R, 𝑧𝑧J = T
(ln 𝑧𝑧)B

𝑙𝑙! 𝑁𝑁B
"

B1#

 

For any	𝜃𝜃# ∈ ℝ, the solution	𝑌𝑌(𝑧𝑧)	is analytic in	𝑆𝑆(𝜃𝜃#) = {𝑧𝑧 ∈ Ω	|	𝜃𝜃# < arg 𝑧𝑧 < 𝜃𝜃# + 2𝜋𝜋}. 
 

Consider	𝑧𝑧 → 𝑧𝑧𝑒𝑒'23, the solution becomes 

𝑌𝑌Q𝑧𝑧𝑒𝑒'23R = 𝑃𝑃(𝑧𝑧)𝑧𝑧I𝑒𝑒'23I𝑧𝑧J𝑒𝑒'23J 

From Corollary 4, with	𝑧𝑧 = 𝑒𝑒'23 	we have 
𝑒𝑒'23I𝑁𝑁0 = 𝑁𝑁0𝑒𝑒'230𝑒𝑒'23I = 𝑁𝑁0𝑒𝑒'23I, 𝑒𝑒'23I𝑁𝑁 = 𝑁𝑁𝑒𝑒'23I 



This shows that	𝑒𝑒'23I	commutes with	𝑁𝑁, and thus	𝑀𝑀 = 𝑒𝑒'23I𝑒𝑒'23J. Based on this property, we 
call	𝑀𝑀	the monodromic matrix of the matrix equation, and	(Λ, 𝑁𝑁)	the monodromic data that 
determine the multivalued properties of the solution. 
 
Example: Bessel equation 

𝑥𝑥'𝑦𝑦!! + 𝑥𝑥𝑦𝑦! + (𝑥𝑥' − 𝛼𝛼')𝑦𝑦 = 0 
We define the vector	𝑌𝑌	as 

𝑌𝑌 = u
𝑦𝑦
𝑥𝑥𝑦𝑦!v , 𝑌𝑌! = £ 𝑦𝑦!

𝑥𝑥𝑦𝑦!! + 𝑦𝑦!§ = Ö
𝑦𝑦!

𝛼𝛼' − 𝑥𝑥'

𝑥𝑥 𝑦𝑦
à = •

0
1
𝑥𝑥

𝛼𝛼' − 𝑥𝑥'

𝑥𝑥 0
¶ u

𝑦𝑦
𝑥𝑥𝑦𝑦!v 

Then we obtain the corresponding matrix equation 

𝑥𝑥𝑌𝑌! = 𝐴𝐴(𝑥𝑥)𝑌𝑌, 𝐴𝐴(𝑥𝑥) = u 0 1
𝛼𝛼' − 𝑥𝑥' 0v 

The coefficients of the power series of	𝐴𝐴(𝑥𝑥)	are 

𝐴𝐴# = u 0 1
𝛼𝛼' 0v , 𝐴𝐴& = 𝑂𝑂, 𝐴𝐴' = u 0 0

−1 0v 

To diagonalize	𝐴𝐴# (which also set	𝑃𝑃# = 𝐼𝐼), consider the following transform 

Φ = £𝑥𝑥𝑦𝑦
! + 𝛼𝛼𝑦𝑦

𝑥𝑥𝑦𝑦! − 𝛼𝛼𝑦𝑦§ = u𝛼𝛼 1
𝛼𝛼 −1v 𝑌𝑌, 𝑥𝑥Φ! = ®u𝛼𝛼 0

0 −𝛼𝛼v +
𝑥𝑥'

2𝛼𝛼 u−1 1
−1 1v©Φ 

When	𝐴𝐴#	is non-resonant, we have	2𝛼𝛼 ∉ ℤ	and the solution can be obtained from Theorem 2.  
 
When	𝐴𝐴#	is resonant with	2𝛼𝛼 ∈ ℤ: 
If	2𝛼𝛼	is odd, as	𝐴𝐴& = 𝑂𝑂	we can choose	𝐵𝐵& = 𝑃𝑃& = 𝑂𝑂, and then for all	𝑚𝑚 ≥ 2	we can similarly 
set	𝐵𝐵@ = 𝑂𝑂	and solve for 𝑃𝑃@. The solution can still be written as	𝑌𝑌(𝑧𝑧) = 𝑃𝑃(𝑧𝑧)𝑧𝑧I. 
 
If	2𝛼𝛼	is even, for	𝑚𝑚 = 2	the equation is 

(𝐴𝐴# − 2𝐼𝐼)𝑃𝑃' − 𝑃𝑃'𝐴𝐴# = 𝐵𝐵' − 𝐴𝐴' 
As an example, consider	𝛼𝛼 = 1 and we have 

u−1 0
0 −3v 𝑃𝑃' − 𝑃𝑃' u

1 0
0 −1v = 𝐵𝐵' −

1
2 u

−1 1
−1 1v 

Explicitly writing out the elements for	𝑃𝑃', we have 

𝑃𝑃' = u𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑v , u−2𝑎𝑎 0

−4𝑐𝑐 −2𝑑𝑑v = 𝐵𝐵' −
1
2 u

−1 1
−1 1v 

This constrains (𝐵𝐵')&'	and a valid choice is 

𝐵𝐵' =
1
2 u

0 1
0 0v , 𝑃𝑃' =

1
8 u

−2 0
−1 2v 

For 𝑚𝑚 ≥ 3	we can still set	𝐵𝐵@ = 𝑂𝑂	and solve for	𝑃𝑃@. This implies that the final matrix	𝑁𝑁	is 



𝑁𝑁 =
1
2 u

0 1
0 0v , 𝑧𝑧J = T

(ln 𝑧𝑧)B

𝑙𝑙! 𝑁𝑁B
"

B1#

= Ø1
1
2 ln 𝑧𝑧

0 1
∞ , 𝑧𝑧I = u𝑧𝑧 0

0 𝑧𝑧)&v 

We know that for	𝛼𝛼 = 1	the solutions are	𝑃𝑃&(𝑧𝑧)	and	𝑌𝑌&(𝑧𝑧). The term	ln 𝑧𝑧	contributes to	𝑌𝑌&(𝑧𝑧). 
 
In general, for a linear ODE of the form 

𝑥𝑥"𝑦𝑦(") + 𝑝𝑝&(𝑥𝑥)𝑥𝑥")&𝑦𝑦(")&) +⋯+ 𝑝𝑝"(𝑥𝑥)𝑦𝑦 = 0 
We can choose vector	𝑌𝑌	as 

𝑌𝑌 = ±𝑦𝑦, 𝑥𝑥𝑦𝑦!, 𝑥𝑥'𝑦𝑦!!, ⋯ , 𝑥𝑥")&𝑦𝑦(")&)≤
C
 

For each element	𝑦𝑦9, we can obtain the recursive relation 

𝑦𝑦9 = 𝑥𝑥9)&𝑦𝑦(9)&), 𝑥𝑥𝑦𝑦9! = (𝑗𝑗 − 1)𝑦𝑦9 + 𝑦𝑦95& 

This leads to the matrix equation 

𝑥𝑥𝑌𝑌! = 𝐴𝐴(𝑥𝑥)𝑌𝑌 =

⎣
⎢
⎢
⎢
⎢
⎡

0 1 0 0 ⋯ 0
0 1 1 0 ⋯ 0
0 0 2 1 ⋯ 0
	 	 	 ⋱ ⋱ 	
	 	 	 	 𝑛𝑛 − 2 1

−𝑝𝑝"(𝑥𝑥) ⋯ ⋯ ⋯ −𝑝𝑝'(𝑥𝑥) 𝑛𝑛 − 1 − 𝑝𝑝&(𝑥𝑥)⎦
⎥
⎥
⎥
⎥
⎤

𝑌𝑌 

 
Global problem 

Consider the extended complex plane	ℂ∫ = ℂ ∪ {∞}, and the only meromorphic functions on	ℂ∫ 
are the rational functions, denoted as	𝕂𝕂. For matrix	𝐴𝐴 ∈ 𝑀𝑀(𝕂𝕂, 𝑛𝑛)	and	𝑌𝑌!(𝑧𝑧) = 𝐴𝐴(𝑧𝑧)𝑌𝑌(𝑧𝑧), we 
want to know when the equation only has regular singular points. For rational functions, we 
can write the matrix	𝐴𝐴(𝑧𝑧)	as 

𝐴𝐴(𝑧𝑧) = T
𝑃𝑃9(𝑧𝑧)

Q𝑧𝑧 − 𝑧𝑧9R
@&

0

91&

+ 𝑃𝑃#(𝑧𝑧), degQ𝑝𝑝9R < 𝑚𝑚9 

If	𝑧𝑧9 	are regular, we have	𝑚𝑚9 = 1	and	𝑃𝑃9 	is a constant matrix. To study the behavior at	𝑧𝑧 = ∞, 

consider	𝑤𝑤 = 1/𝑧𝑧	and 

𝑌𝑌æ(𝑤𝑤) = 𝑌𝑌 ø
1
𝑤𝑤¿ ,

d𝑌𝑌æ
d𝑤𝑤 = −

1
𝑤𝑤' 𝑌𝑌

! ø
1
𝑤𝑤¿ = −

1
𝑤𝑤' 𝐴𝐴 ø

1
𝑤𝑤¿𝑌𝑌æ(𝑤𝑤) 

If	𝑧𝑧 = ∞	(𝑤𝑤 = 0) is a regular singularity, we require	𝑤𝑤)&𝐴𝐴(𝑤𝑤)&)	to be analytic at	𝑤𝑤 = 0, 
which is equivalent to	𝑧𝑧𝐴𝐴(𝑧𝑧)	having a limit as	𝑧𝑧 → ∞, and this requires	𝑃𝑃#(𝑧𝑧) = 𝑂𝑂. Therefore, 

if the equation only has regular singularities on	ℂ∫, we have	𝑤𝑤𝑌𝑌æ ! = 𝐴𝐴F𝑌𝑌æ	with 

𝐴𝐴(𝑧𝑧) = T
𝑃𝑃9

𝑧𝑧 − 𝑧𝑧9

0

91&

, 𝐴𝐴F(𝑤𝑤) = T
𝑃𝑃9

𝑤𝑤𝑧𝑧9 − 1

0

91&

, 𝐴𝐴F(0) = −T𝑃𝑃9

0

91&

 

We can then use a linear fractional transformation to obtain 



𝑌𝑌!(𝑧𝑧) = 𝐴𝐴(𝑧𝑧)𝑌𝑌(𝑧𝑧), 𝐴𝐴(𝑧𝑧) = T
𝐴𝐴9

𝑧𝑧 − 𝑧𝑧9

J

91&

, T𝐴𝐴9

J

91&

= 0 

Now	𝑧𝑧 = ∞	is regular. The singularities	𝑧𝑧9 	decompose	ℂ	into simply connected polygons	𝑈𝑈G, 
and there is an analytic solution of the equation in each of them. Every side	𝑧𝑧9𝑧𝑧0 corresponds 
to a monodromic matrix	𝑀𝑀90  and thus define a map	(𝐴𝐴9) ↦ (𝑀𝑀90), which is related to the 

Riemann-Hilbert problem. 
 
Ø Asymptotic behavior near irregular singular points (6.3) 

𝑧𝑧+5&𝑌𝑌!(𝑧𝑧) = 𝐴𝐴(𝑧𝑧)𝑌𝑌(𝑧𝑧), 𝑟𝑟 ∈ ℕ∗, 𝑟𝑟 ≥ 1 
We call	𝑟𝑟	as the Poincaré rank, and recall the following classification: 

𝑟𝑟 = −1: Ordinary point 𝑟𝑟 = 0: Regular singularity 𝑟𝑟 ≥ 1: Irregular singularity 

First, we can consider the scalar equation with dimension	𝑛𝑛 = 1. We have 

𝑎𝑎(𝑧𝑧) = T𝑎𝑎0𝑧𝑧0
0:#

,
𝑦𝑦!

𝑦𝑦 =
𝑎𝑎(𝑧𝑧)
𝑧𝑧+5& = T

𝑎𝑎0
𝑧𝑧+5&)0

+)&

01#

+
𝑎𝑎+
𝑧𝑧 + T 𝑎𝑎0𝑧𝑧0)+)&

0:+5&

 

The solution is 

ln 𝑦𝑦(𝑧𝑧) = T
𝑎𝑎0

𝑘𝑘 − 𝑟𝑟
1

𝑧𝑧+)0

+)&

01#

+ 𝑎𝑎+ ln 𝑧𝑧 + T
𝑎𝑎0

𝑘𝑘 − 𝑟𝑟 𝑧𝑧
0)+

0:+5&

, 𝑦𝑦(𝑧𝑧) = 𝑃𝑃(𝑧𝑧)	𝑧𝑧K	𝑒𝑒LM.(!N 

The exponent is	𝜌𝜌 = 𝑎𝑎+, and the analytic function	𝑃𝑃(𝑧𝑧)	and polynomial	𝑄𝑄(𝑤𝑤)	are defined as 

𝑃𝑃(𝑧𝑧) = expS T
𝑎𝑎0

𝑘𝑘 − 𝑟𝑟 𝑧𝑧
0)+

0:+5&

W , 𝑄𝑄(𝑤𝑤) = T
𝑎𝑎0

𝑘𝑘 − 𝑟𝑟𝑤𝑤
+)0

+)&

01#

 

For the matrix case, we still want to find a transformation	𝑃𝑃	such that	𝑌𝑌 = 𝑃𝑃𝑃𝑃	with 
𝑧𝑧+5&𝑃𝑃!(𝑧𝑧) = 𝐵𝐵(𝑧𝑧)𝑃𝑃(𝑧𝑧), 𝐵𝐵(𝑧𝑧) = 𝑃𝑃)&𝐴𝐴𝑃𝑃 − 𝑧𝑧+5&𝑃𝑃)&𝑃𝑃! 

The matrix	𝐵𝐵(𝑧𝑧)	should be as simple as possible. For the equation of	𝐵𝐵(𝑧𝑧), we similarly obtain 
𝑧𝑧+5&𝑃𝑃! = 𝐴𝐴𝑃𝑃 − 𝑃𝑃𝐵𝐵 

Written in formal power series, the coefficients for	𝑧𝑧@	are 

[𝑧𝑧@]	𝑧𝑧+5&𝑃𝑃! = [𝑧𝑧@]T𝑘𝑘𝑃𝑃0𝑧𝑧05+
0:#

= (𝑚𝑚 − 𝑟𝑟)𝑃𝑃@)+ , 𝑃𝑃9 = 𝑂𝑂		for		𝑗𝑗 < 0 

[𝑧𝑧@]	(𝐴𝐴𝑃𝑃 − 𝑃𝑃𝐵𝐵) = T(𝐴𝐴0𝑃𝑃@)0 − 𝑃𝑃@)0𝐵𝐵0)
@

01#

 

Therefore, we obtain the following set of equations 



𝐴𝐴#𝑃𝑃@ − 𝑃𝑃@𝐵𝐵# = T(𝑃𝑃@)0𝐵𝐵0 − 𝐴𝐴0𝑃𝑃@)0)
@

01&

+ (𝑚𝑚 − 𝑟𝑟)𝑃𝑃@)+ 

We want to properly choose	𝐵𝐵@	to make the equations simple. Consider	𝐴𝐴#	is already reduced 
to its Jordan normal form, which also gives	𝑃𝑃# = 𝐼𝐼	and	𝐵𝐵# = 𝐴𝐴#. We need to iteratively solve 
the matrix equation of the form 

𝐴𝐴#𝑃𝑃@ − 𝑃𝑃@𝐴𝐴# = 𝐵𝐵@ − 𝐴𝐴@ + T(𝑃𝑃@)0𝐵𝐵0 − 𝐴𝐴0𝑃𝑃@)0)
@)&

01&

= 𝐵𝐵@ + 𝐹𝐹@ 

The LHS is always resonant. For simplicity, we assume that	𝐴𝐴#	has	𝑛𝑛 different eigenvalues and 
is already diagonalized as	𝐴𝐴 = 𝜆𝜆3𝛿𝛿39. For each element	(𝛼𝛼, 𝛽𝛽), we have 

Q𝜆𝜆G − 𝜆𝜆HR(𝑃𝑃@)GH = (𝐵𝐵@)GH + (𝐹𝐹@)GH 

When	𝛼𝛼 ≠ 𝛽𝛽	(off-diagonal elements), we can choose 

(𝐵𝐵@)GH = 0, (𝑃𝑃@)GH =
(𝐹𝐹@)GH
𝜆𝜆G − 𝜆𝜆H

 

When	𝛼𝛼 = 𝛽𝛽	(diagonal elements), we can choose 

(𝐵𝐵@)GH = −(𝐹𝐹@)GH , (𝑃𝑃@)GH = 0 

 
Theorem 1. For the matrix equation	𝑧𝑧+5&𝑌𝑌!(𝑧𝑧) = 𝐴𝐴(𝑧𝑧)𝑌𝑌(𝑧𝑧), consider that	𝐴𝐴#	has	𝑛𝑛	different 
eigenvalues. There exist an invertible	𝑃𝑃(𝑧𝑧)	and a diagonal	𝐵𝐵(𝑧𝑧)	such that	𝑌𝑌 = 𝑃𝑃𝑃𝑃	and 

𝑧𝑧+5&𝑃𝑃!(𝑧𝑧) = 𝐵𝐵(𝑧𝑧)𝑃𝑃(𝑧𝑧) 
 
Corollary 2. With a diagonal	𝐵𝐵(𝑧𝑧), similar to the scalar case, we can define 

𝑄𝑄(𝑤𝑤) = T
𝐵𝐵0

𝑘𝑘 − 𝑟𝑟𝑤𝑤
+)0

+)&

01#

, 𝜌𝜌 = 𝐵𝐵+ , 𝐹𝐹!(𝑧𝑧) = S T 𝐵𝐵0𝑧𝑧0)+)&
0:+5&

W𝐹𝐹(𝑧𝑧), 𝐹𝐹(0) = 𝐼𝐼 

Note that	𝜌𝜌	is a constant diagonal matrix, 𝑄𝑄(𝑤𝑤)	is a diagonal matrix with each element being 
a polynomial of degree	𝑟𝑟. Then the solution can be written as 

𝑃𝑃(𝑧𝑧) = 𝐹𝐹(𝑧𝑧)	𝑧𝑧K	𝑒𝑒LM.(!N, 𝑌𝑌(𝑧𝑧) = 𝑃𝑃(𝑧𝑧)	𝐹𝐹(𝑧𝑧)	𝑧𝑧K	𝑒𝑒LM.(!N 

The result uses the property that	𝜌𝜌	and	𝑄𝑄	are commutable since they are diagonal. 
 
Theorem 3. For an analytic	𝐴𝐴(𝑧𝑧)	with rank	𝑟𝑟 ≥ 1, consider that	𝐴𝐴#	has	𝑛𝑛	different eigenvalues. 
The formal solution of the matrix equation	𝑧𝑧+5&𝑌𝑌!(𝑧𝑧) = 𝐴𝐴(𝑧𝑧)𝑌𝑌(𝑧𝑧) is given as 

𝑌𝑌(𝑧𝑧) = 𝑌𝑌∫(𝑧𝑧)	𝑧𝑧K	𝑒𝑒LM.(!N, 𝑌𝑌∫(0) = 𝐼𝐼 



For arbitrary	𝜃𝜃&, 𝜃𝜃' ∈ ℝ	with	0 < 𝜃𝜃& − 𝜃𝜃' < 𝜋𝜋/𝑟𝑟, there exists 𝑅𝑅 > 0	such that the equation has 
an analytic solution in	𝑆𝑆(𝜃𝜃&, 𝜃𝜃') ∩ 𝐵𝐵(0, 𝑅𝑅), where	𝑆𝑆(𝜃𝜃&, 𝜃𝜃')	denotes the sector 

𝑆𝑆(𝜃𝜃&, 𝜃𝜃') = {𝑧𝑧 ∈ ℂ	|	𝜃𝜃& < arg 𝑧𝑧 < 𝜃𝜃'} 
Also, as	𝑧𝑧 → 0	within the domain	𝑆𝑆(𝜃𝜃&, 𝜃𝜃'), the asymptotic behavior should be interpreted as 

𝑌𝑌(𝑧𝑧)	𝑧𝑧)K	𝑒𝑒)LM.(!N ∼ 𝑌𝑌æ(𝑧𝑧) 

 
For an irregular singularity at	𝑧𝑧 = ∞, similarly consider	𝑤𝑤 = 1/𝑧𝑧	and we have 

𝑌𝑌æ(𝑤𝑤) = 𝑌𝑌 ø
1
𝑤𝑤¿ , 𝑤𝑤)+5&	𝑌𝑌æ !(𝑤𝑤) = 𝐴𝐴F(𝑤𝑤)𝑌𝑌(𝑤𝑤), 𝐴𝐴F(𝑤𝑤) = −𝐴𝐴 ø

1
𝑤𝑤¿ 

The formal solution can be written as 

𝑌𝑌æ(𝑤𝑤) = 𝑌𝑌∫(𝑤𝑤)	𝑤𝑤K	𝑒𝑒L(O) 
The solution is analytic within the domain	𝑆𝑆(𝜃𝜃&, 𝜃𝜃') ∩ {𝑤𝑤 ∈ ℂ	|	|𝑤𝑤| > 𝑅𝑅}. 
 
Theorem (Sibuya 1962). For	𝜃𝜃# ∈ ℝ, there exists a sufficiently small	𝛿𝛿 > 0 such that there is 
a solution	𝑌𝑌(𝑧𝑧)	in	𝑆𝑆(𝜃𝜃# − 𝛿𝛿, 𝜃𝜃# + 𝜋𝜋/𝑟𝑟) ∩ 𝐵𝐵(0, 𝑅𝑅). 
 
Corollary 4. There exists	𝛿𝛿 > 0, 𝑅𝑅 > 0	such that there is a solution	𝑌𝑌(𝑧𝑧)	satisfying Theorem 3 
in the following domain 

𝑆𝑆B = »𝑧𝑧 ∈ ℂ∗	|
𝜋𝜋
𝑟𝑟
(𝑙𝑙 − 1) − 𝛿𝛿 < arg 𝑧𝑧 <

𝜋𝜋
𝑟𝑟 𝑙𝑙… ∩ 𝐵𝐵(0, 𝑅𝑅), 𝑙𝑙 = 1,2,⋯ ,2𝑟𝑟 

 
Stokes phenomenon 
Now consider the intersection 

𝑆𝑆(𝑙𝑙, 𝑙𝑙 + 1) = »𝑧𝑧 ∈ ℂ∗	|
𝜋𝜋
𝑟𝑟 𝑙𝑙 − 𝛿𝛿 < arg 𝑧𝑧 <

𝜋𝜋
𝑟𝑟 𝑙𝑙… ∩ 𝐵𝐵(0, 𝑅𝑅) 

Corollary 4 indicates that there are solutions	𝑌𝑌B 	and	𝑌𝑌B5&	in this domain	𝑆𝑆(𝑙𝑙, 𝑙𝑙 + 1). Hence, there 
is a constant matrix	𝐶𝐶B, the Stokes multiplier, such that	𝑌𝑌B5&(𝑧𝑧) = 𝑌𝑌B(𝑧𝑧)𝐶𝐶B. 
 
In	𝑆𝑆B 	and	𝑆𝑆B5&	respectively, we have 

𝑌𝑌B(𝑧𝑧)	𝑧𝑧)K	𝑒𝑒)LM.
(!N ∼ 𝑌𝑌∫(𝑧𝑧), 𝑌𝑌B5&(𝑧𝑧)	𝑧𝑧)K	𝑒𝑒)LM.

(!N ∼ 𝑌𝑌∫(𝑧𝑧), 𝑧𝑧 → 0 

Multiply the second equation with the inverse of the first one, and we have 

𝑒𝑒LM.(!N𝑧𝑧K𝐶𝐶B 	𝑧𝑧)K𝑒𝑒)LM.
(!N ∼ 𝐼𝐼, 𝑧𝑧 → 0, 𝑧𝑧 ∈ 𝑆𝑆(𝑙𝑙, 𝑙𝑙 + 1) 

For each element	(𝛼𝛼, 𝛽𝛽), we have 

(𝐶𝐶B)GH 	𝑒𝑒P'M.
(!N)P)M.(!N	𝑧𝑧K')K) ∼ 𝛿𝛿GH , 𝑧𝑧 → 0, 𝑧𝑧 ∈ 𝑆𝑆(𝑙𝑙, 𝑙𝑙 + 1) 



When	𝛼𝛼 = 𝛽𝛽	(diagonal), we have	(𝐶𝐶B)GG = 1. When	𝛼𝛼 ≠ 𝛽𝛽	(off-diagonal), note that 

𝑞𝑞G(𝑧𝑧)&) − 𝑞𝑞H(𝑧𝑧)&) =
𝜆𝜆H − 𝜆𝜆G

𝑟𝑟 𝑧𝑧)+ + 𝑜𝑜(𝑧𝑧)+) 

Consider a ray	𝛾𝛾 ∈ 𝑆𝑆(𝑙𝑙, 𝑙𝑙 + 1). If there exists a ray	𝛾𝛾	such that as	𝑧𝑧 → 0	along	𝛾𝛾, we have 

ReÃQ𝜆𝜆H − 𝜆𝜆GR𝑧𝑧)+Õ > 0, then		(𝐶𝐶B)GH = 0 

If there does not exist such a ray	𝛾𝛾 for the exponent, then nothing can be said about	(𝐶𝐶B)39. If 

the eigenvalues	𝜆𝜆"	are sorted by lexicographic order (𝜆𝜆Q , 𝜆𝜆F), then	𝐶𝐶B 	must be an upper or lower 
triangular matrix, dependent on	𝑙𝑙	being odd or even. 
 
We define the Stokes ray as those that lead to 

ReÃQ𝜆𝜆H − 𝜆𝜆GR𝑧𝑧)+Õ = 0 

There are 𝑀𝑀 = 𝑛𝑛(𝑛𝑛 − 1)𝑟𝑟	Stokes rays in total. Each ray corresponds to a Stokes factor. 
 
Example: Airy equation 

𝑦𝑦!! = 𝑧𝑧𝑦𝑦 
The corresponding matrix equation is 

𝑌𝑌 = u
𝑦𝑦
𝑦𝑦!v , 𝑌𝑌! = £𝑦𝑦

!

𝑦𝑦!!§ = £𝑦𝑦
!

𝑧𝑧𝑦𝑦§ = u0 1
𝑧𝑧 0v 𝑌𝑌 

To analyze the behavior at	𝑧𝑧 = ∞, we rewrite it as 

𝑧𝑧)&𝑌𝑌!(𝑧𝑧) = u0 1/𝑧𝑧
1 0 v 𝑌𝑌, 𝑟𝑟 = 2 

 
Ø Exercise 
Regular singular point 

𝑦𝑦(𝑧𝑧) = £𝑦𝑦&
(𝑧𝑧)

𝑦𝑦'(𝑧𝑧)
§ , 𝑧𝑧𝑦𝑦!(𝑧𝑧) = £−1/2 + 𝑧𝑧 𝑧𝑧

𝑧𝑧 1/2 + 𝑧𝑧§ 𝑦𝑦(𝑧𝑧) = 𝐴𝐴(𝑧𝑧)𝑦𝑦(𝑧𝑧) 

𝑧𝑧 = 0	is a regular singularity. The coefficients of the power series of	𝐴𝐴(𝑧𝑧)	are 

𝐴𝐴# = £−1/2 0
0 1/2§ , 𝐴𝐴& = u1 1

1 1v , 𝐴𝐴0 = 𝑂𝑂, 𝑘𝑘 ≥ 2 

We already have a diagonal	𝐴𝐴#, which implies	𝑃𝑃# = 𝐼𝐼	and	𝐵𝐵# = 𝐴𝐴#. For	𝑚𝑚 = 1	we have 
(𝐴𝐴# − 𝐼𝐼)𝑃𝑃& − 𝑃𝑃&𝐴𝐴# = 𝐵𝐵& − 𝐴𝐴& 

Explicitly writing out the elements for	𝑃𝑃&, we have 

𝑃𝑃& = u𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑v , u−𝑎𝑎 −2𝑏𝑏

0 −𝑑𝑑 v = 𝐵𝐵& − u1 1
1 1v 

We can obtain a lower triangular	𝐵𝐵&, as well as the corresponding	𝑃𝑃&	as 

𝑃𝑃& = u1 1/2
0 1 v , 𝐵𝐵& = u0 0

1 0v 



For	𝑚𝑚 ≥ 2, there is no resonance and we can choose	𝐵𝐵@ = 𝑂𝑂. As an example, for	𝑚𝑚 = 2 
(𝐴𝐴# − 2𝐼𝐼)𝑃𝑃' − 𝑃𝑃'𝐴𝐴# = 𝐵𝐵' + 𝑃𝑃&𝐵𝐵& − 𝐴𝐴&𝑃𝑃& 

We can solve for	𝑃𝑃'	as 

𝑃𝑃' = £1/4 1/2
0 3/4§ , 𝐵𝐵' = 𝑂𝑂 

Repeat this process and we can also obtain 

𝑃𝑃R = £−1/12 5/16
−1/4 5/12§ , 𝐵𝐵R = 𝑂𝑂 

The monodromic data	(Λ, 𝑁𝑁)	are then given as 

Λ = diag ø−
1
2 ,

1
2¿ , 𝑁𝑁 = 𝐵𝐵& = u0 0

1 0v 

The transformation	𝑃𝑃(𝑧𝑧)	is given as 

𝑃𝑃(𝑧𝑧) = T𝑃𝑃0𝑧𝑧0
0:#

= •
1 + 𝑧𝑧 +

1
4
𝑧𝑧' −

1
12

𝑧𝑧R +⋯
1
2
𝑧𝑧 +

1
2
𝑧𝑧' +

5
16

𝑧𝑧R +⋯

−
1
4 𝑧𝑧

R +⋯ 1 + 𝑧𝑧 +
3
4 𝑧𝑧

' +
5
12 𝑧𝑧

R +⋯
¶ 

The fundamental solution matrix becomes 

𝑌𝑌(𝑧𝑧) = 𝑃𝑃(𝑧𝑧)𝑧𝑧I𝑧𝑧J , 𝑧𝑧I = diag ø
1
√𝑧𝑧

, √𝑧𝑧¿ , 𝑧𝑧J = T
(ln 𝑧𝑧)B

𝑙𝑙! 𝑁𝑁B
"

B1#

= u 1 0
ln 𝑧𝑧 1v 

 
Bessel equation 
We consider the Bessel equation with integer order 

𝑥𝑥'𝑦𝑦!! + 𝑥𝑥𝑦𝑦! + (𝑥𝑥' − 𝑛𝑛')𝑦𝑦 = 0, 𝑛𝑛 ∈ ℕ∗ 
The matrix equation is 

𝜙𝜙 = £𝑥𝑥𝑦𝑦
! + 𝑛𝑛𝑦𝑦

𝑥𝑥𝑦𝑦! − 𝑛𝑛𝑦𝑦§ , 𝑥𝑥𝜙𝜙! = ®u𝑛𝑛 0
0 −𝑛𝑛v +

𝑥𝑥'

2𝑛𝑛 u−1 1
−1 1v©𝜙𝜙 

We already have a diagonal	𝐴𝐴#, which implies	𝑃𝑃# = 𝐼𝐼	and	𝐵𝐵# = 𝐴𝐴#. 

𝐴𝐴# = u𝑛𝑛 0
0 −𝑛𝑛v , 𝐴𝐴& = 𝑂𝑂, 𝐴𝐴' =

1
2𝑛𝑛 u−1 1

−1 1v 

Now	𝐴𝐴#	is resonant, and the difference in eigenvalues	2𝑛𝑛	is even. For each order	𝑚𝑚, we need 
to solve the following matrix equation 

(𝐴𝐴# −𝑚𝑚𝐼𝐼)𝑃𝑃@ − 𝑃𝑃@𝐵𝐵# = T(𝑃𝑃@)0𝐵𝐵0 − 𝐴𝐴0𝑃𝑃@)0)
@

01&

 

The LHS is injective whenever	𝑚𝑚 ≠ 2𝑛𝑛. We can set	𝐵𝐵@ = 𝑂𝑂	for	1 ≤ 𝑚𝑚 ≤ 2𝑛𝑛 − 1	and obtain 
(𝐴𝐴# −𝑚𝑚𝐼𝐼)𝑃𝑃@ − 𝑃𝑃@𝐴𝐴# = 𝛿𝛿@,'"𝐵𝐵@ − 𝐴𝐴'𝑃𝑃@)', 𝑚𝑚 = 2,4,⋯ ,2𝑛𝑛 

We also know that	𝐵𝐵'"	is upper triangular, and denote	(𝐵𝐵'")&' = 𝜅𝜅". Explicitly writing out the 
elements of	𝑃𝑃@, from this recursive formula we have 



£ −𝑚𝑚𝑎𝑎@ (2𝑛𝑛 − 𝑚𝑚)𝑏𝑏@
−(2𝑛𝑛 +𝑚𝑚)𝑐𝑐@ −𝑚𝑚𝑑𝑑@

§ = £0 𝛿𝛿@,'"𝜅𝜅"
0 0

§ +
1
2𝑛𝑛 £𝑎𝑎@)' − 𝑐𝑐@)' 𝑏𝑏@)' − 𝑑𝑑@)'

𝑎𝑎@)' − 𝑐𝑐@)' 𝑏𝑏@)' − 𝑑𝑑@)'
§ 

This leads to 

𝑚𝑚𝑎𝑎@ = (2𝑛𝑛 +𝑚𝑚)𝑐𝑐@ =
1
2𝑛𝑛

(𝑐𝑐@)' − 𝑎𝑎@)'), 𝑚𝑚 = 2,4,⋯ ,2𝑛𝑛	

(𝑚𝑚 − 2𝑛𝑛)𝑏𝑏@ = 𝑚𝑚𝑑𝑑@ =
1
2𝑛𝑛

(𝑑𝑑@)' − 𝑏𝑏@)'), 𝑚𝑚 = 2,4,⋯ ,2𝑛𝑛 − 2	

The special case	𝑚𝑚 = 2𝑛𝑛	gives 

𝑏𝑏'" = 0, 𝜅𝜅" = 2𝑛𝑛𝑑𝑑'" =
1
2𝑛𝑛

(𝑑𝑑'")' − 𝑏𝑏'")') 

Note that the monodromic data	(Λ, 𝑁𝑁)	are given as 

Λ = 𝐴𝐴# = u𝑛𝑛 0
0 −𝑛𝑛v , 𝑁𝑁 = 𝐵𝐵'" = u0 𝜅𝜅"

0 0 v 

Hence, we only need	𝑏𝑏@	and	𝑑𝑑@. With the initial conditions	𝑏𝑏# = 0	and	𝑑𝑑# = 1, we have 

𝑑𝑑@ − 𝑏𝑏@ =
𝑑𝑑@)' − 𝑏𝑏@)'

𝑚𝑚(2𝑛𝑛 −𝑚𝑚) , 𝑑𝑑'B − 𝑏𝑏'B =
(𝑛𝑛 − 𝑙𝑙 − 1)!

4B ⋅ 𝑙𝑙! ⋅ (𝑛𝑛 − 1)! , 𝑙𝑙 ≤ 𝑛𝑛 − 1 

Therefore, we obtain 

𝜅𝜅" =
𝑛𝑛

2'")& ⋅ (𝑛𝑛!)' , 𝑛𝑛 ∈ ℕ∗ 

The fundamental solution matrix is obtained as 

Φ(𝑥𝑥) = 𝑃𝑃(𝑥𝑥)𝑥𝑥I𝑥𝑥J , 𝑥𝑥I = u𝑥𝑥
" 0
0 𝑥𝑥)"v , 𝑥𝑥J = T

(ln 𝑥𝑥)B

𝑙𝑙! 𝑁𝑁B
"

B1#

= u1 𝜅𝜅" ln 𝑥𝑥
0 1 v 

The leading order term is 

Φ(𝑥𝑥) = u𝑥𝑥
" 𝜅𝜅"𝑥𝑥" ln 𝑥𝑥
0 𝑥𝑥)"

v Q1 + 𝑂𝑂(𝑥𝑥')R, 𝑧𝑧 → 0 

 
Note that each column of	Φ(𝑥𝑥)	is a linearly independent solution of	𝜙𝜙(𝑥𝑥). We want to see how 
Φ(𝑥𝑥)	is related to the Bessel functions, which satisfy the following recurrence relation 

£𝑥𝑥𝑍𝑍"
! (𝑥𝑥) + 𝑛𝑛𝑍𝑍"(𝑥𝑥)

𝑥𝑥𝑍𝑍"! (𝑥𝑥) − 𝑛𝑛𝑍𝑍"(𝑥𝑥)
§ = £ 𝑥𝑥𝑍𝑍")&(𝑥𝑥)

−𝑥𝑥𝑍𝑍"5&(𝑥𝑥)
§ 

Here	𝑍𝑍"(𝑥𝑥)	can be either	𝑃𝑃"(𝑥𝑥)	or	𝑌𝑌"(𝑥𝑥). Focusing on the leading order term, we have 

𝑃𝑃"(𝑥𝑥) =
𝑥𝑥"

2" ⋅ 𝑛𝑛! Q1 + 𝑂𝑂(𝑥𝑥')R	

𝜋𝜋𝑌𝑌"(𝑥𝑥) = Ö−
2"(𝑛𝑛 − 1)!

𝑥𝑥" +
𝑥𝑥" ln 𝑥𝑥2
2")& ⋅ 𝑛𝑛! −

𝜓𝜓(1) + 𝜓𝜓(𝑛𝑛 + 1)
2" ⋅ 𝑛𝑛! 𝑥𝑥"à Q1 + 𝑂𝑂(𝑥𝑥')R 

For	𝑃𝑃"(𝑥𝑥), it is obvious to see 

£ 𝑥𝑥𝑃𝑃")&(𝑥𝑥)
−𝑥𝑥𝑃𝑃"5&(𝑥𝑥)

§ =
1

2")&(𝑛𝑛 − 1)! u
𝑥𝑥"
0 v + 𝑂𝑂(𝑥𝑥"5') 

For	𝑌𝑌"(𝑥𝑥), we can neglect the third term since it is related to	𝑥𝑥", which is the other solution. 



For the other two terms	𝑥𝑥)"	and	𝑥𝑥" ln 𝑥𝑥, we have 

£ 𝑥𝑥𝑌𝑌")&(𝑥𝑥)
−𝑥𝑥𝑌𝑌"5&(𝑥𝑥)

§ ∼ Ö
𝑥𝑥" ln 𝑥𝑥

2")'(𝑛𝑛 − 1)!
2"5&𝑛𝑛! 𝑥𝑥)"

à = 2"5&𝑛𝑛! u𝜅𝜅"𝑥𝑥
" ln 𝑥𝑥

𝑥𝑥)"
v 

Hence we check the factor	𝜅𝜅"	and show how	Φ(𝑥𝑥)	is related to	𝑃𝑃"(𝑥𝑥)	and	𝑌𝑌"(𝑥𝑥). 
 
Linear fractional transformation 

Consider	𝑌𝑌!(𝑧𝑧) = 𝐴𝐴(𝑧𝑧)𝑌𝑌(𝑧𝑧)	defined on	ℂ∫ = ℂ ∪ {∞}	with rational function	𝐴𝐴(𝑧𝑧). The linear 
fractional transformation is given as 

𝑧𝑧 =
𝑎𝑎𝑤𝑤 + 𝑏𝑏
𝑐𝑐𝑤𝑤 + 𝑑𝑑 ,

d𝑧𝑧
d𝑤𝑤 =

𝑎𝑎𝑑𝑑 − 𝑏𝑏𝑐𝑐
(𝑐𝑐𝑤𝑤 + 𝑑𝑑)' 

We thus have 

𝑌𝑌æ(𝑤𝑤) = 𝑌𝑌Q𝑧𝑧(𝑤𝑤)R,
d𝑌𝑌æ
d𝑤𝑤 =

𝑎𝑎𝑑𝑑 − 𝑏𝑏𝑐𝑐
(𝑐𝑐𝑤𝑤 + 𝑑𝑑)' 𝑌𝑌

!Q𝑧𝑧(𝑤𝑤)R =
𝑎𝑎𝑑𝑑 − 𝑏𝑏𝑐𝑐
(𝑐𝑐𝑤𝑤 + 𝑑𝑑)' 𝐴𝐴Q𝑧𝑧

(𝑤𝑤)R𝑌𝑌æ(𝑤𝑤) 

The transformed equation becomes 

𝑌𝑌æ !(𝑤𝑤) = 𝐴𝐴F(𝑤𝑤)𝑌𝑌æ(𝑤𝑤), 𝐴𝐴F(𝑤𝑤) =
𝑎𝑎𝑑𝑑 − 𝑏𝑏𝑐𝑐
(𝑐𝑐𝑤𝑤 + 𝑑𝑑)' 𝐴𝐴ø

𝑎𝑎𝑤𝑤 + 𝑏𝑏
𝑐𝑐𝑤𝑤 + 𝑑𝑑¿ 

The new coefficient	𝐴𝐴F(𝑤𝑤)	is still a rational function. 
  



Asymptotic Analysis of DEs (2): Linear ODE with Parameters 

For	𝑥𝑥 ∈ 𝐼𝐼 ⊆ ℝ	and	𝑦𝑦 ∈ Ω ⊆ ℝ", consider the following ODE with respect to a small parameter 
𝜀𝜀 ∈ 𝐵𝐵∗(0, 𝛿𝛿)	given as 

𝐹𝐹(𝑥𝑥, 𝑦𝑦, 𝑦𝑦!, 𝜀𝜀) = 0, 𝑦𝑦(𝑥𝑥#) = 𝑦𝑦# 

We want to study the asymptotic behavior of its solution	𝑦𝑦(𝑥𝑥; 𝜀𝜀)	as	𝜀𝜀 → 0±. 
 
Ø Formal power series expansion (7.1) 
Assume that the solution can be written as 

𝑦𝑦(𝑥𝑥; 𝜀𝜀) = 𝑦𝑦#(𝑥𝑥) + 𝜀𝜀𝑦𝑦&(𝑥𝑥) + 𝜀𝜀'𝑦𝑦'(𝑥𝑥) + ⋯ 
The ODE now becomes 

𝐹𝐹(𝑥𝑥, 𝑦𝑦# + 𝜀𝜀𝑦𝑦& +⋯ , 𝑦𝑦#! + 𝜀𝜀𝑦𝑦&! +⋯ ; 𝜀𝜀) = 0 
The Taylor expansion with respect to	𝜀𝜀	around	𝑝𝑝# = (𝑥𝑥, 𝑦𝑦#, 𝑦𝑦#! ; 0)	is 

𝐹𝐹 = 𝐹𝐹(𝑝𝑝#) + 𝜀𝜀 £
𝜕𝜕𝐹𝐹
𝜕𝜕𝑦𝑦

(𝑝𝑝#)𝑦𝑦& +
𝜕𝜕𝐹𝐹
𝜕𝜕𝑦𝑦!

(𝑝𝑝#)	𝑦𝑦&! +
𝜕𝜕𝐹𝐹
𝜕𝜕𝜀𝜀

(𝑝𝑝#)§	

+𝜀𝜀' x
𝜕𝜕𝐹𝐹
𝜕𝜕𝑦𝑦 𝑦𝑦' +

𝜕𝜕𝐹𝐹
𝜕𝜕𝑦𝑦! 𝑦𝑦'

! +
1
2𝑦𝑦&

C 𝜕𝜕'𝐹𝐹
𝜕𝜕𝑦𝑦𝜕𝜕𝑦𝑦 𝑦𝑦& +

1
2𝑦𝑦&

!C 𝜕𝜕'𝐹𝐹
𝜕𝜕𝑦𝑦!𝜕𝜕𝑦𝑦! 𝑦𝑦&

! +
1
2
𝜕𝜕'𝐹𝐹
𝜕𝜕𝜀𝜀' y = 0 

For each order of	𝜀𝜀, we have 
𝜀𝜀#:		𝐹𝐹(𝑥𝑥, 𝑦𝑦#, 𝑦𝑦#! ; 0) = 0, 𝑦𝑦# = 𝑦𝑦#(𝑥𝑥)	

𝜀𝜀&:		𝑦𝑦&! = 𝐴𝐴(𝑥𝑥)𝑦𝑦& + 𝐵𝐵&(𝑥𝑥), 𝐴𝐴 = −ø
𝜕𝜕𝐹𝐹
𝜕𝜕𝑦𝑦!¿

)& 𝜕𝜕𝐹𝐹
𝜕𝜕𝑦𝑦 , 𝐵𝐵& = −ø

𝜕𝜕𝐹𝐹
𝜕𝜕𝑦𝑦!¿

)& 𝜕𝜕𝐹𝐹
𝜕𝜕𝜀𝜀  

Note that for	[𝜀𝜀&], the derivatives are evaluated at	(𝑥𝑥, 𝑦𝑦#(𝑥𝑥), 𝑦𝑦#!(𝑥𝑥), 0). For	[𝜀𝜀']	we have 

𝜀𝜀':		𝑦𝑦'! = 𝐴𝐴(𝑥𝑥)𝑦𝑦' + 𝐵𝐵'(𝑥𝑥), 𝐵𝐵'(𝑥𝑥) = −ø
𝜕𝜕𝐹𝐹
𝜕𝜕𝑦𝑦!¿

)&

(⋯ ) 

As long as the fundamental matrix of	𝑦𝑦! = 𝐴𝐴(𝑥𝑥)𝑦𝑦	is known, we can recursively solve	𝑦𝑦"(𝑥𝑥). 
 
There are several issues arising 
¨ 𝐹𝐹	may not be defined at	𝜀𝜀 = 0. 
¨ 𝐹𝐹(𝑥𝑥, 𝑦𝑦#, 𝑦𝑦#! , 0)	may not have a solution (e.g., boundary layer equation). 
¨ The Jacobian	𝜕𝜕𝐹𝐹/𝜕𝜕𝑦𝑦!	is not invertible at	𝑝𝑝# = (𝑥𝑥, 𝑦𝑦#, 𝑦𝑦#! ; 0). 
¨ The properties of the formal power series are bad. 
 
Now simply consider a function	𝑦𝑦(𝑥𝑥; 𝜀𝜀) with its formal power series 

𝑦𝑦(𝑥𝑥; 𝜀𝜀) = T𝑦𝑦"(𝑥𝑥)𝜀𝜀"
":#

, 𝜀𝜀 → 0 



The equivalent statement is that for	∀𝑁𝑁 ∈ ℕ	we have 

lim
T→#

𝑦𝑦(𝑥𝑥; 𝜀𝜀) − ∑ 𝑦𝑦"(𝑥𝑥)𝜀𝜀"J
"1#

𝑦𝑦J(𝑥𝑥)𝜀𝜀J
= 0 

If the function series has pointwise but not uniform convergence, then the remainder depends 
on	𝑥𝑥	and is unbounded at some points. The partial sum is thus not practical to use. 
 
Example: Duffing equation 

𝑦𝑦!! + 𝑦𝑦 + 𝜀𝜀𝑦𝑦R = 0, 𝑦𝑦(0) = 1, 𝑦𝑦!(0) = 0 
Multiplying	𝑦𝑦!	gives 

ø
1
2 𝑦𝑦

!' +
1
2𝑦𝑦

' +
𝜀𝜀
4𝑦𝑦

V¿
!

= 0, (𝑦𝑦!)' + 𝑦𝑦' +
𝜀𝜀
2𝑦𝑦

V = 1 +
𝜀𝜀
2 

The constant is determined from the initial conditions. This leads to an elliptical integral 

𝑥𝑥 = ±Ÿ
d𝑦𝑦

⁄l1 + 𝜀𝜀
2m − 𝑦𝑦' − 𝜀𝜀

2𝑦𝑦
V

W

&
 

We notice that	𝑦𝑦XY- = −1	and	𝑦𝑦XZ[ = 1. The period of the oscillator is 

𝑇𝑇 = 2Ÿ
d𝑦𝑦

⁄l1 + 𝜀𝜀
2m − 𝑦𝑦' − 𝜀𝜀

2𝑦𝑦
V

W*+,

W*-.

 

 
If we directly expand it into a formal power series, we have 

(𝑦𝑦#!! + 𝜀𝜀𝑦𝑦&!! + 𝜀𝜀'𝑦𝑦'!! +⋯) + (𝑦𝑦# + 𝜀𝜀𝑦𝑦& + 𝜀𝜀'𝑦𝑦' +⋯) + 𝜀𝜀(𝑦𝑦# + 𝜀𝜀𝑦𝑦& + 𝜀𝜀'𝑦𝑦' +⋯)R = 0 
The initial conditions are 

𝑦𝑦#(0) = 1, 𝑦𝑦#!(0) = 0, 𝑦𝑦0(0) = 0, 𝑦𝑦0! (0) = 0, 𝑘𝑘 ≥ 1 
For each order of	𝜀𝜀, we have 

𝜀𝜀#:		𝑦𝑦#!! + 𝑦𝑦# = 0, 𝑦𝑦# = cos 𝑥𝑥	

𝜀𝜀&:		𝑦𝑦&!! + 𝑦𝑦& + 𝑦𝑦#R = 0, 𝑦𝑦& =
1
32

(cos 3𝑥𝑥 − cos 𝑥𝑥) −
3
8 𝑥𝑥 sin 𝑥𝑥 

The	𝑥𝑥 sin 𝑥𝑥	term gives an increasing amplitude with	𝑥𝑥. We can similarly obtain 

𝑦𝑦' = −
9

128 𝑥𝑥
' cos 𝑥𝑥 +

3
32 𝑥𝑥 sin 𝑥𝑥 −

9
256 𝑥𝑥 sin 3𝑥𝑥 +⋯ 

The secular terms such as	𝑥𝑥" cos 𝑥𝑥	make the partial sum useless for computation. The reason 
for this behavior is the resonance with the forcing term involving	𝑦𝑦#	to	𝑦𝑦")&. Now we consider 
a simpler version of the Duffing equation 

𝑦𝑦!! + 𝑦𝑦 + 𝜀𝜀𝑦𝑦 = 0, 𝑦𝑦(𝑥𝑥; 𝜀𝜀) = cosQ√1 + 𝜀𝜀	𝑥𝑥R 

The period deviates slightly from	2𝜋𝜋, and the Taylor expansion will lead to secular terms. This 
shows the limitation of the method of direct expansion. 



Ø Poincaré-Lindstedt, Poincaré-Lighthill-Kuo (PLK), Strained coordinate method (9.3) 
Consider the following example (Tsien, 1956) 

(𝑥𝑥 + 𝜀𝜀𝑢𝑢)𝑢𝑢! + 𝑢𝑢 = 0, 𝑢𝑢(1) = 1 
First we try using the formal power series 

𝑢𝑢 = 𝑢𝑢# + 𝜀𝜀𝑢𝑢& + 𝜀𝜀'𝑢𝑢' +⋯ 
For each order of	𝜀𝜀, we have 

𝜀𝜀#:		𝑥𝑥𝑢𝑢#! + 𝑢𝑢# = 0, 𝑢𝑢#(1) = 1, 𝑢𝑢# =
1
𝑥𝑥 

𝜀𝜀&:		𝑥𝑥𝑢𝑢&! + 𝑢𝑢#𝑢𝑢#! + 𝑢𝑢& = 0, 𝑢𝑢&(1) = 0, 𝑢𝑢& =
1
2𝑥𝑥 ø1 −

1
𝑥𝑥'¿ 

We can similarly obtain 

𝜀𝜀':		𝑥𝑥𝑢𝑢'! + 𝑢𝑢' + 𝑢𝑢#𝑢𝑢&! + 𝑢𝑢&𝑢𝑢#! = 0, 𝑢𝑢' = −
1

2𝑥𝑥R ø1 −
1
𝑥𝑥'¿ 

The solution is ordinary around	𝑥𝑥 = 1, but is singular at	𝑥𝑥 = 0. In other words, the solution is 
uniformly convergent in	[𝑎𝑎, +∞)	for any	𝑎𝑎 > 0, but not in	(0, +∞). 
 
Strained coordinate (9.3.3) 
We introduce the strained coordinate	𝑥𝑥 = 𝑥𝑥(𝜉𝜉)	with the formal power series 

𝑢𝑢(𝑥𝑥; 𝜀𝜀) = 𝑢𝑢#(𝜉𝜉) + 𝜀𝜀𝑢𝑢&(𝜉𝜉) + 𝜀𝜀'𝑢𝑢'(𝜉𝜉) + ⋯ 
𝑥𝑥(𝑥𝑥; 𝜀𝜀) = 𝜉𝜉 + 𝜀𝜀𝑥𝑥&(𝜉𝜉) + 𝜀𝜀'𝑥𝑥'(𝜉𝜉) + ⋯ 

Now we denote	𝑢𝑢!	and	𝑥𝑥!	as the derivatives with respect to	𝜉𝜉. The operator becomes 
d
d𝑥𝑥 =

d𝑥𝑥
d𝜉𝜉

d
d𝜉𝜉 =

1
𝑥𝑥!(𝜉𝜉)

d
d𝜉𝜉 

Then the ODE becomes 
(𝑥𝑥 + 𝜀𝜀𝑢𝑢)𝑢𝑢! + 𝑥𝑥!𝑢𝑢 = 0 

For each order of	𝜀𝜀, we have 

𝜀𝜀#:		𝜉𝜉𝑢𝑢#! + 𝑢𝑢# = 0, 𝑢𝑢# =
1
𝜉𝜉	

𝜀𝜀&:		𝜉𝜉𝑢𝑢&! + 𝑢𝑢& = −𝑥𝑥&𝑢𝑢#! − 𝑥𝑥&!𝑢𝑢# − 𝑢𝑢#𝑢𝑢#! , 𝑥𝑥&(1) = 𝑢𝑢&(1) = 0 
Here both	𝑥𝑥&	and	𝑢𝑢&	are unknowns. We require that the singularity of	𝑢𝑢&	at	𝜉𝜉 = 0	is not higher 
than the singularity of	𝑢𝑢#. We want to find	𝑥𝑥&	such that the RHS is ordinary at	𝜉𝜉 = 0. A simple 
choice is to let the RHS be zero, which gives 

(𝜉𝜉𝑢𝑢&)! = −ø𝑥𝑥&𝑢𝑢# +
1
2𝑢𝑢#

'¿
!

= 0, 𝑥𝑥& =
1
2ø𝜉𝜉 −

1
𝜉𝜉¿ , 𝑢𝑢& = 0 

We can similarly obtain 
𝜀𝜀':		(𝑥𝑥' + 𝑢𝑢&)𝑢𝑢#! + (𝑥𝑥& + 𝑢𝑢#)𝑢𝑢&! + 𝜉𝜉𝑢𝑢'! + 𝑢𝑢' + 𝑢𝑢#𝑥𝑥'! + 𝑢𝑢&𝑥𝑥&! = 0 

𝜉𝜉𝑢𝑢'! + 𝑢𝑢' =
𝑥𝑥'
𝜉𝜉' −

𝑥𝑥'!

𝜉𝜉 , 𝑥𝑥'(1) = 𝑢𝑢'(1) = 0 



The choice	𝑥𝑥' = 𝑢𝑢' = 0	is valid. For	𝑛𝑛 ≥ 2, the equation is homogeneous with respect to	𝑥𝑥", 
and we can always choose	𝑥𝑥" = 𝑢𝑢" = 0. Hence, we obtain an exact solution 

𝑢𝑢(𝜉𝜉; 𝜀𝜀) =
1
𝜉𝜉 , 𝑥𝑥(𝜉𝜉; 𝜀𝜀) = 𝜉𝜉 +

𝜀𝜀
2 ø𝜉𝜉 −

1
𝜉𝜉¿ 

Writing as	𝑢𝑢 = 𝑢𝑢(𝑥𝑥; 𝜀𝜀), we have 

𝑢𝑢 = −
𝑥𝑥
𝜀𝜀 + fll

𝑥𝑥
𝜀𝜀m

'
+
2
𝜀𝜀 + 1 

 
Example: Duffing equation 

d'𝑦𝑦
d𝑥𝑥' + 𝑦𝑦 + 𝜀𝜀𝑦𝑦R = 0, 𝑦𝑦(0) = 1, 𝑦𝑦!(0) = 0 

Now we consider the solution 
𝑦𝑦(𝑥𝑥; 𝜀𝜀) = 𝑦𝑦#(𝜉𝜉) + 𝜀𝜀𝑦𝑦&(𝜉𝜉) + 𝜀𝜀'𝑦𝑦'(𝜉𝜉) + ⋯ 
𝑥𝑥(𝑥𝑥; 𝜀𝜀) = 𝜉𝜉 + 𝜀𝜀𝑥𝑥&(𝜉𝜉) + 𝜀𝜀'𝑥𝑥'(𝜉𝜉) + ⋯ 

The second-order derivative operator becomes 

d'𝑦𝑦
d𝑥𝑥' =

1
𝑥𝑥!(𝜉𝜉)

d
d𝜉𝜉 ®

𝑦𝑦!(𝜉𝜉)
𝑥𝑥!(𝜉𝜉)© =

𝑦𝑦!!𝑥𝑥! − 𝑦𝑦!𝑥𝑥!!

(𝑥𝑥!)R  

The equation then becomes 
𝑦𝑦!!𝑥𝑥! − 𝑦𝑦!𝑥𝑥!! + (𝑥𝑥!)R(𝑦𝑦 + 𝜀𝜀𝑦𝑦R) = 0 

The initial conditions are 
𝑦𝑦#(0) = 1, 𝑦𝑦#! (0) = 0, 𝑦𝑦0(0) = 𝑦𝑦0! (0) = 0, 𝑥𝑥0(0) = 0, 𝑘𝑘 ≥ 1 

There is no constraint on	𝑥𝑥0! (0) and we can set	𝑥𝑥0! (0) = 0. For each order of	𝜀𝜀, we have 
𝜀𝜀#:		𝑦𝑦#!! + 𝑦𝑦# = 0, 𝑦𝑦# = cos 𝜉𝜉	
𝜀𝜀&:		𝑦𝑦&!! + 𝑦𝑦& = 𝑦𝑦#!𝑥𝑥&!! + 2𝑦𝑦#!!𝑥𝑥&! − 𝑦𝑦#R 

Using the solution	𝑦𝑦#, we have 

𝑦𝑦&!! + 𝑦𝑦& = −sin 𝜉𝜉 𝑥𝑥&!! − 2 cos 𝜉𝜉 𝑥𝑥&! −
3
4 cos 𝜉𝜉 −

1
4 cos 3𝜉𝜉 

The forcing term	cos 𝜉𝜉 leads to resonance, and we want to suppress the secular term by setting 

sin 𝜉𝜉 𝑥𝑥&!! + 2 cos 𝜉𝜉 𝑥𝑥&! +
3
4 cos 𝜉𝜉 = 0, 𝑥𝑥& = −

3
8 𝜉𝜉 

Then the equation for	𝑦𝑦&	becomes 

𝑦𝑦&!! + 𝑦𝑦& = −
1
4 cos 3𝜉𝜉 , 𝑦𝑦& =

1
32

(cos 3𝜉𝜉 − cos 𝜉𝜉) 

We can further obtain (e.g., Fourier series expansion) 
𝜀𝜀':		𝑦𝑦'!! + 𝑦𝑦' = 𝑦𝑦&!𝑥𝑥&!! + 𝑦𝑦#!𝑥𝑥'!! + 2𝑦𝑦#!!𝑥𝑥'! + 2𝑦𝑦&!!𝑥𝑥&! − 3𝑦𝑦#!!(𝑥𝑥&!)' − 3𝑦𝑦#!𝑥𝑥#!𝑥𝑥&!! − 3𝑦𝑦#'𝑦𝑦&	

= − sin 𝜉𝜉 𝑥𝑥'!! − 2 cos 𝜉𝜉 𝑥𝑥'! +
57
128 cos 𝜉𝜉 +

1
16 cos 3𝜉𝜉 −

3
128 cos 5𝜉𝜉 



To suppress the secular term, we need to set 

−sin 𝜉𝜉 𝑥𝑥'!! − 2 cos 𝜉𝜉 𝑥𝑥'! +
57
128 cos 𝜉𝜉 = 0, 𝑥𝑥' =

57
256 𝜉𝜉 

With this choice of	𝑥𝑥', we can solve for	𝑦𝑦'. Eventually, the solution is 

𝑥𝑥 = 𝜉𝜉 ø1 −
3
8 𝜀𝜀 +

57
256 𝜀𝜀

' −⋯¿ = 𝜉𝜉 S1 +T𝜔𝜔0𝜀𝜀0
0:&

W 

This is the typical form of the strained coordinate for weakly nonlinear oscillations. 
 
Ø Method of multiple scales (9.3.4) 

𝑦𝑦!! + 2𝜀𝜀𝑦𝑦! + 𝑦𝑦 = 0, 𝑦𝑦(0) = 1, 𝑦𝑦!(0) = 0 
The exact solution is obtained from the characteristic equation 

𝜆𝜆' + 2𝜀𝜀𝜆𝜆 + 1 = 0, 𝜆𝜆&,' = −𝜀𝜀 ± 𝑖𝑖‚1 − 𝜀𝜀' 

𝑦𝑦(𝑥𝑥) = 𝑒𝑒)T\ cos l‚1 − 𝜀𝜀'	𝑥𝑥 + 𝜃𝜃#m , 𝜃𝜃# = −arctan
𝜀𝜀

√1 − 𝜀𝜀'
 

First we try using the strained coordinate method 
𝑦𝑦!!𝑥𝑥! − 𝑦𝑦!𝑥𝑥!! + 2𝜀𝜀(𝑥𝑥!)'𝑦𝑦! + (𝑥𝑥!)R𝑦𝑦 = 0 

For each order of	𝜀𝜀, we have 
𝜀𝜀#:		𝑦𝑦#!! + 𝑦𝑦# = 0, 𝑦𝑦# = cos 𝜉𝜉	
𝜀𝜀&:		𝑦𝑦&!! + 𝑦𝑦& = −sin 𝜉𝜉 𝑥𝑥&!! − 2 cos 𝜉𝜉 𝑥𝑥&! − 2 sin 𝜉𝜉 

We still want to suppress the secular term, but now	𝑥𝑥&(𝜉𝜉)	becomes singular at	𝜉𝜉 = 𝜋𝜋 
𝑥𝑥& = 1 − 𝜉𝜉 cot 𝜉𝜉 

The issue is due to the lack of amplitude information (𝑒𝑒)T\) in the strained coordinate method. 
 
In this damped oscillation, there are two (time) scales for the fast oscillation and slow damping, 
respectively. We introduce a number of scales 

𝑇𝑇# = 𝑥𝑥, 𝑇𝑇& = 𝜀𝜀𝑥𝑥, 𝑇𝑇0 = 𝜀𝜀0𝑥𝑥 
Consider the solution of the form 

𝑦𝑦(𝑥𝑥; 𝜀𝜀) = 𝑌𝑌(𝑇𝑇#, 𝑇𝑇&, ⋯ , 𝑇𝑇0; 𝜀𝜀) = 𝑌𝑌# + 𝜀𝜀𝑌𝑌& + 𝜀𝜀'𝑌𝑌' +⋯ 
The goal is to convert the original ODE into PDEs with more degrees of freedom introduced. 
With the notations	𝐷𝐷\	and	𝜕𝜕0, the derivative operator becomes 

𝐷𝐷\𝑦𝑦 =
d𝑦𝑦
d𝑥𝑥 = T

𝜕𝜕𝑌𝑌
𝜕𝜕𝑇𝑇0

𝜕𝜕𝑇𝑇0
𝜕𝜕𝑥𝑥

0:#

= T𝜀𝜀0
𝜕𝜕𝑌𝑌
𝜕𝜕𝑇𝑇00:#

= T𝜀𝜀0𝜕𝜕0𝑌𝑌
0:#

 

The damped oscillation equation then becomes 
[𝜕𝜕#' + 2𝜀𝜀𝜕𝜕#𝜕𝜕& + 𝜀𝜀'(2𝜕𝜕#𝜕𝜕' + 𝜕𝜕&') + 2𝜀𝜀(𝜕𝜕# + 𝜀𝜀𝜕𝜕&) + 1](𝑌𝑌# + 𝜀𝜀𝑌𝑌& + 𝜀𝜀'𝑌𝑌') = 𝑜𝑜(𝜀𝜀') 

 



The initial conditions are analyzed as 
𝑦𝑦(0) = 𝑌𝑌(𝑇𝑇#(0), 𝑇𝑇&(0),⋯ ; 𝜀𝜀) = 𝑌𝑌(𝟎𝟎; 𝜀𝜀) = 𝑌𝑌#(𝟎𝟎) + 𝜀𝜀𝑌𝑌&(𝟎𝟎) + ⋯ = 1 

𝑦𝑦!(0) = ST𝜀𝜀0𝜕𝜕0
0:#

WST𝜀𝜀B𝑌𝑌B(𝟎𝟎)
B:#

W = 0 

This leads to the initial conditions for	𝑌𝑌0(𝟎𝟎)	given as 
𝑌𝑌#(𝟎𝟎) = 1, 𝑌𝑌0(𝟎𝟎) = 0, 𝑘𝑘 ≥ 1 

For the derivatives, the first several orders give the initial conditions 
𝜕𝜕#𝑌𝑌#(𝟎𝟎) = 0, 𝜕𝜕&𝑌𝑌#(𝟎𝟎) + 𝜕𝜕#𝑌𝑌&(𝟎𝟎) = 0, 𝜕𝜕#𝑌𝑌'(𝟎𝟎) + 𝜕𝜕&𝑌𝑌&(𝟎𝟎) + 𝜕𝜕'𝑌𝑌#(𝟎𝟎) = 0 

For	𝜀𝜀#	term, we have 

𝜀𝜀#:		𝜕𝜕#'𝑌𝑌# + 𝑌𝑌# = 0, 𝑌𝑌# = 𝐴𝐴#(𝑇𝑇&, ⋯ ) cos 𝑇𝑇# + 𝐵𝐵#(𝑇𝑇&, ⋯ ) sin 𝑇𝑇# 
For	𝜀𝜀&	term, we have	

𝜀𝜀&:		𝜕𝜕#'𝑌𝑌& + 𝑌𝑌& = −2𝜕𝜕&𝜕𝜕#𝑌𝑌# − 2𝜕𝜕#𝑌𝑌# = 2(𝜕𝜕&𝐴𝐴# + 𝐴𝐴#) sin 𝑇𝑇# − 2(𝜕𝜕&𝐵𝐵# + 𝐵𝐵#) cos 𝑇𝑇# 
To suppress the secular terms, we set the coefficients of the resonant forcing as zero 

𝜕𝜕&𝐴𝐴# + 𝐴𝐴# = 0, 𝜕𝜕&𝐵𝐵# + 𝐵𝐵# = 0 
We can update the general solutions for	𝐴𝐴#	and	𝐵𝐵#	as 

𝐴𝐴#(𝑇𝑇&, ⋯ ) = 𝑒𝑒)C!𝐴𝐴#(𝑇𝑇', ⋯ ), 𝐵𝐵#(𝑇𝑇&, ⋯ ) = 𝑒𝑒)C!𝐵𝐵#(𝑇𝑇', ⋯ ) 
The equation of	𝑌𝑌&	then gives 

𝜕𝜕#'𝑌𝑌& + 𝑌𝑌& = 0, 𝑌𝑌& = 𝐴𝐴&(𝑇𝑇&, ⋯ ) cos 𝑇𝑇# + 𝐵𝐵&(𝑇𝑇&, ⋯ ) sin 𝑇𝑇# 
For	𝜀𝜀'	terms, we can further obtain 

𝜕𝜕#'𝑌𝑌' + 𝑌𝑌' + 2(𝜕𝜕#𝜕𝜕& + 𝜕𝜕#)𝑌𝑌& + (2𝜕𝜕#𝜕𝜕' + 𝜕𝜕&' + 2𝜕𝜕&)𝑌𝑌# = 0 
Note that from previous results, we already have 

𝑌𝑌# = 𝑒𝑒)C!𝐴𝐴#(𝑇𝑇', ⋯ ) cos 𝑇𝑇# + 𝑒𝑒)C!𝐵𝐵#(𝑇𝑇', ⋯ ) sin 𝑇𝑇# 
𝜕𝜕'𝜕𝜕#𝑌𝑌# = −𝑒𝑒)C!(𝜕𝜕'𝐴𝐴#) sin 𝑇𝑇# + 𝑒𝑒)C!(𝜕𝜕'𝐵𝐵#) cos 𝑇𝑇# , (𝜕𝜕&' + 2𝜕𝜕&)𝑌𝑌# = −𝑌𝑌# 

(𝜕𝜕#𝜕𝜕& + 𝜕𝜕#)𝑌𝑌& = −(𝜕𝜕&𝐴𝐴& + 𝐴𝐴&) sin 𝑇𝑇# + (𝜕𝜕&𝐵𝐵& + 𝐵𝐵&) cos 𝑇𝑇# 
The equation for	𝑌𝑌'	is thus obtained as 

𝜕𝜕#'𝑌𝑌' + 𝑌𝑌' = (2𝜕𝜕'𝐴𝐴# + 𝐵𝐵#)𝑒𝑒)C! sin 𝑇𝑇# + (−2𝜕𝜕'𝐵𝐵# + 𝐴𝐴#)𝑒𝑒)C! cos 𝑇𝑇#	
−(𝜕𝜕&𝐴𝐴& + 𝐴𝐴&) sin 𝑇𝑇# + (𝜕𝜕&𝐵𝐵& + 𝐵𝐵&) cos 𝑇𝑇# 

To remove these secular terms, we require 

𝜕𝜕'𝐴𝐴# = −
1
2𝐵𝐵#, 𝜕𝜕'𝐵𝐵# =

1
2𝐴𝐴#, 𝜕𝜕''𝐴𝐴# +

1
4𝐴𝐴# = 0 

𝜕𝜕&𝐴𝐴& + 𝐴𝐴& = 0, 𝜕𝜕&𝐵𝐵& + 𝐵𝐵& = 0 
We can update the general solutions of the coefficients as 

𝐴𝐴#(𝑇𝑇&, ⋯ ) = 𝐴𝐴#(𝑇𝑇R, ⋯ )𝑒𝑒)C! cos ø
1
2𝑇𝑇'¿ + 𝐵𝐵#(𝑇𝑇R, ⋯ )𝑒𝑒)C! sin ø

1
2𝑇𝑇'¿ 

𝐵𝐵#(𝑇𝑇&, ⋯ ) = 𝐴𝐴#(𝑇𝑇R, ⋯ )𝑒𝑒)C! sin ø
1
2𝑇𝑇'¿ − 𝐵𝐵#(𝑇𝑇R, ⋯ )𝑒𝑒)C! cos ø

1
2𝑇𝑇'¿ 



𝐴𝐴&(𝑇𝑇&, ⋯ ) = 𝑒𝑒)C!𝐴𝐴&(𝑇𝑇', ⋯ ), 𝐵𝐵&(𝑇𝑇&, ⋯ ) = 𝑒𝑒)C!𝐵𝐵&(𝑇𝑇', ⋯ ) 
The equation of	𝑌𝑌'	then gives 

𝜕𝜕#'𝑌𝑌' + 𝑌𝑌' = 0, 𝑌𝑌' = 𝐴𝐴'(𝑇𝑇&, ⋯ ) cos 𝑇𝑇# + 𝐵𝐵'(𝑇𝑇&, ⋯ ) sin 𝑇𝑇# 
As a summary, now we obtain 

𝑌𝑌# = £𝐴𝐴#(𝑇𝑇R, ⋯ )𝑒𝑒)C! cos ø
1
2𝑇𝑇'¿ + 𝐵𝐵#(𝑇𝑇R, ⋯ )𝑒𝑒)C! sin ø

1
2𝑇𝑇'¿§ cos 𝑇𝑇#	

+ £𝐴𝐴#(𝑇𝑇R, ⋯ )𝑒𝑒)C! sin ø
1
2𝑇𝑇'¿ − 𝐵𝐵#(𝑇𝑇R, ⋯ )𝑒𝑒)C! cos ø

1
2𝑇𝑇'¿§ sin 𝑇𝑇# 

𝑌𝑌& = 𝑒𝑒)C!𝐴𝐴&(𝑇𝑇', ⋯ ) cos 𝑇𝑇# + 𝑒𝑒)C!𝐵𝐵&(𝑇𝑇', ⋯ ) sin 𝑇𝑇# 
At the initial	𝑥𝑥 = 0, we have 

𝑌𝑌#(𝟎𝟎) = 𝐴𝐴#(𝑇𝑇R, ⋯ ) = 1, 𝜕𝜕#𝑌𝑌#(𝟎𝟎) = −𝐵𝐵#(𝑇𝑇R, ⋯ ) = 0 
𝑌𝑌&(𝟎𝟎) = 𝐴𝐴&(𝑇𝑇', ⋯ ) = 0, 𝜕𝜕&𝑌𝑌#(𝟎𝟎) + 𝜕𝜕#𝑌𝑌&(𝟎𝟎) = −𝐴𝐴#(𝑇𝑇R, ⋯ ) + 𝐵𝐵&(𝑇𝑇', ⋯ ) = 0 

With these coefficients, we have 

𝑌𝑌# = 𝑒𝑒)C! cos ø𝑇𝑇# −
1
2𝑇𝑇'¿ , 𝑌𝑌& = 𝑒𝑒)C! sin 𝑇𝑇# 

The summary of the current solution is 

𝑦𝑦(𝑥𝑥; 𝜀𝜀) = 𝑌𝑌# + 𝜀𝜀𝑌𝑌& +⋯ = 𝑒𝑒)T\ £cos ø𝑥𝑥 −
1
2 𝜀𝜀

'𝑥𝑥 +⋯¿ + 𝜀𝜀 sin(𝑥𝑥 + ⋯)§ + ⋯ 

 
Example 1: Van der Pol oscillator (p397) 

𝑦𝑦!! + 𝜀𝜀(𝑦𝑦' − 1)𝑦𝑦! + 𝑦𝑦 = 0 
We want to obtain a general solution. The equation becomes 
[𝜕𝜕#' + 2𝜀𝜀𝜕𝜕#𝜕𝜕& + 𝜀𝜀'(2𝜕𝜕#𝜕𝜕' + 𝜕𝜕&') + ⋯ ](𝑌𝑌# + 𝜀𝜀𝑌𝑌& + 𝜀𝜀'𝑌𝑌' +⋯)

+ 𝜀𝜀(𝑌𝑌#' + 2𝜀𝜀𝑌𝑌#𝑌𝑌& − 1)(𝜕𝜕# + 𝜀𝜀𝜕𝜕&)(𝑌𝑌# + 𝜀𝜀𝑌𝑌&) + (𝑌𝑌# + 𝜀𝜀𝑌𝑌& + 𝜀𝜀'𝑌𝑌' +⋯) = 0 
For	𝜀𝜀#	term, we still have 

𝜀𝜀#:		𝜕𝜕#'𝑌𝑌# + 𝑌𝑌# = 0, 𝑌𝑌# = 𝐴𝐴&(𝑇𝑇&, 𝑇𝑇', ⋯ ) cosQ𝑇𝑇# + 𝐵𝐵&(𝑇𝑇&, 𝑇𝑇', ⋯ )R 

For	𝜀𝜀&	term, denote	𝜃𝜃 = 𝑇𝑇# + 𝐵𝐵&	and we have 
𝜀𝜀&:		𝜕𝜕#'𝑌𝑌& + 𝑌𝑌& = −2𝜕𝜕#𝜕𝜕&𝑌𝑌# − (𝑌𝑌#' − 1)𝜕𝜕#𝑌𝑌#	

= 2(𝜕𝜕&𝐴𝐴&) sin 𝜃𝜃 + 2𝐴𝐴& cos 𝜃𝜃 (𝜕𝜕&𝐵𝐵&) + (𝐴𝐴&' cos' 𝜃𝜃 − 1)𝐴𝐴& sin 𝜃𝜃	

= ø2𝜕𝜕&𝐴𝐴& − 𝐴𝐴& +
1
4𝐴𝐴&

R¿ sin 𝜃𝜃 + 2𝐴𝐴&(𝜕𝜕&𝐵𝐵&) cos 𝜃𝜃 +
1
4𝐴𝐴&

R sin 3𝜃𝜃 

To suppress the secular terms, we require 

2𝜕𝜕&𝐴𝐴& − 𝐴𝐴& +
1
4𝐴𝐴&

R = 0, 𝜕𝜕&𝐵𝐵& = 0 

We can then solve for	𝐴𝐴&	and	𝐵𝐵&	as 

1
𝐴𝐴&'

=
1
4
(𝐶𝐶&𝑒𝑒)C! + 1), 𝐴𝐴& =

2
‚1 + 𝐶𝐶&(𝑇𝑇', ⋯ )𝑒𝑒)C!

, 𝐵𝐵& = 𝐵𝐵'(𝑇𝑇', ⋯ ) 



Now the equation for	𝑌𝑌&	can be solved as 

𝜕𝜕#'𝑌𝑌& + 𝑌𝑌& =
1
4𝐴𝐴&

R sin 3𝜃𝜃 , 𝑌𝑌& = −
𝐴𝐴&R

32 sin
(3𝜃𝜃) + 𝐶𝐶' cos 𝜃𝜃 

The summary of the current solution is 

𝑦𝑦(𝑥𝑥; 𝜀𝜀) =
2

‚1 + 𝐶𝐶&(𝜀𝜀'𝑥𝑥,⋯ )𝑒𝑒)T\
cosQ𝑥𝑥 + 𝐵𝐵'(𝜀𝜀'𝑥𝑥,⋯ )R + 𝜀𝜀𝑌𝑌& + 𝑜𝑜(𝜀𝜀) 

 
Example 2: Mathieu equation (9.2) 

𝑦𝑦!! + (𝛿𝛿(𝜀𝜀) + 𝜀𝜀 cos 𝑥𝑥)𝑦𝑦 = 0 
We want to properly choose	𝛿𝛿(𝜀𝜀)	such that the solution still has a period of	2𝜋𝜋. Consider 

𝛿𝛿(𝜀𝜀) = 𝛿𝛿# + 𝜀𝜀𝛿𝛿& + 𝜀𝜀'𝛿𝛿' +⋯ 
Directly expanding	𝑦𝑦(𝑥𝑥; 𝜀𝜀)	into the formal power series, we have 

(𝑦𝑦#!! + 𝜀𝜀𝑦𝑦&!! +⋯) + (𝛿𝛿# + 𝜀𝜀𝛿𝛿& +⋯+ 𝜀𝜀 cos 𝑥𝑥)(𝑦𝑦# + 𝜀𝜀𝑦𝑦& +⋯) = 0 
For	𝜀𝜀#	term, to keep the	2𝜋𝜋-periodicity we have 

𝜀𝜀#:		𝑦𝑦#!! + 𝛿𝛿#𝑦𝑦# = 0, 𝑦𝑦# = 𝐴𝐴# cosQ‚𝛿𝛿#𝑥𝑥R + 𝐵𝐵# sinQ‚𝛿𝛿#𝑥𝑥R , 𝛿𝛿# = 𝑛𝑛',				𝑛𝑛 ∈ ℕ∗ 

Take	𝛿𝛿# = 1, and for	𝜀𝜀&	term we have 
𝜀𝜀&:		𝑦𝑦&!! + 𝛿𝛿#𝑦𝑦& = −𝛿𝛿&𝑦𝑦# − 𝑦𝑦# cos 𝑥𝑥 

𝑦𝑦&!! + 𝑦𝑦& = −(𝛿𝛿& + cos 𝑥𝑥)(𝐴𝐴# cos 𝑥𝑥 + 𝐵𝐵# sin 𝑥𝑥) 
To suppress the secular terms, we require	𝛿𝛿& = 0	and then	𝑦𝑦&	is solved as 

𝑦𝑦& = −
𝐴𝐴#
2 +

𝐴𝐴#
6 cos 2𝑥𝑥 +

𝐵𝐵#
6 sin 2𝑥𝑥 + 𝐴𝐴& cos 𝑥𝑥 + 𝐵𝐵& sin 𝑥𝑥 

For	𝜀𝜀'	term, we have 
𝜀𝜀':		𝑦𝑦'!! + 𝑦𝑦' = −𝛿𝛿'(𝐴𝐴# cos 𝑥𝑥 + 𝐵𝐵# sin 𝑥𝑥)	

− cos 𝑥𝑥 ø−
𝐴𝐴#
2 +

𝐴𝐴#
6 cos 2𝑥𝑥 +

𝐵𝐵#
6 sin 2𝑥𝑥 + 𝐴𝐴& cos 𝑥𝑥 + 𝐵𝐵& sin 𝑥𝑥¿ 

To suppress the secular terms, we have 

𝐴𝐴# ø−𝛿𝛿' +
5
12¿ = 0, −𝐵𝐵# ø𝛿𝛿' +

1
12¿ = 0 

Therefore, since the initial conditions determine	𝐴𝐴#	and	𝐵𝐵#, not all conditions will lead to the 
same period of	2𝜋𝜋. When	𝐴𝐴#	or	𝐵𝐵#	is zero, it is possible to keep the same period. 
 
Now we study the Mathieu equation using the method of multiple scales. Directly set	𝛿𝛿# = 1 
and	𝛿𝛿& = 0, and we have 

[𝜕𝜕#' + 2𝜀𝜀𝜕𝜕#𝜕𝜕& + 𝜀𝜀'(2𝜕𝜕#𝜕𝜕' + 𝜕𝜕&')](𝑌𝑌# + 𝜀𝜀𝑌𝑌& + 𝜀𝜀'𝑌𝑌')
+ (1 + 𝜀𝜀 cos 𝑇𝑇# + 𝜀𝜀'𝛿𝛿')(𝑌𝑌# + 𝜀𝜀𝑌𝑌& + 𝜀𝜀'𝑌𝑌') = 𝑜𝑜(𝜀𝜀') 

For	𝜀𝜀#	and	𝜀𝜀&	terms, we have 



𝜀𝜀#:		𝜕𝜕#'𝑌𝑌# + 𝑌𝑌# = 0, 𝑌𝑌# = 𝐴𝐴#(𝑇𝑇&, ⋯ ) cos 𝑇𝑇# + 𝐵𝐵#(𝑇𝑇&, ⋯ ) sin 𝑇𝑇#	

𝜀𝜀&:		𝜕𝜕#'𝑌𝑌& + 𝑌𝑌& = −2(−𝜕𝜕&𝐴𝐴# sin 𝑇𝑇# + 𝜕𝜕&𝐵𝐵# cos 𝑇𝑇#) − 𝐴𝐴#
1 + cos 2𝑇𝑇#

2 −
𝐵𝐵#
2 sin 2𝑇𝑇# 

To suppress the secular terms, we require 
𝜕𝜕&𝐴𝐴# = 0, 𝜕𝜕&𝐵𝐵# = 0, 𝐴𝐴# = 𝐴𝐴#(𝑇𝑇', ⋯ ), 𝐵𝐵# = 𝐵𝐵#(𝑇𝑇', ⋯ ) 

The general solution to	𝑌𝑌&	is the same as previous 

𝑌𝑌& = −
𝐴𝐴#
2 +

𝐴𝐴#
6 cos 2𝑇𝑇# +

𝐵𝐵#
6 sin 2𝑇𝑇# + 𝐴𝐴&(𝑇𝑇&, ⋯ ) cos 𝑇𝑇# + 𝐵𝐵&(𝑇𝑇&, ⋯ ) sin 𝑇𝑇# 

For	𝜀𝜀'	term, we have 
𝜀𝜀':		𝜕𝜕#'𝑌𝑌' + 𝑌𝑌' = −2(−𝜕𝜕&𝐴𝐴& sin 𝑇𝑇# + 𝜕𝜕&𝐵𝐵& cos 𝑇𝑇#) − 2(−𝜕𝜕'𝐴𝐴# sin 𝑇𝑇# + 𝜕𝜕'𝐵𝐵# cos 𝑇𝑇#)	

+
1
2𝐴𝐴# cos 𝑇𝑇# −

1
12𝐴𝐴# cos 𝑇𝑇# −

𝐵𝐵#
12 sin 𝑇𝑇# − 𝛿𝛿'𝐴𝐴# cos 𝑇𝑇# − 𝛿𝛿'𝐵𝐵# sin 𝑇𝑇# +⋯ 

The non-resonant forcing terms are neglected. To suppress the secular terms, we require 

2𝜕𝜕&𝐴𝐴& + 2𝜕𝜕'𝐴𝐴# = ø
1
12 + 𝛿𝛿'¿𝐵𝐵#, −2𝜕𝜕&𝐵𝐵& − 2𝜕𝜕'𝐵𝐵# = ø−

5
12 + 𝛿𝛿'¿𝐴𝐴# 

Note that from	𝜀𝜀&	term, we have	𝐴𝐴#	and	𝐵𝐵#	depending on	𝑇𝑇'	and further. Consider a simpler 
case with	𝐴𝐴& = 𝐵𝐵& = 0, which correspond to specific initial conditions. This gives 

𝜕𝜕'𝐴𝐴# =
1
2 ø

1
12 + 𝛿𝛿'¿𝐵𝐵#, 𝜕𝜕'𝐵𝐵# =

1
2 ø

5
12 − 𝛿𝛿'¿ 𝐴𝐴# 

This leads to a second-order equation for	𝐴𝐴#	as 

𝜕𝜕''𝐴𝐴# + 𝐾𝐾'𝐴𝐴# = 0, 𝐾𝐾' =
1
4 ø𝛿𝛿' +

1
12¿ ø𝛿𝛿' −

5
12¿ 

Depending on the sign of	𝐾𝐾', we have 

𝐴𝐴# = 𝐶𝐶& cos‚𝐾𝐾'𝑇𝑇' + 𝐶𝐶' sin‚𝐾𝐾'𝑇𝑇' , 𝛿𝛿' < −
1
12 		or		𝛿𝛿' >

5
12 

𝐴𝐴# = 𝐶𝐶&𝑒𝑒])^"C" + 𝐶𝐶'𝑒𝑒)])^"C" , −
1
12 < 𝛿𝛿' <

5
12 

The summary of the current solution is 
𝑦𝑦(𝑥𝑥; 𝜀𝜀) = 𝐴𝐴# cos 𝑇𝑇# + 𝐵𝐵# sin 𝑇𝑇# + 𝜀𝜀𝑌𝑌& +⋯ 

For the exponential case, the finite energy of the system implies	𝐶𝐶& = 0, while the exponential 
decay cannot be observed. This corresponds to the band gap. 
 
Ø Exercise 
Method of multiple scales 1 

𝑢𝑢!!(𝑡𝑡) + 𝜔𝜔'𝑢𝑢 = 𝜀𝜀𝑢𝑢R, 𝑢𝑢(0) = 𝑎𝑎, 𝑢𝑢!(0) = 0 
We introduce a new timescale	𝑡𝑡̅	and the solution of the form 

𝑡𝑡̅ = 𝑡𝑡 + 𝜀𝜀𝑓𝑓&(𝑡𝑡) + ⋯ , 𝑢𝑢 = T𝜀𝜀"𝑢𝑢"(𝑡𝑡̅)
;

"1#

, 𝑡𝑡̅(0) = 0 



The derivative operator becomes 
d𝑢𝑢
d𝑡𝑡 = [1 + 𝜀𝜀𝑓𝑓&!(𝑡𝑡) + ⋯ ]

d𝑢𝑢
d𝑡𝑡̅ ,

d'𝑢𝑢
d𝑡𝑡' = [1 + 𝜀𝜀𝑓𝑓&!(𝑡𝑡) + ⋯ ]'

d'𝑢𝑢
d𝑡𝑡̅'  

For	𝜀𝜀#	term, we have 

𝜀𝜀# :		
d'𝑢𝑢#
d𝑡𝑡̅' + 𝜔𝜔'𝑢𝑢# = 0, 𝑢𝑢#(0) = 𝑎𝑎,

d𝑢𝑢#
d𝑡𝑡̅

(0) = 0, 𝑢𝑢#(𝑡𝑡̅) = 𝑎𝑎 cos(𝜔𝜔𝑡𝑡̅) 

For	𝜀𝜀&	term, we have 

𝜀𝜀& :		
d'𝑢𝑢&
d𝑡𝑡̅' + 𝜔𝜔'𝑢𝑢& = 𝑢𝑢#R − 2𝑓𝑓&!

d'𝑢𝑢#
d𝑡𝑡̅' = 𝑎𝑎R cosR(𝜔𝜔𝑡𝑡̅) + 2𝑓𝑓&!(𝑡𝑡)𝜔𝜔'𝑎𝑎 cos(𝜔𝜔𝑡𝑡̅) 

To suppress the secular term, the coefficient of	cos(𝜔𝜔𝑡𝑡̅)	should be zero, which gives 
3𝑎𝑎R

4 + 2𝑓𝑓&!(𝑡𝑡)𝜔𝜔'𝑎𝑎 = 0, 𝑓𝑓&!(𝑡𝑡) = −
3𝑎𝑎'

8𝜔𝜔' , 𝑓𝑓&(𝑡𝑡) = −
3𝑎𝑎'

8𝜔𝜔' 𝑡𝑡 

Therefore, the asymptotic solution is 

𝑢𝑢(𝑡𝑡; 𝜀𝜀) ∼ 𝑎𝑎 cos x𝜔𝜔𝑡𝑡 ®1 − 𝜀𝜀
3𝑎𝑎'

8𝜔𝜔' +⋯©y , 𝜀𝜀 → 0 

 
Method of multiple scales 2: Damped van der Pol equation 

𝑢𝑢!!(𝑡𝑡) + 𝑢𝑢 = 𝜀𝜀(1 − 𝑢𝑢')𝑢𝑢!(𝑡𝑡) − 𝜀𝜀𝑢𝑢R, 𝑢𝑢(0; 𝜀𝜀) = 𝑎𝑎, 𝑢𝑢!(0; 𝜀𝜀) = 𝑏𝑏 
We can look for an asymptotic solution in the form 

𝑢𝑢(𝑡𝑡; 𝜀𝜀) ∼ T𝜀𝜀"𝑢𝑢"(𝑡𝑡∗, 𝜏𝜏)
;

"1#

, 𝜏𝜏 = 𝜀𝜀𝑡𝑡, 𝑡𝑡∗ = 𝑡𝑡(1 + 𝑤𝑤'𝜀𝜀' +⋯) 

The derivative operator becomes 
d𝑢𝑢
d𝑡𝑡 = (1 + 𝑤𝑤'𝜀𝜀' +⋯)

𝜕𝜕𝑢𝑢
𝜕𝜕𝑡𝑡∗ + 𝜀𝜀

𝜕𝜕𝑢𝑢
𝜕𝜕𝜏𝜏	

d'𝑢𝑢
d𝑡𝑡' = (1 + 2𝑤𝑤'𝜀𝜀' +⋯)

𝜕𝜕'𝑢𝑢
𝜕𝜕𝑡𝑡∗'

+ 2𝜀𝜀(1 + 𝑤𝑤'𝜀𝜀' +⋯)
𝜕𝜕'𝑢𝑢
𝜕𝜕𝑡𝑡∗𝜕𝜕𝜏𝜏 + 𝜀𝜀'

𝜕𝜕'𝑢𝑢
𝜕𝜕𝜏𝜏'  

For	𝜀𝜀#	term, we have 

𝜀𝜀# :		
𝜕𝜕'𝑢𝑢#
𝜕𝜕𝑡𝑡∗'

+ 𝑢𝑢# = 0, 𝑢𝑢#(0,0) = 𝑎𝑎,
d𝑢𝑢#
d𝑡𝑡̅

(0,0) = 𝑏𝑏 

The leading order term in the solution is given as 
𝑢𝑢#(𝑡𝑡∗, 𝜏𝜏) = 𝐴𝐴#(𝜏𝜏) cos 𝑡𝑡∗ + 𝐵𝐵#(𝜏𝜏) sin 𝑡𝑡∗ , 𝐴𝐴#(0) = 𝑎𝑎, 𝐵𝐵#(0) = 𝑏𝑏 

For	𝜀𝜀&	term, we have 

𝜀𝜀& :		
𝜕𝜕'𝑢𝑢&
𝜕𝜕𝑡𝑡∗'

+ 𝑢𝑢& = −2
𝜕𝜕'𝑢𝑢
𝜕𝜕𝑡𝑡∗𝜕𝜕𝜏𝜏

(1 − 𝑢𝑢#')
𝜕𝜕𝑢𝑢#
𝜕𝜕𝑡𝑡∗ − 𝑢𝑢#R 

The coefficients of the secular terms need to be zero, which leads to 

sin 𝑡𝑡∗ :		2𝐴𝐴#! − 𝐴𝐴# +
1
4
(𝐴𝐴#' + 𝐵𝐵#')(𝐴𝐴# − 3𝐵𝐵#) = 0	

cos 𝑡𝑡∗ :	2𝐵𝐵#! − 𝐵𝐵# +
1
4
(𝐴𝐴#' + 𝐵𝐵#')(3𝐴𝐴# + 𝐵𝐵#) = 0 



We still have 
d
d𝜏𝜏

(𝐴𝐴#' + 𝐵𝐵#') = (𝐴𝐴#' + 𝐵𝐵#') £1 −
1
4
(𝐴𝐴#' + 𝐵𝐵#')§ 

This inspires the following transformation 
𝐴𝐴#(𝜏𝜏) = 𝑅𝑅(𝜏𝜏) cos𝜙𝜙(𝜏𝜏) , 𝐵𝐵#(𝜏𝜏) = 𝑅𝑅(𝜏𝜏) sin𝜙𝜙(𝜏𝜏) 

The ODE system then becomes 

(𝑅𝑅')! = 𝑅𝑅' ®1 −
𝑅𝑅'

4 © , 𝜙𝜙! = −
3
8𝑅𝑅

', 𝑅𝑅(0) = ‚𝑎𝑎' + 𝑏𝑏', tan𝜙𝜙(0) =
𝑏𝑏
𝑎𝑎 

Hence we obtain 

𝑅𝑅(𝜏𝜏) =
2

√1 + 𝐶𝐶𝑒𝑒)_
, 𝜙𝜙(𝜏𝜏) = arctan

𝑏𝑏
𝑎𝑎 −

3
2 ln ø

𝑒𝑒_ + 𝐶𝐶
1 + 𝐶𝐶 ¿ , 𝐶𝐶 =

4
𝑎𝑎' + 𝑏𝑏' − 1 

The leading order term of the asymptotic solution is 

𝑢𝑢(𝑡𝑡; 𝜀𝜀) ∼
2

√1 + 𝐶𝐶𝑒𝑒)T`
cosQ𝑡𝑡 − 𝜙𝜙(0)R , 𝜀𝜀 → 0 

As	𝑡𝑡 → ∞, we have	𝑅𝑅(𝑡𝑡) → 2	indicating a limit cycle. 

 
 
 
 
 
 
  

𝜀𝜀 = 0.05 



Asymptotic Analysis of Differential Equations (3): WKBJ method 

For	𝑥𝑥 ∈ 𝐼𝐼 = [𝛼𝛼, 𝛽𝛽] ⊆ ℝ	and	𝑦𝑦 ∈ Ω ⊆ ℝ", consider the following ODE with respect to a large 
parameter 𝜆𝜆	given as 

𝑦𝑦!!(𝑥𝑥) + 𝑓𝑓(𝑥𝑥; 𝜆𝜆)	𝑦𝑦(𝑥𝑥) = 0, 𝜆𝜆 → +∞ 
The function	𝑓𝑓(𝑥𝑥; 𝜆𝜆)	has the asymptotic expansion 

𝑓𝑓(𝑥𝑥; 𝜆𝜆) ∼ 𝜆𝜆'T𝑓𝑓"(𝑥𝑥)𝑎𝑎"(𝜆𝜆)
":#

, 𝜆𝜆 → +∞, 𝑥𝑥 ∈ 𝐼𝐼 

This method originates from the analysis of Schrödinger equation 

−
ℏ'

2𝑚𝑚𝜓𝜓!! + 𝑉𝑉𝜓𝜓 = 𝐸𝐸𝜓𝜓, 𝜓𝜓!! +
2𝑚𝑚(𝑉𝑉 − 𝐸𝐸)

ℏ' 𝜓𝜓 = 0 

The classical limit corresponds to	ℏ → 05	(𝜆𝜆 = ℏ)& → +∞). The issue of this problem lies in 
the function	𝑓𝑓(𝑥𝑥; 𝜆𝜆) → ∞	as	𝜆𝜆 → +∞. Note that 

𝑦𝑦!!

𝑓𝑓 + 𝑦𝑦 = 0								 ⟹ 								𝑦𝑦 = 0				when				𝜆𝜆 → +∞ 

We cannot obtain a useful solution from	𝜀𝜀#	term, since	𝜀𝜀 = 𝜆𝜆)& → 05	is in the highest-order 
derivative term, unlike the ODE with parameters analyzed by previous methods. 
 
Ø WKBJ method (7.2) 
We first transform the ODE into the Riccati equation 

𝑢𝑢 = (ln 𝑦𝑦)! =
𝑦𝑦!

𝑦𝑦 , 𝑢𝑢! + 𝑢𝑢' + 𝑓𝑓 = 0 

From the solution of the Riccati equation, the solution of the original equation is 

𝑦𝑦 = exp®Ÿ 𝑢𝑢(𝑠𝑠; 𝜆𝜆)	d𝑠𝑠
\

\#
© 

Consider the asymptotic series 

𝑢𝑢(𝑥𝑥; 𝜆𝜆) ∼ T𝑢𝑢"(𝑥𝑥)𝑏𝑏"(𝜆𝜆)
":#

, 𝑓𝑓(𝑥𝑥; 𝜆𝜆) ∼ 𝜆𝜆'T𝑓𝑓"(𝑥𝑥)𝑎𝑎"(𝜆𝜆)
":#

, 𝜆𝜆 → +∞ 

This implies the following constraints 

𝑎𝑎#(𝜆𝜆) = 1, 𝑎𝑎"5&(𝜆𝜆) = 𝑜𝑜Q𝑎𝑎"(𝜆𝜆)R, 𝑏𝑏"5&(𝜆𝜆) = 𝑜𝑜Q𝑏𝑏"(𝜆𝜆)R, 𝜆𝜆 → +∞ 

The Riccati equation becomes 
[𝑢𝑢#(𝑥𝑥)𝑏𝑏#(𝜆𝜆) + 𝑢𝑢&(𝑥𝑥)𝑏𝑏&(𝜆𝜆) + ⋯ ]! + [𝑢𝑢#(𝑥𝑥)𝑏𝑏#(𝜆𝜆) + 𝑢𝑢&(𝑥𝑥)𝑏𝑏&(𝜆𝜆) + ⋯ ]'

+ 𝜆𝜆'[𝑓𝑓#(𝑥𝑥)𝑎𝑎#(𝜆𝜆) + 𝑓𝑓&(𝑥𝑥)𝑎𝑎&(𝜆𝜆) + ⋯ ] = 0 
The leading order terms are 

𝑢𝑢#! (𝑥𝑥)𝑏𝑏#(𝜆𝜆) + 𝑢𝑢#'(𝑥𝑥)𝑏𝑏#'(𝜆𝜆) + 𝜆𝜆'𝑓𝑓#(𝑥𝑥) = 𝑜𝑜Q𝑏𝑏#(𝜆𝜆)R + 𝑜𝑜Q𝑏𝑏#'(𝜆𝜆)R + 𝑜𝑜(𝜆𝜆') 



We analyze the dominant balance among these three terms, and we need to set 

𝑏𝑏#(𝜆𝜆) = 𝜆𝜆, 𝑢𝑢#'(𝑥𝑥) + 𝑓𝑓#(𝑥𝑥) = 𝑜𝑜(𝜆𝜆'), 𝑢𝑢#(𝑥𝑥) = ±‚−𝑓𝑓#(𝑥𝑥) 

The turning points at which	𝑓𝑓#(𝑥𝑥) = 0 govern the behavior of the solution in different regimes. 
The next order terms give 

𝑢𝑢#! (𝑥𝑥)𝜆𝜆 + 2𝑢𝑢#(𝑥𝑥)𝑢𝑢&(𝑥𝑥)𝜆𝜆𝑏𝑏&(𝜆𝜆) + 𝜆𝜆'𝑓𝑓&(𝑥𝑥)𝑎𝑎&(𝜆𝜆) = 𝑜𝑜(𝜆𝜆) + 𝑜𝑜Q𝜆𝜆𝑏𝑏&(𝜆𝜆)R + 𝑜𝑜Q𝜆𝜆'𝑎𝑎&(𝜆𝜆)R 

There are several cases depending on the order of	𝑎𝑎&(𝜆𝜆): 
¨ Case 1: Dominant balance of term I and II (special	𝐶𝐶 = 0	of Case 3) 

𝜆𝜆'𝑎𝑎&(𝜆𝜆) = 𝑜𝑜(𝜆𝜆), 𝑎𝑎&(𝜆𝜆) = 𝑜𝑜 ø
1
𝜆𝜆¿ , 𝑏𝑏&(𝜆𝜆) = 1, 𝑢𝑢&(𝑥𝑥) = −

𝑢𝑢#!

2𝑢𝑢#
 

¨ Case 2: Dominant balance of term II and III 

𝜆𝜆 = 𝑜𝑜Q𝜆𝜆'𝑎𝑎&(𝜆𝜆)R, 𝑏𝑏&(𝜆𝜆) = 𝜆𝜆𝑎𝑎&(𝜆𝜆), 𝑢𝑢&(𝑥𝑥) = −
𝑓𝑓&
2𝑢𝑢#

 

¨ Case 3: Dominant balance of all three terms 

lim
D→5;

𝜆𝜆𝑎𝑎&(𝜆𝜆) = 𝐶𝐶, 𝑏𝑏&(𝜆𝜆) = 1, 𝑢𝑢&(𝑥𝑥) = −
𝑢𝑢#! + 𝐶𝐶𝑓𝑓&

2𝑢𝑢#
 

This process ends when we reach	𝑏𝑏J(𝜆𝜆) = 𝑂𝑂(1), and this gives 

𝑢𝑢(𝑥𝑥; 𝜆𝜆) ∼ T𝑢𝑢"(𝑥𝑥)𝑏𝑏"(𝜆𝜆)
J

"1#

+ 𝑜𝑜(1), 𝜆𝜆 → +∞ 

𝑦𝑦(𝑥𝑥; 𝜆𝜆) ∼ expST𝑏𝑏"(𝜆𝜆)
J

"1#

Ÿ 𝑢𝑢"(𝑠𝑠)	d𝑠𝑠
\

\#
W Q1 + 𝑜𝑜(1)R, 𝜆𝜆 → +∞ 

 
Usually, we study the case with	𝑎𝑎"(𝜆𝜆) = 𝜆𝜆)", from which we choose	𝑢𝑢(𝑥𝑥; 𝜆𝜆)	as 

𝑢𝑢(𝑥𝑥; 𝜆𝜆) ∼ 𝜆𝜆T𝑢𝑢"(𝑥𝑥)𝜆𝜆)"
":#

 

The Riccati equation becomes 

T𝑢𝑢"! (𝑥𝑥)𝜆𝜆)")&
":#

+ ST𝑢𝑢0(𝑥𝑥)𝜆𝜆)0
0:#

WST𝑢𝑢B(𝑥𝑥)𝜆𝜆)B
B:#

W +T𝑓𝑓"(𝑥𝑥)𝜆𝜆)"
":#

= 0 

For each order of	𝜆𝜆, we have 

𝜆𝜆#:		𝑢𝑢#' + 𝑓𝑓# = 0, 𝑢𝑢# = ±‚−𝑓𝑓# 

𝜆𝜆)":		𝑢𝑢")&! + T𝑢𝑢0𝑢𝑢")0

"

01#

+ 𝑓𝑓" = 0, 𝑢𝑢" = −
1

2𝑢𝑢#
S𝑢𝑢")&! + T𝑢𝑢0𝑢𝑢")0

")&

01&

+ 𝑓𝑓"W 

Consider	𝑥𝑥# ∈ (𝛼𝛼, 𝛽𝛽)	such that	𝑓𝑓(𝑥𝑥#) ≠ 0, and assume that we can further find	𝛿𝛿 > 0	such that 
	𝑓𝑓#(𝑥𝑥) > 𝑀𝑀	or	𝑓𝑓#(𝑥𝑥) < −𝑀𝑀	when	𝑥𝑥# ∈ 𝐵𝐵(𝑥𝑥#, 𝛿𝛿). We also assume	𝑓𝑓" ∈ 𝐶𝐶;, and we have 



𝑢𝑢(𝑥𝑥; 𝜆𝜆) ∼ 𝜆𝜆𝑢𝑢#(𝑥𝑥) + 𝑢𝑢&(𝑥𝑥) + 𝑂𝑂(𝜆𝜆)&), 𝜆𝜆 → +∞ 
The first two terms are given as 

𝑢𝑢#(𝑥𝑥) = ±‚−𝑓𝑓#, 𝑢𝑢&(𝑥𝑥) = −
𝑢𝑢#! + 𝑓𝑓&
2𝑢𝑢#

= −
1
4
𝑓𝑓#!

𝑓𝑓#
−

𝑓𝑓&
2𝑢𝑢#

 

Therefore, we have the solutions 

𝑢𝑢±(𝑥𝑥; 𝜆𝜆) = ±𝜆𝜆‚−𝑓𝑓# −
1
4
𝑓𝑓#!

𝑓𝑓#
±

𝑓𝑓&
2‚−𝑓𝑓#

	

𝑦𝑦±(𝑥𝑥; 𝜆𝜆) = 𝑓𝑓#
)&V exp ®±Ÿ 𝜆𝜆‚−𝑓𝑓#	d𝑠𝑠

\

\#
±
1
2Ÿ

𝑓𝑓&
‚−𝑓𝑓#

	d𝑠𝑠
\

\#
© ⋅ Q1 + 𝑜𝑜(1)R 

More specifically, depending on the sign of	𝑓𝑓#(𝑥𝑥)	on	𝐵𝐵(𝑥𝑥#, 𝛿𝛿), we have 

𝑦𝑦±(𝑥𝑥; 𝜆𝜆) = 𝑓𝑓#
)&V exp ®±𝑖𝑖𝜆𝜆Ÿ ‚𝑓𝑓#	d𝑠𝑠

\

\#
±

𝑖𝑖
2Ÿ

𝑓𝑓&
‚𝑓𝑓#

	d𝑠𝑠
\

\#
© ⋅ Q1 + 𝑜𝑜(1)R, 𝑓𝑓#(𝑥𝑥#) > 0	

𝑦𝑦±(𝑥𝑥; 𝜆𝜆) = |𝑓𝑓#|
)&V exp®±𝜆𝜆Ÿ ‚|𝑓𝑓#|	d𝑠𝑠

\

\#
∓
1
2Ÿ

𝑓𝑓&
‚|𝑓𝑓#|

	d𝑠𝑠
\

\#
© ⋅ Q1 + 𝑜𝑜(1)R, 𝑓𝑓#(𝑥𝑥#) < 0	

 
Example 

𝑦𝑦!!(𝑥𝑥) + [𝜆𝜆' + 𝜀𝜀𝜇𝜇(𝑥𝑥)]𝑦𝑦(𝑥𝑥) = 0, 𝜆𝜆 → +∞ 
This describes the propagation of light in a medium with spatial variation in the refractive index 
given by	𝜀𝜀𝜇𝜇(𝑥𝑥). For this equation, we have 

𝑓𝑓# = 1, 𝑓𝑓& = 0, 𝑓𝑓' = 𝜀𝜀𝜇𝜇(𝑥𝑥), 𝑓𝑓" = 0, 𝑛𝑛 ≥ 3 
Directly from the WKBJ method, we can obtain 

𝑢𝑢#
±(𝑥𝑥) = ±𝑖𝑖, 𝑢𝑢&

±(𝑥𝑥) = 0, 𝑢𝑢'
±(𝑥𝑥) = ±

𝑖𝑖𝜀𝜀
2 𝜇𝜇(𝑥𝑥) 

Since	𝑓𝑓# > 0, the solution is 

𝑦𝑦±(𝑥𝑥; 𝜆𝜆) = exp®±𝑖𝑖𝜆𝜆(𝑥𝑥 − 𝑥𝑥#) ±
𝑖𝑖𝜀𝜀
2𝜆𝜆Ÿ 𝜇𝜇(𝑠𝑠)	d𝑠𝑠

\

\#
© ⋅ Q1 + 𝑜𝑜(𝜆𝜆)&)R, 𝜆𝜆 → +∞ 

The dominant term is a high-frequency oscillation. 
 
Consistency of WKBJ asymptotic series 
We first study the case with	𝑓𝑓#(𝑥𝑥#) > 0, which gives 

𝑢𝑢#
±(𝑥𝑥) = ±𝑖𝑖‚𝑓𝑓#(𝑥𝑥), 𝑢𝑢"±(𝑥𝑥) = −

1
2𝑢𝑢#

± S𝑢𝑢")&
± !

+ T𝑢𝑢0
±𝑢𝑢")0

±
")&

01&

+ 𝑓𝑓"W 

Denote the exact solution as	𝑢𝑢(𝑥𝑥; 𝜆𝜆). We want to know if there exists	𝛿𝛿 > 0	such that 



𝑢𝑢(𝑥𝑥; 𝜆𝜆) − 𝜆𝜆∑ 𝑢𝑢"(𝑥𝑥)𝜆𝜆)"J
"1#

𝜆𝜆)J)& ⇉ 0, 𝑁𝑁 → ∞, 𝑥𝑥 ∈ 𝐵𝐵(𝑥𝑥#, 𝛿𝛿) 

Denote the partial sum as	𝑢𝑢J(𝑥𝑥; 𝜆𝜆)	and the difference as	ΔJ(𝑥𝑥; 𝜆𝜆) = 𝑢𝑢(𝑥𝑥; 𝜆𝜆) − 𝑢𝑢J(𝑥𝑥; 𝜆𝜆). The 
initial value of the error at	𝑥𝑥 = 𝑥𝑥#	satisfies 

𝑈𝑈J(𝜆𝜆) = ΔJ(𝑥𝑥#; 𝜆𝜆) = 𝑂𝑂(𝜆𝜆)J), 𝜆𝜆 → +∞ 
With	𝑢𝑢 = 𝑢𝑢J + ΔJ, substituting it into the Riccati equation leads to 

ΔJ! + 𝑢𝑢J! + ΔJ' + 2𝑢𝑢JΔJ + 𝑢𝑢J' + 𝑓𝑓 = 0, ΔJ! + ΔJ' + 2𝜆𝜆𝑢𝑢#ΔJ + 𝐴𝐴JΔJ = 𝐵𝐵J 
We organize some terms into	𝐴𝐴J	and	𝐵𝐵J	with the following behaviors 

𝐴𝐴J(𝑥𝑥; 𝜆𝜆) = 2T𝑢𝑢"𝜆𝜆)"5&
J

"1&

= 𝑂𝑂(1), 𝐵𝐵J(𝑥𝑥; 𝜆𝜆) = 𝑢𝑢J! + 𝑢𝑢J' + 𝑓𝑓 = 𝑂𝑂(𝜆𝜆)J5&) 

Introduce an exponential integrating factor 

𝐸𝐸(𝑥𝑥, 𝑦𝑦; 𝜆𝜆) = exp®2𝜆𝜆Ÿ 𝑢𝑢#(𝑠𝑠)	d𝑠𝑠
\

W
© = exp ®2𝑖𝑖𝜆𝜆Ÿ ‚𝑓𝑓#(𝑠𝑠)	d𝑠𝑠

\

W
© ,

∂𝐸𝐸
∂𝑥𝑥 = 2𝜆𝜆𝑢𝑢#(𝑥𝑥)𝐸𝐸 

Apply it to the Riccati equation, we obtain 
d
d𝑥𝑥

[𝐸𝐸(𝑥𝑥, 𝑥𝑥#; 𝜆𝜆)ΔJ(𝑥𝑥; 𝜆𝜆)] = 2𝜆𝜆𝑢𝑢#ΔJ𝐸𝐸 + ΔJ! 𝐸𝐸 = (𝐵𝐵J − 𝐴𝐴JΔJ − ΔJ' )𝐸𝐸 

Integrate both sides, and with the initial values we have 

𝐸𝐸(𝑥𝑥, 𝑥𝑥#; 𝜆𝜆)ΔJ(𝑥𝑥; 𝜆𝜆) − 𝑈𝑈J(𝜆𝜆) = Ÿ 𝐸𝐸(𝑠𝑠, 𝑥𝑥#; 𝜆𝜆)(𝐵𝐵J − 𝐴𝐴JΔJ − ΔJ' )	d𝑠𝑠
\

\#
 

Since	𝐸𝐸(𝑦𝑦, 𝑥𝑥; 𝜆𝜆) = 𝐸𝐸)&(𝑥𝑥, 𝑦𝑦; 𝜆𝜆), this leads to 

ΔJ(𝑥𝑥; 𝜆𝜆) = 𝑇𝑇J[ΔJ](𝑥𝑥; 𝜆𝜆) = 𝑈𝑈J(𝜆𝜆)𝐸𝐸(𝑥𝑥#, 𝑥𝑥; 𝜆𝜆) + Ÿ 𝐸𝐸(𝑠𝑠, 𝑥𝑥; 𝜆𝜆)(𝐵𝐵J − 𝐴𝐴JΔJ − ΔJ' )	d𝑠𝑠
\

\#
 

The nonlinear integral operator is denoted as	𝑇𝑇J. The above expression implies that	ΔJ	is a 
fixed point of	𝑇𝑇J. For two functions	𝑤𝑤&, 𝑤𝑤' ∈ {𝑓𝑓 ∈ 𝐶𝐶#	|‖𝑓𝑓‖ = sup|𝑓𝑓(𝑥𝑥)| ≤ 𝑀𝑀}, we have 

‖𝑇𝑇J[𝑤𝑤&] − 𝑇𝑇J[𝑤𝑤']‖ ≤ ıŸ (|𝐴𝐴J| + |𝑤𝑤&| + |𝑤𝑤'|)	d𝑠𝑠
\

\#
ı ‖𝑤𝑤' −𝑤𝑤&‖ ≤ 𝐶𝐶&𝛿𝛿‖𝑤𝑤' −𝑤𝑤&‖ 

We can choose	𝛿𝛿	such that	‖𝑇𝑇J[𝑤𝑤&] − 𝑇𝑇J[𝑤𝑤']‖ ≤ ‖𝑤𝑤' −𝑤𝑤&‖, which is a contraction mapping. 
Eventually, we have 

‖ΔJ‖ = ‖𝑇𝑇J[ΔJ]‖ ≤
𝐶𝐶'
𝜆𝜆J = 𝑂𝑂(𝜆𝜆)J) 

This proves that if initially we have	𝑂𝑂(𝜆𝜆)J)	error at	𝑥𝑥 = 𝑥𝑥#, then it holds uniformly over	(𝛼𝛼, 𝛽𝛽).  
 
In terms of the case with	𝑓𝑓#(𝑥𝑥#) < 0, for the	+	solution we have 

𝑢𝑢#5(𝑥𝑥) = ‚|𝑓𝑓#(𝑥𝑥)| 



The integrating factor now becomes 

𝐸𝐸5(𝑥𝑥, 𝑦𝑦; 𝜆𝜆) = exp®2𝜆𝜆Ÿ ‚|𝑓𝑓#(𝑠𝑠)|	d𝑠𝑠
\

W
© 

When	𝜆𝜆 → +∞, it is an exponential growth (𝑥𝑥 > 𝑦𝑦) or decay (𝑥𝑥 < 𝑦𝑦). In this case, 	𝑦𝑦5(𝑥𝑥; 𝜆𝜆)	is 
consistent only in	[𝑥𝑥#, 𝑥𝑥# + 𝛿𝛿). Similarly, 𝑦𝑦)	is consistent only in	(𝑥𝑥# − 𝛿𝛿, 𝑥𝑥#]. The validity of 
WKBJ asymptotics is in the direction of exponential growth. 
 
Turning points 
Consider the following example 

𝑓𝑓(𝑥𝑥; 𝜆𝜆) = 𝜆𝜆'𝑥𝑥, 𝑦𝑦!! + 𝜆𝜆'𝑥𝑥𝑦𝑦 = 0 
The ODE can be transformed into 

𝑧𝑧 = −𝜆𝜆'/R𝑥𝑥, 𝑌𝑌!(𝑧𝑧) − 𝑧𝑧𝑌𝑌(𝑧𝑧) = 0 
This is the Airy equation, from which we can write down the general solution as 

𝑌𝑌(𝑧𝑧) = 𝐶𝐶&Ai(𝑧𝑧) + 𝐶𝐶'Bi(𝑧𝑧) 
For	𝑥𝑥 < 0,	𝑓𝑓(𝑥𝑥) < 0, when	𝜆𝜆 → +∞	we have	𝑧𝑧 → +∞ 

Ai(𝑧𝑧) =
1

2√𝜋𝜋
1

𝑧𝑧&/V 𝑒𝑒
)'R.

//"
l1 + 𝑂𝑂Q𝑧𝑧)R/'Rm	

Bi(𝑧𝑧) =
1
√𝜋𝜋

1
𝑧𝑧&/V 𝑒𝑒

'
R.

//"
l1 + 𝑂𝑂Q𝑧𝑧)R/'Rm , 𝑧𝑧 → +∞ 

For	𝑥𝑥 > 0,	𝑓𝑓(𝑥𝑥) > 0, when	𝜆𝜆 → +∞	we have	𝑧𝑧 → −∞ 

Ai(𝑧𝑧) =
1
√𝜋𝜋

1
|𝑧𝑧|&/V £sin ø

2
3
|𝑧𝑧|R/' +

𝜋𝜋
4¿ + 𝑂𝑂Q|𝑧𝑧|)R/'R§	

Bi(𝑧𝑧) =
1
√𝜋𝜋

1
|𝑧𝑧|&/V £cos ø

2
3
|𝑧𝑧|R/' +

𝜋𝜋
4¿ + 𝑂𝑂Q|𝑧𝑧|)R/'R§ , 𝑧𝑧 → −∞ 

Near the turning point, the transition from exponential to oscillatory behaviors is connected by 
the Airy function. We can define three regimes: left (𝑦𝑦a, exponential), middle (𝑦𝑦?, Airy) and 
right (𝑦𝑦Q, oscillatory). The connection problem is to find a proper	𝑦𝑦Q 	given the solution	𝑦𝑦a, 
such that there exists	𝑦𝑦? 	to form a smooth solution near the turning point	𝑥𝑥∗. 
 
Consider another example 

𝑓𝑓(𝑥𝑥; 𝜆𝜆) = 𝜆𝜆'sgn(𝑥𝑥), 𝑦𝑦!!(𝑥𝑥) + 𝑓𝑓(𝑥𝑥; 𝜆𝜆)	𝑦𝑦(𝑥𝑥) = 0 
We can obtain the exact general solution as 

𝑦𝑦 = 𝐴𝐴𝑒𝑒D\ + 𝐵𝐵𝑒𝑒)D\ , 𝑥𝑥 < 0, 𝑦𝑦 = 𝐶𝐶𝑒𝑒3D\ + 𝐷𝐷𝑒𝑒)3D\ , 𝑥𝑥 > 0 
The connection conditions can be chosen as	𝑦𝑦(0)) = 𝑦𝑦(05)	and	𝑦𝑦!(0)) = 𝑦𝑦!(05). This gives 

𝐶𝐶 =
1 − 𝑖𝑖
2 𝐴𝐴 +

1 + 𝑖𝑖
2 𝐵𝐵, 𝐷𝐷 =

1 + 𝑖𝑖
2 𝐴𝐴 +

1 − 𝑖𝑖
2 𝐵𝐵 

For asymptotic analysis, we first need to choose a solution in	𝑥𝑥 < 0	such that 



𝑦𝑦a5 = 𝑒𝑒D\Q1 + 𝑜𝑜(1)R, 𝑥𝑥 < 0, 𝜆𝜆 → +∞ 

In this case, the connection problem is well-posed and we obtain 

𝐴𝐴 = 1, 𝐵𝐵 = 0, 𝐶𝐶 =
1 − 𝑖𝑖
2 , 𝐷𝐷 =

1 + 𝑖𝑖
2  

However, if we choose the other solution in	𝑥𝑥 < 0	such that 

𝑦𝑦a) = 𝑒𝑒)D\Q1 + 𝑜𝑜(1)R, 𝑥𝑥 < 0, 𝜆𝜆 → +∞ 

Since	𝑒𝑒D\ = 𝑒𝑒)D\𝑜𝑜(1)	for	𝑥𝑥 < 0, the coefficient	𝐴𝐴	is arbitrary and thus we cannot determine a 
unique oscillatory solution in	𝑥𝑥 > 0 to form the connection. Vice versa, if we choose a solution 
in	𝑥𝑥 > 0	such that 

𝑦𝑦Q = 𝐶𝐶𝑒𝑒3D\ + 𝐷𝐷𝑒𝑒)3D\ + 𝑜𝑜(1), 𝑥𝑥 > 0, 𝜆𝜆 → +∞ 
The connection conditions give 

𝐴𝐴 =
1 + 𝑖𝑖
2 𝐶𝐶 +

1 − 𝑖𝑖
2 𝐷𝐷, 𝐵𝐵 =

1 − 𝑖𝑖
2 𝐶𝐶 +

1 + 𝑖𝑖
2 𝐷𝐷 

The asymptotic behavior for the solution in	𝑥𝑥 < 0	is 

𝑦𝑦a = 𝐴𝐴𝑒𝑒D\ + 𝐵𝐵𝑒𝑒)D\ = 𝐵𝐵𝑒𝑒)D\Q1 + 𝑜𝑜(1)R, 𝑥𝑥 < 0, 𝜆𝜆 → +∞ 

If	𝐵𝐵 = 0, then we need to refer to higher order terms to pose the connection problem. 
 
We assume that	𝐼𝐼 = (𝛼𝛼, 𝛽𝛽)	only has one turning point	𝑥𝑥∗	such that with	𝑓𝑓#!(𝑥𝑥∗) = 𝜈𝜈' > 0. The 
functions are smooth with 𝑓𝑓" ∈ 𝐶𝐶;(𝐼𝐼). For	𝑓𝑓#(𝑥𝑥), near the turning point we have 

𝑓𝑓#(𝑥𝑥) = 𝜈𝜈'(𝑥𝑥 − 𝑥𝑥∗) + 𝑜𝑜(𝑥𝑥 − 𝑥𝑥∗) 
We want to find	𝛿𝛿(𝜆𝜆)	such that there exists a consistent asymptotic solution within the region 

𝑥𝑥 ∈ Q𝑥𝑥&, 𝑥𝑥∗ − 𝛿𝛿(𝜆𝜆)R ∪ (𝑥𝑥∗ + 𝛿𝛿(𝜆𝜆), 𝑥𝑥') 

Based on WKBJ results, we first obtain 

𝑢𝑢#(𝑥𝑥) = ±‚−𝜈𝜈'(𝑥𝑥 − 𝑥𝑥∗) + 𝑜𝑜(𝑥𝑥 − 𝑥𝑥∗) = 𝑂𝑂 l‚|𝑥𝑥 − 𝑥𝑥∗|m 

Specifically, we have 

𝑢𝑢# = ±𝜈𝜈‚|𝑥𝑥 − 𝑥𝑥∗| + 𝑜𝑜 l‚|𝑥𝑥 − 𝑥𝑥∗|m , 𝑥𝑥 < 𝑥𝑥∗	

𝑢𝑢# = ±𝑖𝑖𝜈𝜈‚𝑥𝑥 − 𝑥𝑥∗ + 𝑜𝑜Q‚𝑥𝑥 − 𝑥𝑥∗R, 𝑥𝑥 > 𝑥𝑥∗ 

Since	𝑓𝑓"	is finite, by induction we can further estimate 

𝑢𝑢&(𝑥𝑥) = −
𝑢𝑢#! + 𝑓𝑓&
2𝑢𝑢#

= 𝑂𝑂(|𝑥𝑥 − 𝑥𝑥∗|)&)	

𝑢𝑢"(𝑥𝑥) = −
1

2𝑢𝑢#
S𝑢𝑢")&! + T𝑢𝑢0𝑢𝑢")0

")&

01&

+ 𝑓𝑓"W = 𝑂𝑂 ø|𝑥𝑥 − 𝑥𝑥∗|
&)R"
' ¿ 



To obtain a valid asymptotic series, we require 

lim
D→5;

𝑢𝑢"5&𝜆𝜆)"

𝑢𝑢"𝜆𝜆)(")&)
=

|𝑥𝑥 − 𝑥𝑥∗|
&
')

R
'("5&)𝜆𝜆)"

|𝑥𝑥 − 𝑥𝑥∗|
&
')

R
'"𝜆𝜆)"5&

= 𝜆𝜆)&|𝑥𝑥 − 𝑥𝑥∗|
)R' = 0 

This leads to the condition on	𝛿𝛿(𝜆𝜆)	as 

|𝑥𝑥 − 𝑥𝑥∗|
)R' = 𝑜𝑜(𝜆𝜆), 𝛿𝛿(𝜆𝜆) = 𝜆𝜆)b, 0 < 𝑝𝑝 <

2
3 

In the outer region, it can be shown that the consistent solution exists for	0 < 𝑝𝑝 < 2/3. 
For	𝑥𝑥 ∈ (𝑥𝑥&, 𝑥𝑥∗ − 𝜆𝜆)b), we have 

𝑦𝑦a5(𝑥𝑥; 𝜆𝜆) = |𝑓𝑓#(𝑥𝑥)|
)&V exp ®𝜆𝜆Ÿ ‚|𝑓𝑓#(𝑠𝑠)|	d𝑠𝑠

\

\∗
−
1
2Ÿ

𝑓𝑓&(𝑠𝑠)

‚|𝑓𝑓#(𝑠𝑠)|
d𝑠𝑠

\

\∗
©®1 + 𝑂𝑂 ø𝜆𝜆

Rb
' )&¿© 

For	𝑥𝑥 ∈ (𝑥𝑥∗ + 𝜆𝜆)b, 𝑥𝑥'), we have 

𝑦𝑦Q
±(𝑥𝑥; 𝜆𝜆) = 𝑓𝑓#(𝑥𝑥)

)&V exp®±𝑖𝑖𝜆𝜆Ÿ ‚𝑓𝑓#(𝑠𝑠)	d𝑠𝑠
\

\∗
±

𝑖𝑖
2Ÿ

𝑓𝑓&(𝑠𝑠)

‚𝑓𝑓#(𝑠𝑠)
d𝑠𝑠

\

\∗
©®1 + 𝑂𝑂 ø𝜆𝜆

Rb
' )&¿© 

 
Across the turning point for	𝑥𝑥 ∈ (𝑥𝑥∗ − 𝛿𝛿(𝜆𝜆), 𝑥𝑥∗ + 𝛿𝛿(𝜆𝜆)), we need to directly solve the equation. 
We assume that for sufficiently large	𝜆𝜆, 𝑓𝑓(𝑥𝑥; 𝜆𝜆)	only have one zero point	𝑥𝑥∗(𝜆𝜆). As	𝜆𝜆 → +∞, 
𝑥𝑥∗(𝜆𝜆)	becomes the turning point	𝑥𝑥∗. For sufficiently small	|𝑥𝑥 − 𝑥𝑥∗|, we uniformly have 

𝑓𝑓#(𝑥𝑥; 𝜆𝜆) = 𝜈𝜈'Q𝑥𝑥 − 𝑥𝑥∗(𝜆𝜆)R + 𝑜𝑜Q𝑥𝑥 − 𝑥𝑥∗(𝜆𝜆)R	

𝑓𝑓(𝑥𝑥; 𝜆𝜆) = 𝜆𝜆'𝜈𝜈'Q𝑥𝑥 − 𝑥𝑥∗(𝜆𝜆)RQ1 + Q𝑥𝑥 − 𝑥𝑥∗(𝜆𝜆)Rℎ(𝑥𝑥; 𝜆𝜆)R, ℎ = 𝑂𝑂(1) 

With the same transformation 
𝑥𝑥 = 𝑥𝑥∗(𝜆𝜆) − 𝛼𝛼𝑧𝑧, 𝛼𝛼 = (𝜆𝜆𝜈𝜈))'/R, 𝑌𝑌(𝑧𝑧; 𝜆𝜆) = 𝑦𝑦(𝑥𝑥∗(𝜆𝜆) − 𝛼𝛼𝑧𝑧; 𝜆𝜆) 

The original ODE is converted into the Airy equation 
𝑌𝑌!! − 𝑧𝑧𝑌𝑌 = 𝜆𝜆)'/R𝑧𝑧'𝑔𝑔(𝑧𝑧; 𝜆𝜆)𝑌𝑌, 𝑔𝑔 = 𝑂𝑂(1), 𝑧𝑧 → 0 

Consider the general solution satisfying 
𝑌𝑌(𝑧𝑧; 𝜆𝜆) = 𝑎𝑎(𝑧𝑧; 𝜆𝜆)	Ai(𝑧𝑧) + 𝑏𝑏(𝑧𝑧; 𝜆𝜆)	Bi(𝑧𝑧), 𝑌𝑌!(𝑧𝑧; 𝜆𝜆) = 𝑎𝑎(𝑧𝑧; 𝜆𝜆)	Ai!(𝑧𝑧) + 𝑏𝑏(𝑧𝑧; 𝜆𝜆)	Bi!(𝑧𝑧) 

This implies that we choose the coefficients under the following constraint 
𝑎𝑎!(𝑧𝑧; 𝜆𝜆)	Ai(𝑧𝑧) + 𝑏𝑏!(𝑧𝑧; 𝜆𝜆)	Bi(𝑧𝑧) = 0 

Now the Airy equation becomes 

𝑎𝑎!(𝑧𝑧; 𝜆𝜆)	Ai!(𝑧𝑧) + 𝑏𝑏!(𝑧𝑧; 𝜆𝜆)	Bi!(𝑧𝑧) = 𝜆𝜆)'/R𝑧𝑧'𝑔𝑔(𝑧𝑧; 𝜆𝜆)Q𝑎𝑎(𝑧𝑧; 𝜆𝜆)	Ai(𝑧𝑧) + 𝑏𝑏(𝑧𝑧; 𝜆𝜆)	Bi(𝑧𝑧)R 

Using the asymptotic behaviors of the Airy functions and their derivatives, the determinant of 
the Wronskian and its inverse are obtained as 

det𝑊𝑊 = Ai(𝑧𝑧)	Bi!(𝑧𝑧) − Ai!(𝑧𝑧)	Bi(𝑧𝑧) =
1
𝜋𝜋 , 𝑊𝑊)& =

1
det𝑊𝑊 ø Bi!(𝑧𝑧) −Bi(𝑧𝑧)

−Ai!(𝑧𝑧) Ai(𝑧𝑧) ¿ 



These lead to an ODE system for	𝑎𝑎(𝑧𝑧; 𝜆𝜆)	and	𝑏𝑏(𝑧𝑧; 𝜆𝜆) 

l𝑎𝑎
!

𝑏𝑏!m = −𝜋𝜋𝜆𝜆)
'
R𝑧𝑧'𝑔𝑔 øAi

(𝑧𝑧)	Bi(𝑧𝑧) [Bi(𝑧𝑧)]'

−[Ai(𝑧𝑧)]' −Ai(𝑧𝑧)	Bi(𝑧𝑧)
¿ l𝑎𝑎𝑏𝑏m 

With initial conditions at	𝑥𝑥 − 𝑥𝑥∗(𝜆𝜆) = ±𝜆𝜆)b! 	given by the outer solution, we want to show that 
the coefficients	𝑎𝑎, 𝑏𝑏	are nearly constant when	𝜆𝜆 → +∞, as indicated by the ODE system. 

𝑥𝑥 − 𝑥𝑥∗(𝜆𝜆) = −𝛼𝛼𝑧𝑧 = ∓𝜆𝜆)b! , 𝑧𝑧 = ±𝜈𝜈'/R𝜆𝜆'/R)b! = ±𝐶𝐶𝜆𝜆P 
The initial values at the left endpoint can be written as 

𝑎𝑎(𝐶𝐶𝜆𝜆P; 𝜆𝜆) = 1 + 𝛿𝛿𝑎𝑎, 𝑏𝑏(𝐶𝐶𝜆𝜆P; 𝜆𝜆) = 0 + 𝐶𝐶F𝛿𝛿𝑏𝑏, 𝛿𝛿𝑎𝑎, 𝛿𝛿𝑏𝑏 = 𝑜𝑜(1) 
Integrate the ODE from	𝐶𝐶𝜆𝜆P 	to an arbitrary	𝑧𝑧	with	|𝑧𝑧| < 𝐶𝐶𝜆𝜆P 

ø
𝑎𝑎(𝑧𝑧; 𝜆𝜆) − 1 − 𝛿𝛿𝑎𝑎
𝑏𝑏(𝑧𝑧; 𝜆𝜆) − 𝐶𝐶F𝛿𝛿𝑏𝑏

¿ = −𝜋𝜋𝜆𝜆)
'
RŸ 𝜁𝜁'𝑔𝑔(𝜁𝜁; 𝜆𝜆) øAi

(𝜁𝜁)	Bi(𝜁𝜁) [Bi(𝜁𝜁)]'

−[Ai(𝜁𝜁)]' −Ai(𝜁𝜁)	Bi(𝜁𝜁)
¿ ø𝑎𝑎

(𝜁𝜁)
𝑏𝑏(𝜁𝜁)¿ 	d𝜁𝜁

.

cD2
 

From this integral equation, it can be shown that 

‖𝑎𝑎Z‖ = ‖𝑎𝑎(𝑧𝑧; 𝜆𝜆) − 1‖ ≤ |𝛿𝛿𝑎𝑎| + 𝐶𝐶&𝜆𝜆
dP
' )

'
RQ‖𝑎𝑎Z‖ + ˝𝑏𝑏æ˝ + 1R	

˝𝑏𝑏æ˝ = ‖𝑊𝑊(𝑧𝑧)𝑏𝑏(𝑧𝑧; 𝜆𝜆)‖ ≤ |𝛿𝛿𝑏𝑏| + 𝐶𝐶&𝜆𝜆
dP
' )

'
RQ‖𝑎𝑎Z‖ + ˝𝑏𝑏æ˝ + 1R 

The function	𝑊𝑊(𝑧𝑧), which describes the order of	[Bi(𝑧𝑧)]', is defined by 

𝑊𝑊(𝑧𝑧) = 𝑒𝑒
V
R.

//"
, 𝑧𝑧 > 0, 𝑊𝑊(𝑧𝑧) = 1, 𝑧𝑧 ≤ 0 

For the norm to be bounded by a finite value when	𝜆𝜆 → +∞, we require 
5𝑞𝑞
2 −

2
3 < 0, 𝑞𝑞 =

2
3 − 𝑝𝑝& <

4
15 , 𝑝𝑝& >

2
5 

Therefore, the overlap domain between the inner and outer regimes is 

𝜆𝜆)'/R < |𝑥𝑥 − 𝑥𝑥∗| < 𝜆𝜆)'/d 
 
Suppose that	𝑥𝑥a = 𝑥𝑥∗(𝜆𝜆) − 𝜆𝜆)b	with	2/5 < 𝑝𝑝 < 2/3, as	𝜆𝜆 → +∞	it can be shown that 

|𝑓𝑓#(𝑥𝑥)|
)&V = 𝜈𝜈)

&
'	𝜆𝜆

b
V 	Q1 + 𝑂𝑂(𝜆𝜆)b) + 𝑂𝑂(𝜆𝜆b)&)R, Ÿ

𝑓𝑓&(𝑠𝑠)

‚|𝑓𝑓#(𝑠𝑠)|
d𝑠𝑠

\

\∗
= 𝑂𝑂 l𝜆𝜆)

b
'm 

𝜆𝜆Ÿ ‚|𝑓𝑓#(𝑠𝑠)|	d𝑠𝑠
\

\∗
= −

2
3𝜈𝜈𝜆𝜆

&)Rb' Q1 + 𝑂𝑂(𝜆𝜆)b) + 𝑂𝑂(𝜆𝜆b)&)R 

With these results, we have 

𝑦𝑦a5(𝑥𝑥a; 𝜆𝜆) = 𝜈𝜈)
&
'	𝜆𝜆

b
V exp ø−

2
3 𝜈𝜈𝜆𝜆

&)Rb' ¿ ®1 + 𝑂𝑂 l𝜆𝜆)
b
'm + 𝑂𝑂 ø𝜆𝜆

Rb
' )&¿ + 𝑂𝑂 ø𝜆𝜆&)

db
' ¿© 

d
d𝑥𝑥 𝑦𝑦a

5(𝑥𝑥a; 𝜆𝜆) = 𝜈𝜈
&
'	𝜆𝜆&)

b
V exp ø−

2
3 𝜈𝜈𝜆𝜆

&)Rb' ¿ ®1 + 𝑂𝑂 l𝜆𝜆)
b
'm + 𝑂𝑂 ø𝜆𝜆

Rb
' )&¿ + 𝑂𝑂 ø𝜆𝜆&)

db
' ¿© 

In the overlap domain, 𝑦𝑦a5	can be represented by a linear combination of the Airy functions. 



From previous analysis, the coefficients are given as 

𝑎𝑎(𝑧𝑧; 𝜆𝜆) = 𝜋𝜋Bi!(𝑧𝑧)𝑌𝑌(𝑧𝑧; 𝜆𝜆) − 𝜋𝜋Bi(𝑧𝑧)
d𝑌𝑌
d𝑧𝑧

(𝑧𝑧; 𝜆𝜆)	

𝑏𝑏(𝑧𝑧; 𝜆𝜆) = 𝜋𝜋Ai(𝑧𝑧)
d𝑌𝑌
d𝑧𝑧

(𝑧𝑧; 𝜆𝜆) − 𝜋𝜋Ai!(𝑧𝑧)𝑌𝑌(𝑧𝑧; 𝜆𝜆) 

For the connection problem, we have 
𝑌𝑌(𝑧𝑧; 𝜆𝜆) = 𝑦𝑦a5(𝐶𝐶𝜆𝜆P; 𝜆𝜆), 𝑥𝑥a − 𝑥𝑥∗(𝜆𝜆) = −𝛼𝛼𝑧𝑧a = −𝜆𝜆)b! , 𝑧𝑧a = 𝜈𝜈'/R𝜆𝜆'/R)b! = 𝐶𝐶𝜆𝜆P 

At the left endpoint of the overlap domain, we obtain 

𝑎𝑎(𝐶𝐶𝜆𝜆P; 𝜆𝜆) = 2√𝜋𝜋	𝜈𝜈)
&
R	𝜆𝜆

&
e	(1 + 𝛿𝛿𝑎𝑎), 𝑏𝑏(𝐶𝐶𝜆𝜆P; 𝜆𝜆) =

√𝜋𝜋
2 𝜈𝜈)

&
R	𝜆𝜆

&
e exp ø−

4
3𝐶𝐶

R
'𝜆𝜆

RP
' ¿ (1 + 𝛿𝛿𝑏𝑏) 

Hence, in the neighborhood	|𝑥𝑥 − 𝑥𝑥∗(𝜆𝜆)| ≤ 𝜆𝜆)b!, or equivalently	|𝑧𝑧| ≤ 𝐶𝐶𝜆𝜆P, we have 

𝑦𝑦a5(𝑥𝑥; 𝜆𝜆) = 𝑌𝑌a5(𝑧𝑧; 𝜆𝜆) = 2√𝜋𝜋	𝜈𝜈)
&
R	𝜆𝜆

&
e	±1 + 𝐸𝐸b(𝜆𝜆)≤	Ai(𝑧𝑧)	

+2√𝜋𝜋	𝜈𝜈)
&
R	𝜆𝜆

&
e	𝑊𝑊)&(𝑧𝑧)	𝐸𝐸b(𝜆𝜆)	Bi(𝑧𝑧) 

For the asymptotic expression of	d𝑌𝑌a5/d𝑧𝑧, just add a derivative to the Airy functions. The error 
term	𝐸𝐸b(𝜆𝜆)	represents a possibly different function satisfying 

𝐸𝐸b(𝜆𝜆) = 𝑂𝑂Q𝜆𝜆)b/'R + 𝑂𝑂Q𝜆𝜆Rb/')&R + 𝑂𝑂Q𝜆𝜆&)db/'R, 𝜆𝜆 → +∞ 

The optimal error is obtained when	𝑝𝑝 = 1/2, which leads to an estimate of	𝑂𝑂(𝜆𝜆)&/V). 
 
We also need to represent	𝑦𝑦a5	as a linear combination of the oscillatory solutions at the right 
endpoint	𝑥𝑥Q. Specifically, take	𝑥𝑥Q = 𝑥𝑥∗(𝜆𝜆) + 𝜆𝜆)b! (equivalently	𝑧𝑧Q = −𝐶𝐶𝜆𝜆P) and we have 

𝑦𝑦a5(𝑥𝑥Q; 𝜆𝜆) = 2𝜈𝜈)
&
'	𝜆𝜆

b
V £sin ø

2
3 𝜈𝜈𝜆𝜆

&)Rb' +
𝜋𝜋
4¿ + 𝐸𝐸b(𝜆𝜆)§	

d
d𝑥𝑥 𝑦𝑦a

5(𝑥𝑥Q; 𝜆𝜆) = 2𝜈𝜈
&
'	𝜆𝜆&)

b
V £cos ø

2
3 𝜈𝜈𝜆𝜆

&)Rb' +
𝜋𝜋
4¿ + 𝐸𝐸b(𝜆𝜆)§ 

The oscillatory solutions are given as 

𝑦𝑦Q
±(𝑥𝑥Q; 𝜆𝜆) = 𝜈𝜈)

&
'	𝜆𝜆

b
V exp ø±

2𝑖𝑖
3 𝜈𝜈𝜆𝜆&)

Rb
' ¿ l1 + 𝐸𝐸b(𝜆𝜆)m	

d
d𝑥𝑥 𝑦𝑦Q

±(𝑥𝑥Q; 𝜆𝜆) = ±𝑖𝑖𝜈𝜈
&
'	𝜆𝜆&)

b
V exp ø±

2𝑖𝑖
3 𝜈𝜈𝜆𝜆&)

Rb
' ¿ l1 + 𝐸𝐸b(𝜆𝜆)m 

Hence, we have 

𝑦𝑦a5(𝑥𝑥; 𝜆𝜆) = l𝑒𝑒)23/V + 𝐸𝐸b(𝜆𝜆)m 𝑦𝑦Q5(𝑥𝑥; 𝜆𝜆) + l𝑒𝑒23/V + 𝐸𝐸b(𝜆𝜆)m 𝑦𝑦Q)(𝑥𝑥; 𝜆𝜆) 

This is similar to the result of a previous example where	𝑓𝑓(𝑥𝑥; 𝜆𝜆) = 𝜆𝜆'sgn(𝑥𝑥). 
 
For	𝑓𝑓#(𝑥𝑥)	with the following form at the turning point	𝑥𝑥∗ 

𝑓𝑓#(𝑥𝑥) = (𝑥𝑥 − 𝑥𝑥∗)@𝑔𝑔(𝑥𝑥) 
The procedure remains similar, but instead of Airy functions, we need others for connection. 



Ø Langer transformation (7.2.5) 
For simplicity, consider	𝑓𝑓(𝑥𝑥; 𝜆𝜆) = 𝜆𝜆'𝑓𝑓#(𝑥𝑥)	that only contains the leading order term 

𝑦𝑦!!(𝑥𝑥) + 𝜆𝜆'𝑓𝑓#(𝑥𝑥)𝑦𝑦(𝑥𝑥) = 0, 𝜆𝜆 → +∞ 
We consider the nonlinear transformation 

𝑦𝑦(𝑥𝑥; 𝜆𝜆) = 𝑎𝑎(𝑥𝑥)𝑣𝑣(𝑥𝑥; 𝜆𝜆), 𝑥𝑥 = 𝑔𝑔(𝜉𝜉), 𝑉𝑉(𝜉𝜉; 𝜆𝜆) = 𝑣𝑣(𝑥𝑥; 𝜆𝜆) 
Eventually, we obtain an ODE of the form 

𝑉𝑉!!(𝜉𝜉; 𝜆𝜆) − 𝜆𝜆'𝜉𝜉𝑉𝑉(𝜉𝜉; 𝜆𝜆) = 𝐹𝐹(𝜉𝜉)𝑉𝑉(𝜉𝜉; 𝜆𝜆), 𝐹𝐹(𝜉𝜉) = −
𝑎𝑎!!(𝑥𝑥)

𝑎𝑎(𝑥𝑥)[𝑔𝑔!(𝑥𝑥)]'ı
\1f(!(g)

 

Langer’s method provides a uniformly small error of	𝑂𝑂(𝜆𝜆)&)	over a fixed-size interval around 
the turning point, and can give more accurate information in the neighborhoods than techniques 
based on rescaling and matching to WKBJ formulae. 
 
Ø Exercise 
Wave equation in a medium with vertically varying property 
Assume a medium with vertically varying phase speed	𝑐𝑐(𝑧𝑧). For a propagating wave solution 

of the form	𝜙𝜙(𝑧𝑧)𝑒𝑒3(0\5BW)h`), the wave equation becomes 

𝜙𝜙!!(𝑧𝑧) + 𝑚𝑚'(𝑧𝑧)𝜙𝜙(𝑧𝑧) = 0, 𝑚𝑚'(𝑧𝑧) =
𝜔𝜔'

𝑐𝑐'(𝑧𝑧) − 𝑘𝑘' − 𝑙𝑙' = 𝑚𝑚i
' ⋅

𝑚𝑚'(𝑧𝑧)
𝑚𝑚i
' = 𝑚𝑚i

'	�̨�𝑚'(𝑧𝑧) 

Here	𝜙𝜙(𝑧𝑧)	can be interpreted as the mode coefficient and	𝑚𝑚(𝑧𝑧)	the vertical wavenumber. We 
consider a reference value	𝑚𝑚i ≫ �̨�𝑚(𝑧𝑧)	as the parameter. Under the high frequency limit	𝜔𝜔 →
+∞, we also have	𝑓𝑓(𝑧𝑧;𝑚𝑚i) = 𝑚𝑚'(𝑧𝑧) → +∞, which can be studied by the WKBJ method. We 
consider the following asymptotic solution 

𝑢𝑢(𝑧𝑧;𝑚𝑚i) ∼ 𝑚𝑚iT𝑢𝑢"(𝑧𝑧)𝑚𝑚i
)"

":#

, 𝑢𝑢(𝑧𝑧;𝑚𝑚i) =
𝜙𝜙!

𝜙𝜙 = (ln𝜙𝜙)! 

We recognize the expansion of	𝑓𝑓(𝑧𝑧;𝑚𝑚i)	as 

𝑓𝑓(𝑧𝑧;𝑚𝑚i) = 𝑚𝑚i
'T𝑓𝑓"(𝑧𝑧)𝑚𝑚i

)"

":#

, 𝑓𝑓#(𝑧𝑧) = �̨�𝑚'(𝑧𝑧) =
𝑚𝑚'(𝑧𝑧)
𝑚𝑚i
'  

We always have	𝑓𝑓#(𝑧𝑧) > 0. Hence, the WKBJ result gives 

𝑢𝑢#(𝑧𝑧) = ‚−𝑓𝑓# = 𝑖𝑖�̨�𝑚(𝑧𝑧), 𝑢𝑢&(𝑧𝑧) = −
𝑓𝑓#!

4𝑓𝑓#
−

𝑓𝑓&
2𝑢𝑢#

= −
𝑓𝑓#!

4𝑓𝑓#
 

The positive root is chosen for	𝑢𝑢#(𝑧𝑧). The solution for	𝜙𝜙(𝑧𝑧)	is 

𝜙𝜙(𝑧𝑧) ∼ 𝑓𝑓#
)&V exp ®𝑖𝑖𝑚𝑚#Ÿ ‚𝑓𝑓#	d𝑠𝑠

.

.#
© = fl

𝑚𝑚i

𝑚𝑚(𝑧𝑧) exp ®𝑖𝑖 Ÿ 𝑚𝑚(𝑠𝑠)d𝑠𝑠
.

.#
© 

The amplitude is proportional to	𝑚𝑚)&/', which arises from	𝑢𝑢&	term. The phase is accumulated 
along the vertical propagation path that comes from	𝑢𝑢#	term. 



Eikonal equation 
Consider the 3D acoustic wave equation for pressure	�̂�𝑝(𝒙𝒙, 𝜔𝜔)	under the high frequency limit 

∇'�̂�𝑝 +
𝜔𝜔'

𝑐𝑐' �̂�𝑝 = 0, 𝜔𝜔 → +∞ 

We assume that the density	𝜌𝜌	is constant, and the phase speed	𝑐𝑐(𝒙𝒙)	varies in space. The WKBJ 
solution seeks for one that consists of an oscillatory exponential factor modified by slowly 
varying amplitude. The asymptotic series for the solution takes the form 

�̂�𝑝(𝒙𝒙, 𝜔𝜔) = 𝑒𝑒3h_(𝒙𝒙)T
𝐴𝐴"(𝒙𝒙)
(𝑖𝑖𝜔𝜔)"

":#

 

The assumption here is that only one geometrical wavefront passes through each point. If there 
are several wavefronts, the solution can be represented by the addition of such series. The phase 
factor	𝜔𝜔𝜏𝜏(𝒙𝒙), where	𝜏𝜏(𝒙𝒙)	denotes the travel time, can also be written as	𝑘𝑘#𝐺𝐺(𝒙𝒙), e.g., in optics 
where	𝐺𝐺(𝒙𝒙)	denotes the optical path. Now consider the general case 

∇'�̂�𝑝 + 𝑓𝑓(𝒙𝒙; 𝜔𝜔)�̂�𝑝 = 0, 𝑓𝑓(𝒙𝒙; 𝜔𝜔) = (𝑖𝑖𝜔𝜔)'T
𝑓𝑓"(𝒙𝒙)
(𝑖𝑖𝜔𝜔)"

":#

 

The equation becomes 

(𝑖𝑖𝜔𝜔∇'𝜏𝜏 − 𝜔𝜔'|∇𝜏𝜏|')T
𝐴𝐴"

(𝑖𝑖𝜔𝜔)"
":#

+ 2𝑖𝑖𝜔𝜔∇𝜏𝜏 ⋅T
∇𝐴𝐴"
(𝑖𝑖𝜔𝜔)"

":#

+T
∇'𝐴𝐴"
(𝑖𝑖𝜔𝜔)"

":#

	

+(𝑖𝑖𝜔𝜔)' ØT
𝑓𝑓0

(𝑖𝑖𝜔𝜔)0
0:#

∞ ØT
𝐴𝐴B

(𝑖𝑖𝜔𝜔)B
B:#

∞ = 0 

Each order gives the following equation 
(𝑖𝑖𝜔𝜔)':		|∇𝜏𝜏|' + 𝑓𝑓# = 0, (𝑖𝑖𝜔𝜔)&:		𝐴𝐴#∇'𝜏𝜏 + 𝐴𝐴&|∇𝜏𝜏|' + 2∇𝜏𝜏 ⋅ ∇𝐴𝐴# + (𝑓𝑓#𝐴𝐴& + 𝑓𝑓&𝐴𝐴#) = 0	

(𝑖𝑖𝜔𝜔)')":		𝐴𝐴")&∇'𝜏𝜏 + 𝐴𝐴"|∇𝜏𝜏|' + 2∇𝜏𝜏 ⋅ ∇𝐴𝐴")& + ∇'𝐴𝐴")' + T𝑓𝑓0𝐴𝐴")0

"

01#

= 0, 𝑛𝑛 ≥ 2 

For our specific case, we have 

𝑓𝑓#(𝒙𝒙) = −
1

𝑐𝑐'(𝒙𝒙) , 𝑓𝑓"(𝒙𝒙) = 0, 𝑛𝑛 ≥ 1 

The highest order leads to the eikonal equation, with	𝜏𝜏(𝒙𝒙)	contours being the wavefronts 

|∇𝜏𝜏|' =
1

𝑐𝑐'(𝒙𝒙) 

The next order gives the first transport equation, which is the conservation law of amplitude. 

𝐴𝐴#∇'𝜏𝜏 + 2∇𝜏𝜏 ⋅ ∇𝐴𝐴# = 0, ∇ ⋅ (𝐴𝐴#'∇𝜏𝜏) = 0 
  



Asymptotic Analysis of Differential Equations (4): BV Problems 

For	𝑥𝑥 ∈ 𝐼𝐼 = [𝛼𝛼, 𝛽𝛽] ⊆ ℝ	and	𝑎𝑎(𝑥𝑥), 𝑏𝑏(𝑥𝑥) ∈ 𝐶𝐶[𝛼𝛼, 𝛽𝛽], consider the boundary-value problem with 
respect to a small parameter 𝜀𝜀	given as 

𝜀𝜀𝑦𝑦!! + 𝑎𝑎(𝑥𝑥)𝑦𝑦! + 𝑏𝑏(𝑥𝑥)𝑦𝑦 = 0, 𝑦𝑦(𝛼𝛼) = 𝐴𝐴, 𝑦𝑦(𝛽𝛽) = 𝐵𝐵, 𝜀𝜀 → 05 
 
Ø Existence of solutions for BVP (8.1) 
For a fixed	𝐼𝐼 = [𝛼𝛼, 𝛽𝛽]	with 𝑦𝑦(𝛼𝛼) = 𝐴𝐴	and	𝑦𝑦(𝛽𝛽) = 𝐵𝐵, denote this problem as	BVP(𝐴𝐴, 𝐵𝐵). 
 
Theorem. BVP(𝐴𝐴, 𝐵𝐵)	has a unique solution is equivalent to	BVP(0,0)	has a unique solution, 
which is the trivial solution	𝑦𝑦(𝑥𝑥; 𝜆𝜆) = 0. 
 
Proof. When	BVP(𝐴𝐴, 𝐵𝐵)	has a unique solution, it is obvious that	𝑦𝑦 = 0	is the unique solution 
for	BVP(0,0). Now consider	BVP(0,0)	has a unique trivial solution. We start from the solutions 
of the following initial-value problems (IVP) 

𝜀𝜀𝑦𝑦&!! + 𝑎𝑎𝑦𝑦&! + 𝑏𝑏𝑦𝑦& = 0, 𝑦𝑦&(𝛼𝛼) = 0, 𝑦𝑦&!(𝛼𝛼) = 1	
𝜀𝜀𝑦𝑦'!! + 𝑎𝑎𝑦𝑦'! + 𝑏𝑏𝑦𝑦' = 0, 𝑦𝑦'(𝛽𝛽) = 0, 𝑦𝑦'!(𝛽𝛽) = 1 

We say that	𝑦𝑦&(𝛽𝛽) ≠ 0	and	𝑦𝑦'(𝛼𝛼) ≠ 0. If not, then	𝑦𝑦3 	becomes the solution of	BVP(0,0)	but 
with non-zero	𝑦𝑦3!	at the boundary, which contradicts the uniqueness of the trivial solution. Then 
we can construct the solution of	BVP(𝐴𝐴, 𝐵𝐵)	as 

𝑦𝑦(𝑥𝑥) =
𝐵𝐵

𝑦𝑦&(𝛽𝛽)
𝑦𝑦&(𝑥𝑥) +

𝐴𝐴
𝑦𝑦'(𝛼𝛼)

𝑦𝑦'(𝑥𝑥) 

This solution is unique since	BVP(0,0)	only has the trivial solution.       ∎ 
 
Now we only need to study when	BVP(0,0)	has a unique solution 

𝜀𝜀𝑦𝑦!! + 𝑎𝑎(𝑥𝑥)𝑦𝑦! + 𝑏𝑏(𝑥𝑥)𝑦𝑦 = 0, 𝑦𝑦(𝛼𝛼) = 𝑦𝑦(𝛽𝛽) = 0, 𝜀𝜀 → 05 
First we introduce a transformation	𝑦𝑦 = 𝑔𝑔(𝑥𝑥)𝑤𝑤	to remove the	𝑦𝑦!	term, which gives 

2𝜀𝜀𝑔𝑔! + 𝑎𝑎𝑔𝑔 = 0, 𝑔𝑔(𝑥𝑥) = exp®−
1
2𝜀𝜀 Ÿ 𝑎𝑎(𝑠𝑠)	d𝑠𝑠

\

G
© 

The ODE becomes 

𝜀𝜀𝑤𝑤!! + 𝑓𝑓𝑤𝑤 = 0, 𝑓𝑓(𝑥𝑥) = 𝑏𝑏(𝑥𝑥) −
1
2𝑎𝑎

!(𝑥𝑥) −
1
4𝜀𝜀 𝑎𝑎

'(𝑥𝑥) 

The boundary values are still zero with	𝑤𝑤(𝛼𝛼) = 𝑤𝑤(𝛽𝛽) = 0. Multiply by	𝑤𝑤(𝑥𝑥)	and integrate the 
equation. Using the boundary conditions, we obtain 

𝜀𝜀Ÿ [𝑤𝑤!(𝑥𝑥)]'	d𝑥𝑥
H

G
= Ÿ 𝑓𝑓(𝑥𝑥)𝑤𝑤'(𝑥𝑥)	d𝑥𝑥

H

G
 



If	𝑓𝑓(𝑥𝑥) ≤ 0, then	𝑤𝑤 = 0	is the unique trivial solution of	BVP(0,0). To satisfy this requirement, 
we notice two different cases. 

|𝑎𝑎(𝑥𝑥)| ≥ 𝑚𝑚 > 0, 𝑓𝑓(𝑥𝑥) ∼ −
1
4𝜀𝜀 𝑎𝑎

'(𝑥𝑥) ≤ 0, 𝜀𝜀 → 05 

𝑏𝑏(𝑥𝑥) −
1
2𝑎𝑎

!(𝑥𝑥) ≤ 0, 𝑓𝑓(𝑥𝑥) = 𝑏𝑏(𝑥𝑥) −
1
2𝑎𝑎

!(𝑥𝑥) −
1
4𝜀𝜀 𝑎𝑎

'(𝑥𝑥) ≤ 0 

 
Ø Boundary layers (8.2) 
We start with the following example 

𝜀𝜀𝑦𝑦!! + (1 − 𝜀𝜀)𝑦𝑦! − (1 − 𝜀𝜀)𝑦𝑦 = 0, 𝑦𝑦(0) = 𝑦𝑦(1) = 1 
The characteristic roots are 

𝑚𝑚±(𝜀𝜀) =
𝜀𝜀 − 1 ± √1 + 2𝜀𝜀 − 3𝜀𝜀'

2𝜀𝜀  

As	𝜀𝜀 → 05, only one of the two roots remains finite 

𝑚𝑚5(𝜀𝜀) = 1 − 𝜀𝜀 + 𝜀𝜀' − 2𝜀𝜀R + 𝑂𝑂(𝜀𝜀V), 𝑚𝑚)(𝜀𝜀) = −
1
𝜀𝜀 + 𝜀𝜀 − 𝜀𝜀' + 2𝜀𝜀R − 𝑂𝑂(𝜀𝜀V) 

The general solution is 

𝑦𝑦(𝑥𝑥; 𝜀𝜀) = 𝐶𝐶5𝑒𝑒@3(T)\ + 𝐶𝐶)𝑒𝑒@((T)\ 
The coefficients are solved from the boundary conditions as 

𝐶𝐶5 =
1 − 𝑒𝑒@((T)

𝑒𝑒@3(T) − 𝑒𝑒@((T)
, 𝐶𝐶) =

𝑒𝑒@3(T) − 1
𝑒𝑒@3(T) − 𝑒𝑒@((T)

 

 
Outer solution 
When	0 < 𝑥𝑥 ≤ 1	and let	𝜀𝜀 → 05, we can decompose the solution as 

𝑦𝑦(𝑥𝑥; 𝜀𝜀) = 𝑒𝑒@3(T)(\)&) + 𝑒𝑒@((T)\
𝑒𝑒@3(T) − 1

𝑒𝑒@3(T) − 𝑒𝑒@((T)
+ 𝑒𝑒@((T)

𝑒𝑒@3(T)(\)&) − 𝑒𝑒@3(T)

𝑒𝑒@3(T) − 𝑒𝑒@((T)
	

= 𝑒𝑒@3(T)(\)&) + 𝑜𝑜(𝜀𝜀b), ∀𝑝𝑝 ∈ ℕ, 𝜀𝜀 → 05 
If we consider the asymptotic series by	{𝜀𝜀"}, we only need to expand the first term in its Taylor 
series. The outer expansion is obtained as 

𝑦𝑦klm(𝑥𝑥; 𝜀𝜀) = 𝑒𝑒\)& − 𝜀𝜀(𝑥𝑥 − 1)𝑒𝑒\)& +
𝜀𝜀'

2
(𝑥𝑥' − 1)𝑒𝑒\)& + 𝑂𝑂(𝜀𝜀R), 𝑥𝑥 > 0, 𝜀𝜀 → 05 

 
If we do not know the exact solution, we can still obtain the outer solution by considering the 
formal power series of	𝑦𝑦(𝑥𝑥; 𝜀𝜀)	as 

𝑦𝑦(𝑥𝑥; 𝜀𝜀) = T𝑦𝑦"(𝑥𝑥)𝜀𝜀"
":#

, 𝑦𝑦#(1) = 1, 𝑦𝑦"(1) = 0, 𝑛𝑛 ≥ 1 

Note that we can only consider one of the two boundary conditions, since 
𝜀𝜀#:		𝑦𝑦#! − 𝑦𝑦# = 0, 𝑦𝑦#(1) = 1, 𝑦𝑦#(𝑥𝑥) = 𝑒𝑒\)& 



It is a first-order ODE. In general, we cannot obtain a solution that satisfies both boundary 
conditions for this type of problem. However, using the condition at	𝑥𝑥 = 1	successfully gives 
the outer solution. 

𝜀𝜀&:		𝑦𝑦#!! + 𝑦𝑦&! − 𝑦𝑦& = 0, 𝑦𝑦&(1) = 0, 𝑦𝑦&(𝑥𝑥) = −(𝑥𝑥 − 1)𝑒𝑒\)& 
Using the condition at	𝑥𝑥 = 0	will not lead to a meaningful result. The comparison of the exact 
solution (solid) and the outer expansion (dashed) is shown below. 

 
Inner solution 
The outer expansion fails near	𝑥𝑥 = 0	because the term	𝑒𝑒)\/T 	that arises from	𝑚𝑚)(𝜀𝜀)	does not 
converge uniformly for	𝑥𝑥 = 𝑂𝑂(𝜀𝜀)	and for a fixed	0 < 𝑥𝑥 ≤ 1. To enlarge the thin boundary layer, 
we introduce an inner variable	𝑧𝑧, and the ODE becomes 

𝑧𝑧 =
𝑥𝑥
𝜀𝜀 , 𝑌𝑌(𝑧𝑧; 𝜀𝜀) = 𝑦𝑦(𝜀𝜀𝑧𝑧; 𝜀𝜀), 𝑌𝑌!! + (1 − 𝜀𝜀)𝑌𝑌! − 𝜀𝜀(1 − 𝜀𝜀)𝑌𝑌 = 0 

For our example, given the exact solution, we have 

𝑌𝑌(𝑧𝑧; 𝜀𝜀) = 𝑒𝑒@3(T)(T.)&) + 𝑒𝑒@((T)T.
𝑒𝑒@3(T) − 1

𝑒𝑒@3(T) − 𝑒𝑒@((T)
+ 𝑒𝑒@((T)

𝑒𝑒@3(T)(T.)&) − 𝑒𝑒@3(T)

𝑒𝑒@3(T) − 𝑒𝑒@((T)
 

The term	𝑒𝑒@((T)T.	is no longer singular in the exponent as	𝜀𝜀 → 05. For a fixed	𝑧𝑧 ≥ 0, we have 

𝑌𝑌(𝑧𝑧; 𝜀𝜀) = 𝑒𝑒@3(T)(T.)&) + 𝑒𝑒@((T)T.Q1 − 𝑒𝑒)@3(T)R + 𝑜𝑜(𝜀𝜀b), ∀𝑝𝑝 ∈ ℕ 

Again, consider the asymptotic series by	{𝜀𝜀"}, the inner expansion is 

𝑌𝑌(𝑧𝑧; 𝜀𝜀) = £ø1 −
1
𝑒𝑒¿ 𝑒𝑒

). +
1
𝑒𝑒§ +

𝑧𝑧 + 1 − 𝑒𝑒).

𝑒𝑒 𝜀𝜀 + 𝑂𝑂(𝜀𝜀')	

𝑦𝑦Y-(𝑥𝑥; 𝜀𝜀) = £ø1 −
1
𝑒𝑒¿ 𝑒𝑒

)\T +
1
𝑒𝑒§ +

𝜀𝜀
𝑒𝑒 l

𝑥𝑥
𝜀𝜀 + 1 − 𝑒𝑒)

\
Tm + 𝑂𝑂(𝜀𝜀'), 𝜀𝜀 → 05 

 
Ø Outer asymptotics (8.3) 
We use the formal power series to study the general	BVP(𝐴𝐴, 𝐵𝐵)	given as 

𝜀𝜀𝑦𝑦!! + 𝑎𝑎(𝑥𝑥)𝑦𝑦! + 𝑏𝑏(𝑥𝑥)𝑦𝑦 = 0, 𝑦𝑦(𝑥𝑥; 𝜀𝜀) ∼ 𝑆𝑆(𝑥𝑥) = T𝑦𝑦"(𝑥𝑥)𝜀𝜀"
":#

 

Outer Inner 



For each order of	𝜀𝜀, we have 

𝜀𝜀#:		𝑎𝑎𝑦𝑦#! + 𝑏𝑏𝑦𝑦# = 0, 𝑦𝑦# = 𝐶𝐶# exp®−Ÿ
𝑏𝑏(𝑠𝑠)
𝑎𝑎(𝑠𝑠) 	d𝑠𝑠

\

G
©	

𝜀𝜀":		𝑦𝑦")&!! + 𝑎𝑎𝑦𝑦"! + 𝑏𝑏𝑦𝑦" = 0 
Let	𝐷𝐷	be the domain of convergence of	𝑆𝑆(𝑥𝑥). If	𝛼𝛼 ∈ 𝐷𝐷, the condition	𝑦𝑦(𝛼𝛼) = 𝐴𝐴	can be used to 
determine the coefficients	{𝐶𝐶"}, with	𝑦𝑦#(𝛼𝛼) = 𝐴𝐴	and	𝑦𝑦"(𝛼𝛼) = 0	for	𝑛𝑛 ≥ 1. Hence we obtain an 
outer solution around	𝛼𝛼. Similarly, we can solve the case with	𝛽𝛽 ∈ 𝐷𝐷. 
 
Depending on the domain	𝐷𝐷, we have two simple scenarios. First, if	𝐷𝐷 = [𝛼𝛼, 𝛽𝛽)	or	𝐷𝐷 = (𝛼𝛼, 𝛽𝛽], 
then a boundary layer is present at the endpoint. If	𝐷𝐷 = [𝛼𝛼, 𝑥𝑥#) ∪ (𝑥𝑥#, 𝛽𝛽], then an internal layer 
is present at the transition point	𝑥𝑥#. 
 
Ø Inner asymptotics for boundary and internal layers (8.4) 
Denote the layer thickness around	𝑥𝑥# as	𝛿𝛿(𝜀𝜀) = 𝑜𝑜(1)	as	𝜀𝜀 → 05. The inner variable is 

𝑧𝑧 =
𝑥𝑥 − 𝑥𝑥#
𝛿𝛿(𝜀𝜀) , |𝑧𝑧| ≤ 1 

With this rescaling, the ODE becomes 

𝑌𝑌(𝑧𝑧; 𝜀𝜀) = 𝑦𝑦(𝑥𝑥# + 𝑧𝑧𝛿𝛿(𝜀𝜀); 𝜀𝜀),
𝜀𝜀

𝛿𝛿'(𝜀𝜀) 𝑌𝑌
!! +

𝑎𝑎
𝛿𝛿(𝜀𝜀) 𝑌𝑌

! + 𝑏𝑏𝑌𝑌 = 0 

Note that	𝑎𝑎(𝑧𝑧)	and	𝑏𝑏(𝑧𝑧)	are given as 

𝑎𝑎Q𝑥𝑥# + 𝑧𝑧𝛿𝛿(𝜀𝜀)R = 𝑎𝑎(𝑥𝑥#) + 𝑎𝑎!(𝑥𝑥#)𝑧𝑧𝛿𝛿(𝜀𝜀) + 𝑂𝑂Q𝛿𝛿'(𝜀𝜀)R 

If	𝑎𝑎(𝑥𝑥#) ≠ 0, the dominant balance gives 
𝜀𝜀

𝛿𝛿'(𝜀𝜀) ∼
𝑎𝑎(𝑥𝑥#)
𝛿𝛿(𝜀𝜀) , 𝛿𝛿(𝜀𝜀) ∼ 𝜀𝜀 

If	𝑎𝑎(𝑥𝑥#) = 0	but	𝑎𝑎!(𝑥𝑥#) ≠ 0, the dominant balance gives 
𝜀𝜀

𝛿𝛿'(𝜀𝜀) ∼ 𝑎𝑎!(𝑥𝑥#)𝑧𝑧 ∼ 𝑏𝑏(𝑥𝑥#), 𝛿𝛿(𝜀𝜀) ∼ √𝜀𝜀 

The scaling relation of the layer thickness	𝛿𝛿(𝜀𝜀)	can be analyzed in general from the Taylor 
series of	𝑎𝑎(𝑧𝑧)	and	𝑏𝑏(𝑧𝑧). 
 
Assume	𝑎𝑎(𝑥𝑥#) ≠ 0	for simplicity, we take	𝛿𝛿(𝜀𝜀) = 𝜀𝜀	and the ODE becomes 

𝑌𝑌!! + 𝑎𝑎𝑌𝑌! + 𝜀𝜀𝑏𝑏𝑌𝑌 = 0, 𝑌𝑌(𝑧𝑧; 𝜀𝜀) = T𝑌𝑌"(𝑧𝑧)𝜀𝜀"
":#

 

The leading-order inner equation is 

𝜀𝜀#:		𝑌𝑌#!! + 𝑎𝑎(𝑥𝑥#)𝑌𝑌#! = 0, 𝑌𝑌#(𝑧𝑧) = 𝑐𝑐& + 𝑐𝑐'𝑒𝑒)n(\#). 



In order to match with a reasonable outer solution, we need to choose the exponential decay 
solution within the inner layer. The sign of 	𝑎𝑎(𝑥𝑥#)	 then governs the existence of possible 
boundary or internal layers: 

¨ Boundary layer at the left endpoint	𝑥𝑥 = 𝛼𝛼	with	𝑧𝑧 > 0	can exist when	𝑎𝑎(𝛼𝛼) > 0 
¨ Boundary layer at the right endpoint	𝑥𝑥 = 𝛽𝛽	with	𝑧𝑧 < 0	can exist when	𝑎𝑎(𝛽𝛽) < 0 
¨ Internal layer at an interior point	𝑥𝑥 = 𝑥𝑥#	can exists when	𝑎𝑎(𝑥𝑥#) = 0, but a different scaling 

may be required to achieve the dominant balance 
 
Ø Matching of inner and outer asymptotic expansions (8.5) 
Consider a possible boundary point	𝑥𝑥# ∈ [𝛼𝛼, 𝛽𝛽]	with thickness	𝛿𝛿(𝜀𝜀). The inner solution	𝑌𝑌(𝑧𝑧; 𝜀𝜀) 
and the outer solution	𝑦𝑦(𝑥𝑥; 𝜀𝜀)	are given as 

𝑌𝑌(𝑧𝑧; 𝜀𝜀) = T𝑌𝑌"(𝑧𝑧)𝜇𝜇"(𝜀𝜀)
":#

, 𝑧𝑧 =
𝑥𝑥 − 𝑥𝑥#
𝛿𝛿(𝜀𝜀) , 𝑦𝑦(𝑥𝑥; 𝜀𝜀) = T𝑦𝑦"(𝑥𝑥)𝜀𝜀"

":#

 

We introduce an intermediate variable	𝑤𝑤	defined as 

𝑤𝑤 =
𝑥𝑥 − 𝑥𝑥#
𝜒𝜒(𝜀𝜀) =

𝛿𝛿(𝜀𝜀)
𝜒𝜒(𝜀𝜀) 𝑧𝑧, 𝜒𝜒(𝜀𝜀) → 0,

𝛿𝛿(𝜀𝜀)
𝜒𝜒(𝜀𝜀) → 0, 𝜀𝜀 → 05 

The intermediate scale	𝜒𝜒(𝜀𝜀)	is limited by	𝛿𝛿(𝜀𝜀) ≪ 𝜒𝜒(𝜀𝜀) ≪ 1, and it can define an overlap 
domain to connect the inner and outer expansions. Now we truncate both solutions as 

𝑌𝑌?(𝑧𝑧; 𝜀𝜀) = T 𝑌𝑌@(𝑧𝑧)𝜇𝜇@(𝜀𝜀)
?

@1#

, 𝑦𝑦J(𝑥𝑥; 𝜀𝜀) = T𝑦𝑦"(𝑥𝑥)𝜀𝜀"
J

"1#

 

We want to find a matched expansion	𝑦𝑦XZmop
J? (𝑤𝑤; 𝜀𝜀)	such that 

𝑦𝑦J(𝑥𝑥(𝑤𝑤); 𝜀𝜀) = 𝑦𝑦XZmop
J? (𝑤𝑤; 𝜀𝜀) + 𝑜𝑜Q𝜇𝜇?(𝜀𝜀)R, 𝑌𝑌?(𝑧𝑧(𝑤𝑤); 𝜀𝜀) = 𝑦𝑦XZmop

J? (𝑤𝑤; 𝜀𝜀) + 𝑜𝑜(𝜀𝜀J) 

Specifically, if there is only one boundary point	𝑥𝑥#, we can construct a single formula uniformly 
valid for the whole interval	[𝛼𝛼, 𝛽𝛽]	as 

𝑦𝑦l-YqJ? (𝑥𝑥; 𝜀𝜀) = 𝑦𝑦J(𝑥𝑥; 𝜀𝜀) + 𝑌𝑌? ø
𝑥𝑥 − 𝑥𝑥#
𝛿𝛿(𝜀𝜀) ; 𝜀𝜀¿ − 𝑦𝑦XZmop

J? ø
𝑥𝑥 − 𝑥𝑥#
𝜒𝜒(𝜀𝜀) ; 𝜀𝜀¿ 

 
Ø Examples (8.6) 
Example 1. Matching of asymptotics 

𝜀𝜀𝑦𝑦!! + (1 + 𝑥𝑥')𝑦𝑦! + 𝑥𝑥𝑦𝑦 = 0, 𝑦𝑦(−1) = 0, 𝑦𝑦(1) = 2 
Since	𝑎𝑎(𝑥𝑥) = 1 + 𝑥𝑥' > 0, we have the left endpoint	𝑥𝑥# = −1	as a boundary point. The outer 
expansion can be solved as 

𝜀𝜀#:		(1 + 𝑥𝑥')𝑦𝑦#! + 𝑥𝑥𝑦𝑦# = 0, 𝑦𝑦#(1) = 2, 𝑦𝑦#(𝑥𝑥) = 2fl
2

1 + 𝑥𝑥' 



𝜀𝜀":		𝑦𝑦")&!! + (1 + 𝑥𝑥')𝑦𝑦"! + 𝑥𝑥𝑦𝑦" = 0, 𝑦𝑦"(1) = 0 
The solution of	𝑦𝑦&(𝑥𝑥)	can be obtained as 

𝑦𝑦&(𝑥𝑥) =
1
16

fl 2
1 + 𝑥𝑥' £

24𝑥𝑥
(1 + 𝑥𝑥')' +

4𝑥𝑥
1 + 𝑥𝑥' + 4arctan 𝑥𝑥 − 𝜋𝜋 − 8§ 

 
For the inner expansion, with	𝑎𝑎(−1) = 2 ≠ 0, we take	𝛿𝛿(𝜀𝜀) = 𝜀𝜀	and the inner equation is 

𝑧𝑧 =
𝑥𝑥 + 1
𝜀𝜀 , 𝑌𝑌!! + (2 − 2𝜀𝜀𝑧𝑧 + 𝜀𝜀'𝑧𝑧')𝑌𝑌! + 𝜀𝜀(𝜀𝜀𝑧𝑧 − 1)𝑌𝑌 = 0 

With the choice	𝜇𝜇"(𝜀𝜀) = 𝜀𝜀", the inner expansion can be solved as 
𝜀𝜀#:		𝑌𝑌#!! + 2𝑌𝑌#! = 0, 𝑌𝑌#(0) = 0, 𝑌𝑌#(𝑧𝑧) = 𝑐𝑐&(1 − 𝑒𝑒)'.)	
𝜀𝜀&:		𝑌𝑌&!! + 2𝑌𝑌&! − 2𝑧𝑧𝑌𝑌#! − 𝑌𝑌# = 0, 𝑌𝑌&(0) = 0 

The solution of	𝑌𝑌&(𝑧𝑧)	can be obtained as 

𝑌𝑌&(𝑧𝑧) =
𝑐𝑐&
4
(2𝑧𝑧 − 1) + 𝑑𝑑& − u

𝑐𝑐&
4
(4𝑧𝑧' + 2𝑧𝑧 + 1) + 𝑑𝑑'v 𝑒𝑒)'., 𝑑𝑑& − 𝑑𝑑' =

𝑐𝑐&
2  

 
Now we need to find the intermediate scale	𝜒𝜒(𝜀𝜀)	to match the two expansions. 

𝑤𝑤 =
𝑥𝑥 + 1
𝜒𝜒(𝜀𝜀) =

𝜀𝜀𝑧𝑧
𝜒𝜒(𝜀𝜀) , 𝜀𝜀 ≪ 𝜒𝜒(𝜀𝜀) ≪ 1 

We assume a fixed	𝑤𝑤 > 0	and let	𝜀𝜀 → 05. The outer expansion becomes 

𝑦𝑦#(𝑤𝑤) = 2fl
2

1 + (𝜒𝜒𝑤𝑤 − 1)' = 2 + 𝜒𝜒(𝜀𝜀)𝑤𝑤 + 𝑂𝑂(𝜒𝜒(𝜀𝜀)'), 𝑦𝑦&(𝑤𝑤) = −1 −
𝜋𝜋
8 + 𝑂𝑂Q𝜒𝜒(𝜀𝜀)R 

𝑦𝑦klm(𝑥𝑥(𝑤𝑤); 𝜀𝜀) = 2 + 𝜒𝜒(𝜀𝜀)𝑤𝑤 −
8 + 𝜋𝜋
8 𝜀𝜀 + 𝑂𝑂Q𝜀𝜀𝜒𝜒(𝜀𝜀)R + 𝑂𝑂(𝜒𝜒(𝜀𝜀)') 

The inner expansion becomes 

𝑌𝑌#(𝑤𝑤) = 𝑐𝑐& ø1 − 𝑒𝑒)'O
r(T)
T ¿ = 𝑐𝑐& + 𝑂𝑂 ø𝑒𝑒)'O

r(T)
T ¿ 

𝑌𝑌&(𝑤𝑤) =
𝑐𝑐&𝑤𝑤
2
𝜒𝜒(𝜀𝜀)
𝜀𝜀 + 𝑑𝑑& −

𝑐𝑐&
4 + 𝑂𝑂 ®

𝜒𝜒'(𝜀𝜀)
𝜀𝜀' 𝑒𝑒)'O

r(T)
T © 

𝑌𝑌Y-(𝑧𝑧(𝑤𝑤); 𝜀𝜀) = 𝑐𝑐& +
𝑐𝑐&𝑤𝑤
2 𝜒𝜒(𝜀𝜀) + l𝑑𝑑& −

𝑐𝑐&
4 m 𝜀𝜀 + 𝑂𝑂 ø𝑒𝑒)'O

r(T)
T ¿ + 𝑂𝑂 ®

𝜒𝜒'(𝜀𝜀)
𝜀𝜀 𝑒𝑒)'O

r(T)
T © 

We need to properly choose	𝜒𝜒(𝜀𝜀)	so that all	𝑂𝑂(⋅)	terms can be controlled. Note that they first 
should be	𝑜𝑜(𝜀𝜀), which gives 

𝜒𝜒'(𝜀𝜀) ≪ 𝜀𝜀, 𝑒𝑒)'O
r(T)
T ≪ 𝜀𝜀, 𝜀𝜀 ln 𝜀𝜀)& ≪ 𝜒𝜒(𝜀𝜀) ≪ √𝜀𝜀 

Now comparing the leading-order terms in the outer and inner expansion, we obtain 

𝑐𝑐& = 2, 𝑑𝑑& = −ø
1
2 +

𝜋𝜋
8¿ 



Therefore, the approximation in the overlap domain is 

𝑦𝑦XZmop
&,& (𝑥𝑥; 𝜀𝜀) = 2 + 𝜒𝜒(𝜀𝜀)𝑤𝑤 −

8 + 𝜋𝜋
8 𝜀𝜀 = 𝑥𝑥 + 3 −

8 + 𝜋𝜋
8 𝜀𝜀 

The uniformly valid approximation is 

𝑦𝑦l-Yq
&,& (𝑥𝑥; 𝜀𝜀) = 𝑦𝑦klm(𝑥𝑥; 𝜀𝜀) + 𝑌𝑌Y- ø

𝑥𝑥 + 1
𝜀𝜀 ; 𝜀𝜀¿ − 𝑦𝑦XZmop

&,& (𝑥𝑥; 𝜀𝜀) 

This result does not satisfy the ODE and boundary conditions, but the error is very small. 
 
Example 2. Different scaling of layer thickness 

𝜀𝜀𝑦𝑦!! + 12𝑥𝑥&/R𝑦𝑦! + 𝑦𝑦 = 0, 𝑦𝑦(0) = 𝑦𝑦(1) = 1 
In this case, we have 

𝑏𝑏(𝑥𝑥) −
1
2𝑎𝑎

!(𝑥𝑥) = 1 − 2𝑥𝑥)
'
R ≤ −1 

This shows that the BVP has a unique solution. Since	𝑎𝑎(𝑥𝑥) > 0	for	𝑥𝑥 ∈ (0,1], there will be no 
possible boundary point in this interval, hence the only possible boundary point is	𝑥𝑥# = 0. The 
outer expansion can be solved as 

𝜀𝜀#:		12𝑥𝑥&/R𝑦𝑦#! + 𝑦𝑦# = 0, 𝑦𝑦#(1) = 1, 𝑦𝑦#(𝑥𝑥) = exp®
1 − 𝑥𝑥'/R

8 © 

For the inner expansion, we need to use	𝛿𝛿(𝜀𝜀)	and find its proper scaling. 

𝑧𝑧 =
𝑥𝑥

𝛿𝛿(𝜀𝜀) ,
𝜀𝜀

𝛿𝛿'(𝜀𝜀) 𝑌𝑌
!! +

12Q𝑧𝑧𝛿𝛿(𝜀𝜀)R&/R

𝛿𝛿(𝜀𝜀) 𝑌𝑌! + 𝑌𝑌 = 0 

The dominant balance gives 
𝜀𝜀

𝛿𝛿'(𝜀𝜀) ∼
[𝛿𝛿(𝜀𝜀)])'/R, 𝛿𝛿(𝜀𝜀) ∼ 𝜀𝜀R/V 

The inner equation then becomes 

𝑌𝑌!! + 12𝑧𝑧
&
R𝑌𝑌! + √𝜀𝜀𝑌𝑌 = 0 

𝜀𝜀#:		𝑌𝑌#!! + 12𝑧𝑧&/R𝑌𝑌#! = 0, 𝑌𝑌#(0) = 1 

Inner 

Outer 



The solution can be obtained as 

𝑌𝑌#(𝑧𝑧) = 1 + 𝐶𝐶Ÿ 𝑒𝑒)st4//d𝑠𝑠
.

#
 

The intermediate scale can be denoted as	𝜒𝜒(𝜀𝜀) = 𝜀𝜀b, and we have 

𝑤𝑤 =
𝑥𝑥
𝜀𝜀b =

𝜀𝜀R/V𝑧𝑧
𝜀𝜀b , 𝜀𝜀R/V ≪ 𝜀𝜀b ≪ 1, 0 < 𝑝𝑝 <

3
4 

We assume a fixed	𝑤𝑤 > 0	and let	𝜀𝜀 → 05. Since we keep the leading-order term, the matching 
condition can be simply written as 

lim
\→#3

𝑦𝑦#(𝑥𝑥) = lim
.→5;

𝑌𝑌#(𝑧𝑧) , 𝑒𝑒&/u = 1 +
𝐶𝐶

4√3
Γ ø

3
4¿ 

The uniformly valid approximation is 

𝑦𝑦l-Yq
#,# (𝑥𝑥; 𝜀𝜀) = exp ®

1 − 𝑥𝑥'/R

8 © + 1 + 𝐶𝐶Ÿ 𝑒𝑒)st4//d𝑠𝑠
\T(//4

#
− 𝑒𝑒&/u 

 
Example 3. Internal layer 

𝜀𝜀𝑦𝑦!! + 𝑥𝑥𝑦𝑦! − l1 +
𝑥𝑥
4m𝑦𝑦 = 0, 𝑦𝑦(−1) = 3, 𝑦𝑦(1) = 1 

In this case, we have 

𝑏𝑏(𝑥𝑥) −
1
2𝑎𝑎

!(𝑥𝑥) = −
3
2 −

𝑥𝑥
4 ≤ −

5
4 

The only possible boundary point is	𝑥𝑥# = 0 where	𝑎𝑎(0) = 0. This corresponds to an internal 

layer point. As	𝑎𝑎!(0) ≠ 0, the layer thickness scales as	𝛿𝛿(𝜀𝜀) ∼ √𝜀𝜀. The outer expansions need 
to be solved for both regions to the left and right of	𝑥𝑥# = 0. 

𝜀𝜀#:		𝑥𝑥𝑦𝑦#! − l1 +
𝑥𝑥
4m 𝑦𝑦# = 0, 𝑦𝑦a(−1) = 3, 𝑦𝑦Q(1) = 1 

𝑦𝑦a#(𝑥𝑥) = −3𝑥𝑥𝑒𝑒
\5&
V , 𝑦𝑦Q#(𝑥𝑥) = 𝑥𝑥𝑒𝑒

\)&
V  

For the inner expansion, we take	𝛿𝛿(𝜀𝜀) = √𝜀𝜀,	𝜇𝜇"(𝜀𝜀) = √𝜀𝜀	and the inner equation is 

Inner Outer 



𝑧𝑧 =
𝑥𝑥
√𝜀𝜀

, 𝑌𝑌!! + 𝑧𝑧𝑌𝑌! − ®1 +
𝑧𝑧√𝜀𝜀
4 ©𝑌𝑌 = 0 

𝜀𝜀#:		𝑌𝑌#!! + 𝑧𝑧𝑌𝑌#! − 𝑌𝑌# = 0, 𝑌𝑌#(𝑧𝑧) = 𝐶𝐶&𝑧𝑧 + 𝐶𝐶' ®𝑒𝑒
).

"

' + 𝑧𝑧Ÿ 𝑒𝑒)
t"
' d𝑠𝑠

.

);
© 

The two coefficients are to be determined from the matching conditions. The intermediate scale 
can be chosen as	𝜒𝜒(𝜀𝜀) = 𝜀𝜀&/V, and for a fixed	𝑤𝑤	we have 

𝑤𝑤 =
𝑥𝑥

𝜀𝜀&/V =
√𝜀𝜀𝑧𝑧
𝜀𝜀&/V , 𝑥𝑥 → 0, 𝑧𝑧 → sgn(𝑤𝑤) ⋅ ∞, 𝜀𝜀 → 05 

The inner and outer expansions become 

𝑦𝑦a#(𝑤𝑤) = −3𝜀𝜀&/V𝑤𝑤𝑒𝑒&/V + 𝑂𝑂Q√𝜀𝜀R, 𝑦𝑦Q#(𝑤𝑤) = 𝜀𝜀&/V𝑤𝑤𝑒𝑒)&/V + 𝑂𝑂Q√𝜀𝜀R 

𝑌𝑌#(𝑤𝑤)) = 𝐶𝐶&𝜀𝜀)&/V𝑤𝑤 + 𝑂𝑂Q𝑒𝑒)O"/√TR, 𝑌𝑌#(𝑤𝑤5) = Q𝐶𝐶& + 𝐶𝐶'√2𝜋𝜋R𝜀𝜀)&/V𝑤𝑤 + 𝑂𝑂Q𝑒𝑒)O"/√TR 

Now comparing the leading-order terms in the outer and inner expansion, we obtain 

𝐶𝐶& = −3𝑒𝑒
&
V√𝜀𝜀, 𝐶𝐶' =

𝑒𝑒)&/V + 3𝑒𝑒&/V

√2𝜋𝜋
√𝜀𝜀 

The coefficients depend on	𝜀𝜀. The approximations in the overlap domain are 

𝑦𝑦a,XZmop
#,# (𝑥𝑥; 𝜀𝜀) = −3𝑒𝑒&/V𝑥𝑥, 𝑦𝑦Q,XZmop

#,# (𝑥𝑥; 𝜀𝜀) = 𝑒𝑒)&/V𝑥𝑥 

The uniformly valid approximation is 

𝑦𝑦l-Yq
#,# (𝑥𝑥; 𝜀𝜀) = 𝑦𝑦a#(𝑥𝑥) + 𝑌𝑌# ø

𝑥𝑥
√𝜀𝜀

¿ − 𝑦𝑦a,XZmop
#,# (𝑥𝑥; 𝜀𝜀), 𝑥𝑥 < 0	

𝑦𝑦l-Yq
#,# (𝑥𝑥; 𝜀𝜀) = 𝑦𝑦Q#(𝑥𝑥) + 𝑌𝑌# ø

𝑥𝑥
√𝜀𝜀

¿ − 𝑦𝑦Q,XZmop
#,# (𝑥𝑥; 𝜀𝜀), 𝑥𝑥 > 0 

An internal layer like this is also called a corner layer. 

 
 
 

Inner 
Outer 



Ø Exercise 
Right boundary layer 

𝜀𝜀𝑦𝑦!! − 𝑦𝑦! + 𝑥𝑥V𝑦𝑦 = 0, 𝑦𝑦(−1) = 𝑦𝑦(1) = 1 
Since	𝑎𝑎(𝑥𝑥) = −1 < 0, we have a right boundary point at	𝑥𝑥 = 1. The outer expansion is 

𝜀𝜀# :	− 𝑦𝑦#! + 𝑥𝑥V𝑦𝑦# = 0, 𝑦𝑦#(−1) = 1, 𝑦𝑦#(𝑥𝑥) = 𝑒𝑒
\55&
d 	

𝜀𝜀&:		𝑦𝑦#!! − 𝑦𝑦&! + 𝑥𝑥V𝑦𝑦& = 0, 𝑦𝑦&(−1) = 0 
The solution of	𝑦𝑦&(𝑥𝑥)	can be obtained as- 

𝑦𝑦&(𝑥𝑥) =
1
9 𝑒𝑒

\55&
d (−8 + 9𝑥𝑥V + 𝑥𝑥s) 

 
For the inner expansion, with	𝑎𝑎(1) ≠ 0, we take	𝛿𝛿(𝜀𝜀) = 𝜀𝜀	and the inner equation is 

𝑧𝑧 =
𝑥𝑥 − 1
𝜀𝜀 < 0, 𝑌𝑌!! − 𝑌𝑌! + 𝜀𝜀(𝜀𝜀𝑧𝑧 + 1)V𝑌𝑌 = 0 

With the choice	𝜇𝜇"(𝜀𝜀) = 𝜀𝜀", the inner expansion can be solved as 
𝜀𝜀#:		𝑌𝑌#!! − 𝑌𝑌#! = 0, 𝑌𝑌#(0) = 1, 𝑌𝑌#(𝑧𝑧) = 1 + 𝑐𝑐&(𝑒𝑒. − 1)	
𝜀𝜀&:		𝑌𝑌&!! − 𝑌𝑌&! + 𝑌𝑌# = 0, 𝑌𝑌&(0) = 0 

The solution of	𝑌𝑌&(𝑧𝑧)	can be obtained as 
𝑌𝑌&(𝑧𝑧) = 𝑐𝑐&(𝑒𝑒. − 𝑧𝑧 − 1 − 𝑧𝑧𝑒𝑒.) + 𝑧𝑧 + 𝑐𝑐'(𝑒𝑒. − 1) 

 
Now we need to find the intermediate scale	𝜒𝜒(𝜀𝜀)	to match the two expansions. 

𝑤𝑤 =
𝑥𝑥 − 1
𝜒𝜒(𝜀𝜀) =

𝜀𝜀𝑧𝑧
𝜒𝜒(𝜀𝜀) , 𝜀𝜀 ≪ 𝜒𝜒(𝜀𝜀) ≪ 1 

We assume a fixed	𝑤𝑤 < 0	and let	𝜀𝜀 → 05. The outer expansion becomes 

𝑦𝑦#(𝑤𝑤) = 𝑒𝑒'/d + 𝑒𝑒'/d𝜒𝜒(𝜀𝜀)𝑤𝑤 + 𝑂𝑂(𝜒𝜒(𝜀𝜀)'), 𝑦𝑦&(𝑤𝑤) =
2
9 𝑒𝑒

'/d + 𝑂𝑂Q𝜒𝜒(𝜀𝜀)R 

𝑦𝑦klm(𝑥𝑥(𝑤𝑤); 𝜀𝜀) = 𝑒𝑒'/d + 𝑒𝑒'/d𝜒𝜒(𝜀𝜀)𝑤𝑤 +
2
9 𝑒𝑒

'/d𝜀𝜀 + 𝑂𝑂Q𝜀𝜀𝜒𝜒(𝜀𝜀)R + 𝑂𝑂(𝜒𝜒(𝜀𝜀)') 

The inner expansion becomes 

𝑌𝑌#(𝑤𝑤) = 1 − 𝑐𝑐& + 𝑂𝑂 ø𝑒𝑒O
r(T)
T ¿ 

𝑌𝑌&(𝑤𝑤) = (1 − 𝑐𝑐&)𝑤𝑤
𝜒𝜒(𝜀𝜀)
𝜀𝜀 − (𝑐𝑐& + 𝑐𝑐') + 𝑂𝑂 ®

𝜒𝜒(𝜀𝜀)
𝜀𝜀 𝑒𝑒O

r(T)
T © 

𝑌𝑌Y-(𝑧𝑧(𝑤𝑤); 𝜀𝜀) = 1 − 𝑐𝑐& + (1 − 𝑐𝑐&)𝑤𝑤𝜒𝜒(𝜀𝜀) − (𝑐𝑐& + 𝑐𝑐')𝜀𝜀 + 𝑂𝑂 ø𝑒𝑒O
r(T)
T ¿ + 𝑂𝑂 ø𝜒𝜒(𝜀𝜀)𝑒𝑒O

r(T)
T ¿ 

We need to properly choose	𝜒𝜒(𝜀𝜀)	so that all	𝑂𝑂(⋅)	terms can be controlled. Note that they first 
should be	𝑜𝑜(𝜀𝜀), which gives 

𝜒𝜒'(𝜀𝜀) ≪ 𝜀𝜀, 𝑒𝑒O
r(T)
T ≪ 𝜀𝜀, 𝜀𝜀 ln 𝜀𝜀)& ≪ 𝜒𝜒(𝜀𝜀) ≪ √𝜀𝜀 



Now comparing the leading-order terms in the outer and inner expansion, we obtain 

𝑐𝑐& = 1 − 𝑒𝑒'/d, 𝑐𝑐' =
7
9 𝑒𝑒

'/d − 1 

Therefore, the approximation in the overlap domain is 

𝑦𝑦XZmop
&,& (𝑥𝑥; 𝜀𝜀) = 𝑥𝑥𝑒𝑒'/d +

2
9 𝑒𝑒

'/d𝜀𝜀 

The uniformly valid approximation is 

𝑦𝑦l-Yq
&,& (𝑥𝑥; 𝜀𝜀) = 𝑦𝑦klm(𝑥𝑥; 𝜀𝜀) + 𝑌𝑌Y- ø

𝑥𝑥 − 1
𝜀𝜀 ; 𝜀𝜀¿ − 𝑦𝑦XZmop

&,& (𝑥𝑥; 𝜀𝜀) 

As	𝜀𝜀	becomes smaller, the approximation is closer to the numerically solved result. 

 
Left boundary layer 

𝜀𝜀𝑦𝑦!! + 𝑦𝑦! − 𝑥𝑥𝑦𝑦 = 0, 𝑦𝑦(0) = 0, 𝑦𝑦(1) = 𝑒𝑒&/' 
Since	𝑎𝑎(𝑥𝑥) = 1 > 0, we have a left boundary point at	𝑥𝑥 = 0. The outer expansion is 

𝜀𝜀#:	𝑦𝑦#! − 𝑥𝑥𝑦𝑦# = 0, 𝑦𝑦#(1) = 𝑒𝑒
&
', 𝑦𝑦#(𝑥𝑥) = 𝑒𝑒

\"
' 		

𝜀𝜀&:		𝑦𝑦#!! + 𝑦𝑦&! − 𝑥𝑥𝑦𝑦& = 0, 𝑦𝑦&(1) = 0, 𝑦𝑦&(𝑥𝑥) = −
1
3 𝑒𝑒

\"
' (−4 + 3𝑥𝑥 + 𝑥𝑥R) 

For the inner expansion, with	𝑎𝑎(1) ≠ 0, we take	𝛿𝛿(𝜀𝜀) = 𝜀𝜀	and the inner equation is 

𝑧𝑧 =
𝑥𝑥
𝜀𝜀 > 0, 𝑌𝑌!! + 𝑌𝑌! − 𝜀𝜀(𝜀𝜀𝑧𝑧 + 1)𝑌𝑌 = 0 

With the choice	𝜇𝜇"(𝜀𝜀) = 𝜀𝜀", the inner expansion can be solved as 
𝜀𝜀#:		𝑌𝑌#!! + 𝑌𝑌#! = 0, 𝑌𝑌#(0) = 0, 𝑌𝑌#(𝑧𝑧) = 𝑐𝑐&(1 − 𝑒𝑒).)	
𝜀𝜀&:		𝑌𝑌&!! + 𝑌𝑌&! − 𝑌𝑌# = 0, 𝑌𝑌&(0) = 0 

The solution of	𝑌𝑌&(𝑧𝑧)	can be obtained as 
𝑌𝑌&(𝑧𝑧) = 𝑐𝑐&(𝑒𝑒). + 𝑧𝑧 − 1 + 𝑧𝑧𝑒𝑒).) + 𝑧𝑧 + 𝑐𝑐'(1 − 𝑒𝑒).) 

Now we need to find the intermediate scale	𝜒𝜒(𝜀𝜀)	to match the two expansions. 

𝑤𝑤 =
𝑥𝑥

𝜒𝜒(𝜀𝜀) =
𝜀𝜀𝑧𝑧
𝜒𝜒(𝜀𝜀) , 𝜀𝜀 ≪ 𝜒𝜒(𝜀𝜀) ≪ 1 

𝜀𝜀 = 0.05 𝜀𝜀 = 0.025 



We assume a fixed	𝑤𝑤 > 0	and let	𝜀𝜀 → 05. The outer expansion becomes 

𝑦𝑦#(𝑤𝑤) = 1 + 𝑂𝑂(𝜒𝜒(𝜀𝜀)'), 𝑦𝑦&(𝑤𝑤) =
4
3 − 𝜒𝜒(𝜀𝜀)𝑤𝑤 + 𝑂𝑂Q𝜒𝜒'(𝜀𝜀)R 

𝑦𝑦klm(𝑥𝑥(𝑤𝑤); 𝜀𝜀) = 1 +
4
3 𝜀𝜀 − 𝜒𝜒(𝜀𝜀)𝑤𝑤𝜀𝜀 + 𝑂𝑂Q𝜀𝜀𝜒𝜒'(𝜀𝜀)R + 𝑂𝑂(𝜒𝜒(𝜀𝜀)') 

The inner expansion becomes 

𝑌𝑌#(𝑤𝑤) = 𝑐𝑐& + 𝑂𝑂 ø𝑒𝑒)O
r(T)
T ¿ 

𝑌𝑌&(𝑤𝑤) = (1 + 𝑐𝑐&)𝑤𝑤
𝜒𝜒(𝜀𝜀)
𝜀𝜀 + (𝑐𝑐' − 𝑐𝑐&) + 𝑂𝑂 ®

𝜒𝜒(𝜀𝜀)
𝜀𝜀 𝑒𝑒)O

r(T)
T © 

𝑌𝑌Y-(𝑧𝑧(𝑤𝑤); 𝜀𝜀) = 𝑐𝑐& + (1 + 𝑐𝑐&)𝑤𝑤𝜒𝜒(𝜀𝜀) + (𝑐𝑐' − 𝑐𝑐&)𝜀𝜀 + 𝑂𝑂 ø𝑒𝑒)O
r(T)
T ¿ + 𝑂𝑂 ø𝜒𝜒(𝜀𝜀)𝑒𝑒)O

r(T)
T ¿ 

We can similarly choose	𝜒𝜒(𝜀𝜀)	so that all	𝑂𝑂(⋅)	terms are	𝑜𝑜(𝜀𝜀). Now comparing the leading-order 
terms in the outer and inner expansion, we obtain 

𝑐𝑐& = −1 − 𝜀𝜀, 𝑐𝑐' =
2
𝜀𝜀 − 𝜀𝜀 +

4
3 

Therefore, the approximation in the overlap domain is 

𝑦𝑦XZmop
&,& (𝑥𝑥; 𝜀𝜀) = 1 +

4
3 𝜀𝜀 − 𝜀𝜀𝑥𝑥 

The uniformly valid approximation is 

𝑦𝑦l-Yq
&,& (𝑥𝑥; 𝜀𝜀) = 𝑦𝑦klm(𝑥𝑥; 𝜀𝜀) + 𝑌𝑌Y- l

𝑥𝑥
𝜀𝜀 ; 𝜀𝜀m − 𝑦𝑦XZmop

&,& (𝑥𝑥; 𝜀𝜀) 

As	𝜀𝜀	becomes smaller, the approximation is closer to the numerically solved result. 

For this problem we can obtain an exact solution. To facilitate comparison, we first write down 

𝑦𝑦#(𝑥𝑥) = 𝑒𝑒\"/', 𝑌𝑌#(𝑧𝑧) = 1 − 𝑒𝑒). , 𝑦𝑦l-Yq
#,# (𝑥𝑥; 𝜀𝜀) = 𝑒𝑒\"/' − 𝑒𝑒)\/T 

We first introduce the transform to remove the	𝑦𝑦!	term as 

𝜀𝜀𝜉𝜉!! − 𝑥𝑥𝜉𝜉 −
𝜉𝜉
4𝜀𝜀 = 0, 𝑦𝑦(𝑥𝑥) = 𝜉𝜉(𝑥𝑥) exp l−

𝑥𝑥
2𝜀𝜀m 

𝜀𝜀 = 0.05 𝜀𝜀 = 0.025 



Then with a new independent variable, the ODE becomes 

𝑡𝑡 = 𝜀𝜀)
&
R ø𝑥𝑥 +

1
4𝜀𝜀¿ ,

d'𝜉𝜉
d𝑡𝑡' − 𝑡𝑡𝜉𝜉 = 0 

This is the Airy equation. The boundary conditions are modified to 

		𝜉𝜉(𝑡𝑡#) = 𝜉𝜉 ø
1
4 𝜀𝜀

)VR¿ = 0, 𝜉𝜉(𝑡𝑡&) = 𝜉𝜉 ø𝜀𝜀)
&
R +

1
4 𝜀𝜀

)VR¿ = exp ø
1 + 𝜀𝜀
2𝜀𝜀 ¿ 

We can obtain the exact solution of	𝑦𝑦(𝑥𝑥)	as follows 

𝑦𝑦(𝑥𝑥) = exp ø
𝜀𝜀 + 1 − 𝑥𝑥

2𝜀𝜀 ¿ ⋅
Ai(𝑡𝑡#)BiQ𝑡𝑡(𝑥𝑥)R − AiQ𝑡𝑡(𝑥𝑥)RBi(𝑡𝑡#)

Ai(𝑡𝑡#)Bi(𝑡𝑡&) − Ai(𝑡𝑡&)Bi(𝑡𝑡#)
 

The asymptotic expansions for Airy functions are 

Ai(𝑡𝑡) ∼
𝑡𝑡)&/V

2√𝜋𝜋
𝑒𝑒)w , Bi(𝑡𝑡) ∼

𝑡𝑡)&/V

√𝜋𝜋
𝑒𝑒w , 𝜁𝜁(𝑡𝑡) =

2
3 𝑡𝑡

R/', 𝑡𝑡 → +∞ 

For the outer expansion, assumed a fixed	𝑥𝑥	and let	𝜀𝜀 → 05. Denote	𝛿𝛿 = 𝑡𝑡(𝑥𝑥) − 𝑡𝑡#	and we have 

𝜁𝜁Q𝑡𝑡(𝑥𝑥)R − 𝜁𝜁(𝑡𝑡#) = 𝑡𝑡#
&/'𝛿𝛿 +

1
4 𝑡𝑡#

)&/'𝛿𝛿' + 𝑂𝑂Q𝑡𝑡#
)R/'𝛿𝛿RR =

𝑥𝑥
2𝜀𝜀 +

𝑥𝑥'

2 + 𝑂𝑂(𝜀𝜀𝑥𝑥R) 

𝜁𝜁(𝑡𝑡&) − 𝜁𝜁(𝑡𝑡#) = 𝜁𝜁Q𝑡𝑡(1)R − 𝜁𝜁(𝑡𝑡#) =
1
2𝜀𝜀 +

1
2 + 𝑂𝑂(𝜀𝜀) 

Therefore, we have 

𝑦𝑦(𝑥𝑥) ∼ exp ø
𝜀𝜀 + 1 − 𝑥𝑥

2𝜀𝜀 ¿ ⋅ ®
𝑡𝑡(𝑥𝑥)
𝑡𝑡&

©

&
V
⋅
sinh±𝜁𝜁Q𝑡𝑡(𝑥𝑥)R − 𝜁𝜁(𝑡𝑡#)≤
sinh[𝜁𝜁(𝑡𝑡&) − 𝜁𝜁(𝑡𝑡#)]

	

∼ exp ø
𝜀𝜀 + 1 − 𝑥𝑥

2𝜀𝜀 ¿ ⋅ exp®
𝑥𝑥
2𝜀𝜀 +

𝑥𝑥'

2 −
1
2𝜀𝜀 −

1
2© ∼ 𝑒𝑒

\"
' , 𝜀𝜀 → 05 

For the inner expansion, assumed as fixed	𝑧𝑧 = 𝑥𝑥/𝜀𝜀	and let	𝜀𝜀 → 05. Now we have 

𝜁𝜁Q𝑡𝑡(𝑧𝑧)R − 𝜁𝜁(𝑡𝑡#) = 𝑡𝑡#
&/'𝛿𝛿 +

1
4 𝑡𝑡#

)&/'𝛿𝛿' + 𝑂𝑂Q𝑡𝑡#
)R/'𝛿𝛿RR =

𝑧𝑧
2 +

𝜀𝜀'𝑧𝑧'

2 + 𝑂𝑂(𝜀𝜀V𝑧𝑧R) 

The asymptotic behavior becomes 

𝑦𝑦(𝑧𝑧) ∼ exp ø
𝜀𝜀 + 1 − 𝜀𝜀𝑧𝑧

2𝜀𝜀 ¿ ⋅ ®
𝑡𝑡(𝑧𝑧)
𝑡𝑡&

©

&
V
⋅
sinh±𝜁𝜁Q𝑡𝑡(𝑧𝑧)R − 𝜁𝜁(𝑡𝑡#)≤
sinh[𝜁𝜁(𝑡𝑡&) − 𝜁𝜁(𝑡𝑡#)]

	

∼ 2𝑒𝑒)
.
' sinh l

𝑧𝑧
2m = 1 − 𝑒𝑒). , 𝜀𝜀 → 05 

The asymptotic behavior of the exact solution is consistent with the outer and inner expansions. 
 
 
 
 
 



Different scaling of layer thickness 
𝜀𝜀𝑦𝑦!! + 𝑥𝑥R/'𝑦𝑦! − 𝑦𝑦 = 0, 𝑦𝑦(0) = 𝛼𝛼, 𝑦𝑦(1) = 𝑒𝑒'/d 

The BVP has a unique solution since	𝑏𝑏(𝑥𝑥) − 𝑎𝑎!(𝑥𝑥)/2 < 0. Also, with 𝑎𝑎(𝑥𝑥) > 0	for	𝑥𝑥 ∈ (0,1], 
there will be no possible boundary point in this interval, hence the only possible one is	𝑥𝑥# = 0. 
The outer expansion can be solved as 

𝜀𝜀#:		𝑥𝑥R/'𝑦𝑦#! − 𝑦𝑦# = 0, 𝑦𝑦#(1) = 𝑒𝑒'/d, 𝑦𝑦#(𝑥𝑥) = exp ø
12
5 −

2
√𝑥𝑥

¿ 

For the inner expansion, we need to use	𝛿𝛿(𝜀𝜀)	and find its proper scaling. 

𝑧𝑧 =
𝑥𝑥

𝛿𝛿(𝜀𝜀) ,
𝜀𝜀

𝛿𝛿'(𝜀𝜀) 𝑌𝑌
!! +

Q𝑧𝑧𝛿𝛿(𝜀𝜀)RR/'

𝛿𝛿(𝜀𝜀) 𝑌𝑌! − 𝑌𝑌 = 0 

We should take the dominant balance between the first and third term, which gives 
𝜀𝜀

𝛿𝛿'(𝜀𝜀) ∼ 1, 𝛿𝛿(𝜀𝜀) ∼ √𝜀𝜀 

The inner equation then becomes 
𝑌𝑌!! + 𝑧𝑧R/'𝜀𝜀&/V𝑌𝑌! − 𝑌𝑌 = 0, 𝜀𝜀#:		𝑌𝑌#!! − 𝑌𝑌# = 0, 𝑌𝑌#(0) = 𝛼𝛼 

The solution can be obtained as 
𝑌𝑌#(𝑧𝑧) = (𝛼𝛼 − 𝐶𝐶)𝑒𝑒. + 𝐶𝐶𝑒𝑒). 

The intermediate scale can be denoted as	𝜒𝜒(𝜀𝜀) = 𝜀𝜀b, and we have 

𝑤𝑤 =
𝑥𝑥
𝜀𝜀b =

√𝜀𝜀𝑧𝑧
𝜀𝜀b , 𝜀𝜀&/' ≪ 𝜀𝜀b ≪ 1, 0 < 𝑝𝑝 <

1
2 

We assume a fixed	𝑤𝑤 > 0	and let	𝜀𝜀 → 05. Since we keep the leading-order term, the matching 
condition can be simply written as 

lim
\→#3

𝑦𝑦#(𝑥𝑥) = lim
.→5;

𝑌𝑌#(𝑧𝑧) , 0 = lim
.→5;

(𝛼𝛼 − 𝐶𝐶)𝑒𝑒. , 𝐶𝐶 = 𝛼𝛼 

The uniformly valid approximation is 

𝑦𝑦l-Yq
#,# (𝑥𝑥; 𝜀𝜀) = exp ø

12
5 −

2
√𝑥𝑥

¿ + 𝛼𝛼𝑒𝑒). 

 

𝜀𝜀 = 0.025 
𝛼𝛼 = 1 

𝜀𝜀 = 0.025 
𝛼𝛼 = 0 



Internal layer 

𝜀𝜀𝑦𝑦!! + 2𝑥𝑥𝑦𝑦! +
sin 𝑥𝑥
2 𝑦𝑦 = 0, 𝑦𝑦(−1) = 1, 𝑦𝑦(1) = 2 

This problem has a unique solution because 

𝑏𝑏(𝑥𝑥) −
1
2𝑎𝑎

!(𝑥𝑥) =
sin 𝑥𝑥
2 − 1 < 0, 𝑥𝑥 ∈ [−1,1] 

The only possible boundary point is	𝑥𝑥# = 0 where	𝑎𝑎(0) = 0. This corresponds to an internal 

layer point. As	𝑎𝑎!(0) ≠ 0, the layer thickness scales as	𝛿𝛿(𝜀𝜀) ∼ √𝜀𝜀. The outer expansions are 

𝜀𝜀#:		2𝑥𝑥𝑦𝑦#! +
sin 𝑥𝑥
2 𝑦𝑦# = 0, 𝑦𝑦a(−1) = 1, 𝑦𝑦Q(1) = 2 

𝑦𝑦a#(𝑥𝑥) = 𝑒𝑒)
&
V[yY(\)5yY(&)], 𝑦𝑦Q#(𝑥𝑥) = 2𝑒𝑒)

&
V[yY(\))yY(&)], Si(𝑥𝑥) = Ÿ

sin 𝑡𝑡
𝑡𝑡 d𝑡𝑡

\

#
 

For the inner expansion, we take	𝛿𝛿(𝜀𝜀) = √𝜀𝜀,	𝜇𝜇"(𝜀𝜀) = √𝜀𝜀	and the inner equation is 

𝑧𝑧 =
𝑥𝑥
√𝜀𝜀

, 𝑌𝑌!! + 2𝑧𝑧𝑌𝑌! +
1
2 sinQ𝑧𝑧√𝜀𝜀R 𝑌𝑌 = 0 

𝜀𝜀#:		𝑌𝑌#!! + 2𝑧𝑧𝑌𝑌#! = 0, 𝑌𝑌#(𝑧𝑧) = 𝐶𝐶& +
𝐶𝐶'
√𝜋𝜋

Ÿ 𝑒𝑒)t"d𝑠𝑠
.

);
 

The intermediate scale can be chosen as	𝜒𝜒(𝜀𝜀) = 𝜀𝜀&/V, and for a fixed	𝑤𝑤	we have 

𝑤𝑤 =
𝑥𝑥

𝜀𝜀&/V =
√𝜀𝜀𝑧𝑧
𝜀𝜀&/V , 𝑥𝑥 → 0, 𝑧𝑧 → sgn(𝑤𝑤) ⋅ ∞, 𝜀𝜀 → 05 

The inner and outer expansions become 

𝑦𝑦a#(𝑤𝑤) = 𝑒𝑒)yY(&)/V + 𝑂𝑂Q𝜀𝜀&/VR, 𝑦𝑦Q#(𝑤𝑤) = 2𝑒𝑒yY(&)/V + 𝑂𝑂Q𝜀𝜀&/VR 

𝑌𝑌#(𝑤𝑤)) = 𝐶𝐶& + 𝑂𝑂Q𝑒𝑒)O"/√TR, 𝑌𝑌#(𝑤𝑤5) = (𝐶𝐶& + 𝐶𝐶') + 𝑂𝑂Q𝑒𝑒)O"/√TR 

Now comparing the leading-order terms in the outer and inner expansion, we obtain 

𝐶𝐶& = 𝑒𝑒)
yY(&)
V , 𝐶𝐶' = 2𝑒𝑒

yY(&)
V − 𝑒𝑒)

yY(&)
V  

This internal layer corresponds to a rapid change in	𝑦𝑦(𝑥𝑥). 

 

𝜀𝜀 = 0.05 𝜀𝜀 = 0.025 


