
Fundamentals of Asymptotic Analysis 

Ø Big-O and small-o notation (Book chapter 1.1) 
For a domain	Ω, consider general complex-valued functions	𝑓, 𝑔: Ω → ℂ. 

𝑓(𝑧) = 𝑂.𝑔(𝑧)/, 𝑧 ∈ Ω ∃𝐾 > 0,			∀𝑧 ∈ Ω,			|𝑓(𝑧)| ≤ 𝐾|𝑔(𝑧)| 

𝑓(𝑧) = 𝑂.𝑔(𝑧)/, 𝑧 → 𝑧! ∃𝛿 > 0,			∀𝑧 ∈ 𝐵(𝑧!, 𝛿),			𝑓(𝑧) = 𝑂.𝑔(𝑧)/ 

𝑓(𝑧) = 𝑂.𝑔(𝑧)/, 𝑧 → ∞ ∃𝑀 > 0,			∀|𝑧| > 𝑀,			𝑓(𝑧) = 𝑂.𝑔(𝑧)/ 

𝑓(𝑧) = 𝑜.𝑔(𝑧)/, 𝑧 → 𝑧! ∀𝜀 > 0,			∃𝛿 > 0,			∀𝑧 ∈ 𝐵(𝑧!, 𝛿),			|𝑓(𝑧)| ≤ 𝜀|𝑔(𝑧)| 

𝑓(𝑧) = 𝑜.𝑔(𝑧)/, 𝑧 → ∞ ∀𝜀 > 0,			∃𝑀 > 0,			∀|𝑧| > 𝑀,			|𝑓(𝑧)| ≤ 𝜀|𝑔(𝑧)| 

The are several properties 
¨ If	𝑔(𝑧) ≠ 0, then 

𝑓(𝑧) = 𝑂.𝑔(𝑧)/, 𝑧 → 𝑧! 								⟺ 							 limsup
"→"!

F
𝑓(𝑧)
𝑔(𝑧)F 	exists 

𝑓(𝑧) = 𝑜.𝑔(𝑧)/, 𝑧 → 𝑧! 								⟺ 							 lim
"→"!

F
𝑓(𝑧)
𝑔(𝑧)F = 0 

¨ If	𝑓 = 𝑜(𝑔), then we have	𝑓 = 𝑂(𝑔) 
¨ If	𝑓 = 𝑂(𝑔), 𝑔 = 𝑂(ℎ), then	𝑓 = 𝑂(ℎ). Similarly, if	𝑓 = 𝑜(𝑔), 𝑔 = 𝑜(ℎ), then	𝑓 = 𝑜(ℎ) 
¨ If	𝑓$ = 𝑂(𝑔$)	for	𝑧 → 𝑧!	and	𝑛 = 1,2,⋯ ,𝑁, then 

P𝑎$𝑓$

%

$&'

= 𝑂RP|𝑎$||𝑔$|
%

$&'

S , 𝑧 → 𝑧! 

¨ As	𝑧 → 𝑧!, if	𝑓' = 𝑂(𝑔'),	𝑓( = 𝑂(𝑔()	and	𝑔' = 𝑂(𝑔(), then	𝑓' + 𝑓( = 𝑂(𝑔() 
¨ If	𝑔(𝑥) ≥ 0, then 

𝑓(𝑥) = 𝑂.𝑔(𝑥)/ 								⟹ 								 FX 𝑓(𝑥)	d𝑥
)

*
F = 𝑂 ZFX 𝑔(𝑥)	d𝑥

)

*
F[ 

 
Note: The relation between derivatives cannot be guaranteed. Same for big-O notation. 

𝑓(𝑥) = 𝑜.𝑔(𝑥)/ 								⇏ 								 𝑓+(𝑥) = 𝑜.𝑔+(𝑥)/, e. g.		𝑓(𝑥) = 𝑥( sin `
1
𝑥(a 

The relation between antiderivatives requires	𝑔 ≥ 0. As a counterexample, consider	𝑓(𝑥) = 1 
and	𝑔(𝑥) = 𝑒,-. We have	𝑓(𝑥) ≤ 𝑔(𝑥), but 

X 𝑓(𝑥)	d𝑥
)

!
= 𝑦 → ∞, FX 𝑔(𝑥)	d𝑥

)

!
F = d𝑒,) − 1d ≤ 2, as		𝑦 → ∞ 

 



With these notations, the absolute and relative errors can be denoted as 

𝑓(𝑧) = 𝑓g(𝑧) + 𝑜(1), 𝑧 → 𝑧! 

𝑓(𝑧) = 𝑓g(𝑧).1 + 𝑜(1)/, 𝑧 → 𝑧! 

 
Ø Asymptotic sequence and series (1.3) 
Asymptotic sequence 
If there is a sequence of functions	{𝜙$: Ω → ℂ}	such that for any	𝑛 > 𝑚, we have 

𝜙$(𝑧) = 𝑜.𝜙.(𝑧)/, 𝑧 → 𝑧! 

Then we call	{𝜙$}	as an asymptotic sequence around	𝑧!. 
 
Example 

𝜙$(𝑧) = 𝑧$!/$, 𝑛! ∈ ℤ, 𝑧 = 𝐵(0, 𝛿) 
 
Asymptotic series 
For a function	𝑓: Ω → ℂ	and an asymptotic sequence	{𝜙$}	around	𝑧!, if there exists a sequence 
of constants {𝑎$}	such that for any	𝑁 ∈ ℕ, we have 

𝑓(𝑧) = P𝑎$𝜙$(𝑧)
%

$&!

+ 𝑜.𝜙%(𝑧)/, 𝑧 → 𝑧! 

Then the formal infinite series below is an asymptotic series, and is an asymptotic expansion 
of	𝑓(𝑧)	around	𝑧 = 𝑧!. 

𝑓(𝑧) ∼ P𝑎$𝜙$(𝑧)
0

$&!

, 𝑧 → 𝑧! 

Note that: 
¨ As a function series it is usually not convergent, and we need to truncate the sum.  
¨ For a given	𝑓(𝑧), there can be many asymptotic series around	𝑧!.  
¨ For a given	{𝜙$}	and	{𝑎$}, the asymptotic series can correspond to different functions 

𝑓(𝑧)	and	𝑔(𝑧)	as long as	𝑓 − 𝑔 = 𝑜(𝜙$). As an example, we can choose 

𝑓 − 𝑔 = 𝑒1
'
-" = 𝑜(𝑥$), 𝑥 → 0 

¨ For a given	𝑓	and	{𝜙$}, the sequence	{𝑎$}	can be uniquely determined as 

𝑎% = lim
"→"!

𝑓(𝑧) − ∑ 𝑎$𝜙$(𝑧)%1'
$&!

𝜙%(𝑧)
 

¨ Not every	𝑓	can be expanded using	{𝜙$} 



Existence theorem (1.4) 
For an asymptotic series	Φ = {𝜙$}, denote 

ℱ2 = r𝑓: Ω → ℂ	|	∃{𝑎$}	s. t.		𝑓(𝑧) ∼P𝑎$𝜙$(𝑧)
$

s	 

ℂℕ	is the space of sequence	{𝑎$}: ℕ → ℂ. The mapping	𝛼	is defined as 

𝛼: 𝐹2 → ℂℕ,				𝑓 ↦ {𝑎$},				𝑎$ = lim
"→"!

𝑓(𝑧) − ∑ 𝑎4𝜙4(𝑧)$1'
4&!

𝜙$(𝑧)
 

Then	𝛼	is surjective. 
 
Proof. For given	{𝜙$}	and	{𝑎$}, we want to construct a function	𝑓	that has the corresponding 
asymptotic expansion. If	𝑎4 = 0, then we can reject	𝜙4. Without loss of generality, we can take 
all	𝑎$ ≠ 0. Since	𝜙$ = 𝑜(𝜙$1'), we have	𝑎$𝜙$ = 𝑜(𝑎$1'𝜙$1'). This can be shown as 

∀𝜀 = 𝜀̃
|𝑎$1'|
|𝑎$|

,				∃𝛿				𝑠. 𝑡.				|𝜙$(𝑧)| ≤ 𝜀|𝜙$1'(𝑧)|,				|𝑎$𝜙$(𝑧)| ≤ 𝜀̃	|𝑎$1'𝜙$1'(𝑧)| 

Take	𝜀 = 1/2, and there exists a decreasing sequence	{𝑟$}	or positive radii	𝑟$ > 0	such that 

|𝑎$𝜙$(𝑧)| ≤
1
2
|𝑎$1'𝜙$1'(𝑧)|, 𝑧 ∈ 𝐵|(𝑧!, 𝑟$) ∩ Ω 

Now introduce a sequence of cut-off functions	{𝜇$(𝑧)}	defined as follows 

𝜇$(𝑧) = �
1, |𝑧 − 𝑧!| ≤ 𝑟$/'

linear	of	smooth, 𝑟$/' < |𝑧 − 𝑧!| ≤ 𝑟$
0, |𝑧 − 𝑧!| > 𝑟$

 

We construct the function	𝑓(𝑧)	as 

𝑓(𝑧) =P𝑎$𝜇$(𝑧)𝜙$(𝑧)
$5!

, 𝑧 ∈ Ω 

For	𝑧 ∈ Ω, we can find 𝑁	such that	|𝑧 − 𝑧!| > 𝑟%. We can see that the series is convergent 

𝑓(𝑧) = P𝑎$𝜇$(𝑧)𝜙$(𝑧)
%

$&!

 

Because	{𝑟$}	is decreasing, then	𝜇$(𝑧) ≤ 𝜇$1'(𝑧). Also, note that 

|𝑎$𝜙$(𝑧)| ≤
1
2
|𝑎$1'𝜙$1'(𝑧)|, when		𝜇$(𝑧) ≠ 0 

When	|𝑧 − 𝑧!| ≤ 𝑟%/', the remainder can be written as 

𝑅%(𝑧) = 𝑓(𝑧) −P𝑎$𝜙$(𝑧)
%

$&!

= 𝑓(𝑧) −P𝑎$𝜇$(𝑧)𝜙$(𝑧)
%

$&!

= P 𝑎$𝜇$(𝑧)𝜙$(𝑧)
0

$&%/'

 

We want to prove	𝑅% = 𝑜(𝜙%)	as	𝑧 → 𝑧!. 



|𝑅%(𝑧)| ≤ P 𝜇$(𝑧)|𝑎$𝜙$(𝑧)|
0

$&%/'

≤ 𝜇%/'(𝑧)|𝑎%/'𝜙%/'(𝑧)| + P 𝜇$(𝑧)|𝑎$𝜙$(𝑧)|
0

$&%/(

 

The second term can be manipulated as 

𝜇$(𝑧)|𝑎$𝜙$(𝑧)| ≤
1
2 𝜇$

(𝑧)|𝑎$1'𝜙$1'(𝑧)| ≤
1
2 𝜇$1'

(𝑧)|𝑎$1'𝜙$1'(𝑧)| 

This leads to 

P 𝜇$(𝑧)|𝑎$𝜙$(𝑧)|
0

$&%/'

≤ 𝜇%/'(𝑧)|𝑎%/'𝜙%/'(𝑧)| +
1
2 P 𝜇$(𝑧)|𝑎$𝜙$(𝑧)|

0

$&%/'

 

|𝑅%(𝑧)| ≤ 2𝜇%/'(𝑧)|𝑎%/'𝜙%/'(𝑧)| ≤ 2|𝑎%/'𝜙%/'(𝑧)| 
As	𝜙%/' = 𝑜(𝜙%), we prove	𝑅% = 𝑜(𝜙%) and it is the asymptotic expansion of	𝑓(𝑧).  ∎ 
 

A similar result is Borel’s Lemma, which states that	∀{𝑎$}, ∃𝑓 ∈ 𝐶0	such that	𝑓($)(0) = 𝑎$. 
 
Ø Asymptotic root finding (1.5) 
Consider polynomials	𝑓,(𝑥), and we want to find the root of the following equation 

𝑓(𝑥, 𝜀) = 𝑓!(𝑥) + 𝜀𝑓'(𝑥) = 0 
First we need the following implicit function theorem. 
 
Theorem. For domains	Ω, D ∈ ℂ	with	0 ∈ 𝐷, consider a holomorphic function	𝑓 ∈ 𝑂(Ω × 𝐷). 
For a point	𝑥! ∈ Ω, if	𝑓(𝑥!, 0) = 0	and	𝑓-(𝑥!, 0) ≠ 0, then there exists an open subset	𝐷+ ⊆ 𝐷 
with	0 ∈ 𝐷+	and an analytic	𝜙: 𝐷+ → Ω	such that	∀𝜀 ∈ 𝐷+,	𝑓(𝜙(𝜀), 𝜀) = 0	and	𝜙(0) = 𝑥!. 
 
If	deg(𝑓') < deg	(𝑓!), then denote	𝑑 = deg(𝑓!) = deg(𝑓)	and	𝑓!	has	𝑑	roots. We can infer 
that	𝑥!	is a simple root of	𝑓!	since 

𝜕𝑓
𝜕𝑥
(𝑥!, 0) =

𝜕𝑓!
𝜕𝑥

(𝑥!) ≠ 0 

 
Example 1: Regular perturbation problem with	deg(𝑓') < deg(𝑓!) 

𝑓(𝑥, 𝜀) = 𝑥8 − 𝑥 + 𝜀 = 0, 𝑓!(𝑥) = 𝑥8 − 𝑥, 𝑓'(𝑥) = 1 
The roots of	𝑓!(𝑥)	are	𝑥',(,8 = 0,−1,+1. For each specific	𝑥,, consider 

𝑥 = 𝑥, + 𝜀𝑥,
(') + 𝜀(𝑥,

(() +⋯+ 𝜀%𝑥,
(%) + 𝑜(𝜀%) 

Then we have 

𝑓(𝑥, 𝜀) = �𝑥, + 𝜀𝑥,
(') +⋯�

8
− �𝑥, + 𝜀𝑥,

(') +⋯� + 𝜀 = 0 

Comparing the coefficients for each order of	𝜀	gives 



[𝜀!]:		𝑥,8 − 𝑥, = 0	

[𝜀']:		3𝑥,(𝑥,
(') − 𝑥,

(') + 1 = 0, 𝑥,
(') =

1
1 − 3𝑥,(

 

[𝜀(]:		3𝑥,�𝑥,
(')�

(
+ 3𝑥,(𝑥,

(() − 𝑥,
(() = 0, 𝑥,

(() =
3𝑥,

(1 − 3𝑥,()8
 

 
Example 2: Singular perturbation problem with	deg(𝑓') > deg(𝑓!) 

𝑓(𝑥, 𝜀) = 𝜀𝑥: − 𝑥 + 1 = 0, 𝑑 ≥ 2 
When	𝜀 = 0, we only have one root	𝑥 = 1. We want to understand the other	𝑑 − 1	roots. As a 
simple case, consider	𝑑 = 2	and we have 

𝑥',( =
1 ± √1 − 4𝜀

2𝜀 , √1 − 4𝜀 = 1 − 2𝜀 − 2𝜀( + 𝑜(𝜀() 

Then we can write 

𝑥' =
1
𝜀 − 1 − 𝜀 + 𝑜

(𝜀), 𝑥( = 1 + 𝜀 + 𝑜(𝜀) 

As	𝜀 → 0, we have	𝑥' → ∞	and thus it disappears when solving	𝑓(𝑥, 0) = 0. We consider roots 
in the form	𝑥 = 𝜀1;𝑦	with	𝜌 > 0, such that	𝑓(𝑥, 𝜀) = 𝑔(𝑦, 𝜀;)	becomes a regular perturbation 
problem as follows 

𝜀 ⋅ 𝜀1:;𝑦: − 𝜀1;𝑦 + 1 = 0, 𝑦: − 𝜀:;1;1'𝑦 + 𝜀:;1' = 0 
Therefore, we can choose 

𝑑𝜌 − 𝜌 − 1 = 0, 𝜌 =
1

𝑑 − 1 , 𝑦: − 𝑦 + 𝜀; = 0 

Denote	𝛿 = 𝜀^𝜌. We can first solve for	𝑦,(𝛿)	and then obtain	𝑥, = 𝛿1'𝑦,(𝛿). 
 
Example 3: Principle of dominant balance 

𝑓(𝑥, 𝜀) = 𝜀𝑥8 + 𝜀𝑥( − 𝑥 + 1 = 0 
Following the same procedure, consider	𝑥 = 𝜀1;𝑦	with	𝜌 > 0, and we obtain 

𝜀'18;𝑦8 + 𝜀'1(;𝑦( − 𝜀1;𝑦 + 1 = 0 
For the four terms, we notice	1 − 3𝜌 < 1 − 2𝜌	and	−𝜌 < 0. This implies that terms I and III 
are dominant, and we set	1 − 3𝜌 = −𝜌, which gives	𝜌 = 1/2. The equation becomes 

𝑦8 + 𝜀'/(𝑦( − 𝑦 + 𝜀'/( = 0 
 
From the algebraic perspective, the techniques for solving singular perturbation problems are 
essentially proving that the field of Puiseux series is the algebraic closure of the field of formal 
Laurent series over the complex domain	ℂ. 
 
 



Ø Exercise 
Asymptotic root finding 

𝜀𝑥8 = (𝑥 − 1)( 
When	𝜀 = 0, the root	𝑥' = 𝑥( = 1	are not simple roots. To obtain the perturbation around these 
roots, consider 

±√𝜀	𝑥8/( = 𝑥 − 1, 𝑥�, = 𝑥, + √𝜀	𝑥,
(') + 𝜀𝑥,

(() +⋯ 

We have	𝑥',( = 1	and 

𝑥�,
8/( = 1 +

3
2 �√𝜀	𝑥,

(') + 𝜀𝑥,
(() +⋯� +

3
8 �√𝜀	𝑥,

(') + 𝜀𝑥,
(() +⋯�

(
+⋯ 

By comparing the coefficients, we obtain 

𝑥�',( = 1 ± √𝜀 +
3
2 𝜀 ±

21
8 𝜀8/( + 5𝜀( + 𝑂.𝜀=/(/, 𝜀 → 0/ 

Another root	𝑥�8	goes to infinity as	𝜀 → 0/. Consider	𝑥 = 𝜀1;𝑦	with	𝜌 > 0, and we obtain 
𝜀'18;𝑦8 = 𝜀1(;𝑦( − 2𝜀1;𝑦 + 1 

From the dominant balance, we set	1 − 3𝜌 = −2𝜌, which gives	𝜌 = 1	and 
𝑦8 − 𝑦( + 2𝜀𝑦 − 𝜀( = 0 

We need to take the root	𝑦! = 1	when	𝜀 = 0	to ensure	𝑦	is bounded away from zero.  
𝑦� = 1 + 𝜀𝑦' + 𝜀(𝑦( + 𝜀8𝑦8 + 𝜀>𝑦> +⋯ 

By comparing the coefficients, we obtain 
𝑦� = 1 − 2𝜀 − 3𝜀( − 10𝜀8 − 42𝜀> +⋯ 

Then the third root is given as 

𝑥�8 =
1
𝜀 − 2 − 3𝜀 − 10𝜀

( − 42𝜀8 + 𝑂(𝜀>) 

 
 
 
 
 
  



Asymptotic Analysis of Integrals (1): Watson’s Lemma 

We will study the following four types of exponential integrals with corresponding methods. 

X 𝑒1?@𝜙(𝑡)	d𝑡
A

!
 Watson’s Lemma 

X 𝑒?B(@)𝑔(𝑡)	d𝑡
C

*
 Laplace’s method 

X𝑒1?D(")𝑔(𝑧)	d𝑧
E

 Method of steepest descent 

X 𝑒,?F(@)𝑔(𝑡)	d𝑡
C

*
 Method of stationary phase 

In this chapter, we will discuss the first type of integral. 
 
Example: Incomplete Gamma function (2.1) 

𝛾(𝑧, 𝑥) = X 𝑒1@𝑡"1'	d𝑡
-

!
, 𝑥 > 0,			𝑧 > 0 

1. As	𝑥 → 0/, with Taylor expansion we have 

𝑒1@ = P
(−1)$

𝑛! 𝑡$
%

$&!

+ 𝑅%(𝑡), 𝑅%(𝑡) =
(−1)%/'

𝑁! X 𝑒1G(𝑡 − 𝑠)%	d𝑠
@

!
 

The remainder term can be bounded as 

|𝑅%(𝑡)| ≤
1
𝑁!X

(𝑡 − 𝑠)%	d𝑠
@

!
=

𝑡%/'

(𝑁 + 1)! = 𝑐'𝑡%/' 

The integral becomes 

𝛾(𝑧, 𝑥) = X ¢P
(−1)$

𝑛! 𝑡$
%

$&!

+ 𝑅%(𝑡)£ 𝑡"1'	d𝑡
-

!
=P

(−1)$

𝑛!
𝑥$/"

𝑛 + 𝑧

%

$&!

+ 𝑜(𝑥%/") 

Therefore, the asymptotic expansion of	𝛾(𝑧, 𝑥)	at	𝑥 = 0	is 

𝛾(𝑧, 𝑥) ∼ P
(−1)$

𝑛!
𝑥$/"

𝑛 + 𝑧

0

$&!

, 𝑥 → 0/ 

2. As	𝑥 → ∞, note that 

𝛾(𝑥, 𝑧) = Γ(𝑧) − X 𝑒1@𝑡"1'	d𝑡
0

-
 

In this case, 𝑒1@	is dominant for the convergence. Denote	𝑡 = 𝑥 + 𝑠	and we have 

X 𝑒1@𝑡"1'	d𝑡
0

-
= 𝑒1-𝑥"1'X 𝑒1G �1 +

𝑠
𝑥�

"1'
d𝑠

0

!
 

Now we expand	(1 + 𝑠/𝑥)"1'	as	𝑥 → ∞, which is 



�1 +
𝑠
𝑥�

"1'
= P�𝑧 − 1𝑛 � �

𝑠
𝑥�

$
%

$&!

+ 𝑅%(𝑠), 𝑅%(𝑠) = 𝑂 Z
𝑠%/'

𝑥%/'[ 

The integral becomes 

X 𝑒1@𝑡"1'	d𝑡
0

-
= 𝑒1-𝑥"1' ¥P�𝑧 − 1𝑛 �

1
𝑥$

%

$&!

X 𝑒1G𝑠$	d𝑠
0

!
+ 𝑂Z

1
𝑥%/'X 𝑒1G𝑠%/'	d𝑠

0

!
[¦	

= 𝑒1-𝑥"1' ¥P
(𝑧 − 1)⋯(𝑧 − 𝑛)

𝑥$

%

$&!

+ 𝑜 `
1
𝑥%a¦ 

Therefore, the asymptotic expansion of	𝛾(𝑧, 𝑥)	at	𝑥 → ∞	is 

𝛾(𝑧, 𝑥) ∼ Γ(𝑧) −P(𝑧 − 1)⋯ (𝑧 − 𝑛) ⋅ 𝑒1-𝑥"1$1'
0

$&!

, 𝑥 → ∞ 

Another way to derive the result is to use integration by parts. 
 
Ø Watson’s Lemma (2.2) 
Suppose	𝑇 > 0	and	𝜙(𝑡): [0, 𝑇] → ℂ	is absolutely integrable 

X |𝜙(𝑡)|	d𝑡
A

!
< ∞ 

Further suppose that there exists	𝜎 > −1	and	𝑔(𝑡) ∈ 𝐶0	near	𝑡 = 0/	such that	𝜙(𝑡) = 𝑡H𝑔(𝑡). 
Then the exponential integral is finite for all	𝜆 > 0, with the following asymptotic expansion 

𝐹(𝜆) = X 𝑒1?@𝜙(𝑡)	d𝑡
A

!
∼ P

𝑔($)(0)
𝑛! ⋅

Γ(𝜎 + 𝑛 + 1)
𝜆H/$/'

0

$&!

, 𝜆 → ∞ 

 
Proof. Choose	𝑠 > 0	arbitrarily, and we have 

FX 𝑒1?@𝜙(𝑡)	d𝑡
A

G
F ≤ 𝑒1?GX |𝜙(𝑡)|	d𝑡

A

G
≤ 𝑀𝑒1?G = 𝑜.𝜆1(H/$/')/, ∀𝑛 ∈ ℕ 

Therefore, we can split up the integral and only focus on	[0, 𝑠]. For a sufficiently small	𝑠 > 0 
such that	𝑔 ∈ 𝐶0(0, 𝑠)	and	𝜙(𝑡) = 𝑡H𝑔(𝑡). The Taylor expansion of	𝑔(𝑡)	is 

𝑔(𝑡) = P
1
𝑛! 𝑔

($)(0)𝑡$
%

$&!

+ 𝑅%(𝑡), 𝑅%(𝑡) = 𝑂(𝑡%/') 

The integral becomes 

X 𝑒1?@𝜙(𝑡)	d𝑡
G

!
= P

𝑔($)(0)
𝑛! X 𝑒1?@𝑡H/$	d𝑡

G

!

%

$&!

+ 𝑂ZX 𝑒1?@𝑡H/%/'	d𝑡
G

!
[ 

Denote the integral that appears as	𝐹I(𝜆)	for each integer	𝑝 ≥ 0. With	𝑥 = 𝜆𝑡, we have 



𝐹I(𝜆) = X 𝑒1?@𝑡H/I	d𝑡
G

!
= X 𝑒1- �

𝑥
𝜆�

H/I
	
d𝑥
𝜆

?G

!
=

1
𝜆H/I/'X 𝑒1-𝑥H/I	d𝑥

?G

!
	

=
1

𝜆H/I/' «Γ
(𝜎 + 𝑝 + 1) − X 𝑒1-𝑥H/I	d𝑥

0

?G
¬ 

One trick to manipulate the second term is to use the Cauchy inequality. 

X 𝑒1-𝑥H/I	d𝑥
0

?G
= X 𝑒1

-
( ⋅ 𝑒1

-
(𝑥H/I	d𝑥

0

?G
≤ ­X �𝑒1

-
(�

(
d𝑥

0

?G
⋅ ­X �𝑒1

-
(𝑥H/I�

(
d𝑥

0

?G
	

= 𝑒1?G/( ⋅ ­X 𝑒1-𝑥((H/I)	d𝑥
0

?G
≤ 𝑒1?G/( ⋅ ­X 𝑒1-𝑥((H/I)	d𝑥

0

G
 

Since	𝜆	is very large, we can reduce the lower bound of the integral and remove its dependence 
on	𝜆. It can also be written as	𝑜(𝜆1H1$1')	for any	𝑛 ∈ ℕ. Eventually, we have 

𝐹(𝜆) ∼ P
𝑔($)(0)
𝑛! ⋅

Γ(𝜎 + 𝑛 + 1)
𝜆H/$/'

0

$&!

, 𝜆 → ∞ 

 
Generalizations of Watson’s Lemma (2.3) 
¨ Replace the condition as	𝜆 ∈ ΩJ = {𝑧 ∈ ℂ	|	|arg 𝑧| < 𝜃}, and consider	|𝜆| → ∞. 
¨ Replace the condition as	Re(𝜎) > −1. 
¨ The function	𝑔	can be only finitely differentiable as	𝑔 ∈ 𝐶.. 
¨ If	𝑇 → +∞, then we only need to require	𝑒1?@𝜙(𝑡)	to be absolutely integrable. 
 
Example 1 

𝐹(𝜆) = X 𝑒1?@ ln(1 + 𝑡() 	d𝑡
0

!
 

Similarly choose	𝑠 > 0	arbitrarily, and from Cauchy inequality we have 

X 𝑒1?@ ln(1 + 𝑡() 	d𝑡
0

G
≤ ­X 𝑡(𝑒1(?@	d𝑡

0

G
⋅ ­X

ln((1 + 𝑡()
𝑡( 	d𝑡

0

G
= 𝑜(𝜆1H1$1') 

This is the only step we need to modify from the previous proof. With the Taylor expansion of 
𝜙(𝑡) = ln(1 + 𝑡(), we have 

𝐹(𝜆) ∼ X 𝑒1?@ ¥P(−1)$/'
𝑡($

𝑛

0

$&'

¦ d𝑡
0

!
=P

(−1)$/'

𝑛 ⋅
(2𝑛)!
𝜆($/'

0

$&'

, 𝜆 → ∞ 

Although the series is not convergent, in the sense of asymptotic analysis it is valid. Therefore, 
after truncating the sum, the result makes sense. 
 



Example 2 

𝐹(𝜆) = X 𝑒1?@"𝜙(𝑡)	d𝑡
K

1L
, 𝛼, 𝛽 > 0 

We consider	𝜙(𝑡) ∈ 𝐶0	around	𝑡 = 0. For a sufficiently small	𝑠 > 0, note that 

FX 𝑒1?@"𝜙(𝑡)	d𝑡
K

G
F ≤ 𝑒1?G"X F

𝜙.√𝑢/
2√𝑢

F d𝑢
K"

G"
= 𝑜(𝜆I), ∀𝑝 ∈ ℝ 

This implies that we only need to analyze the symmetric part, which is 

𝐹(𝜆) ∼ X 𝑒1?@"𝜙(𝑡)	d𝑡
G

1G
= 2X 𝑒1?@" ¥P

𝜙(($)(0)
(2𝑛)! 𝑡($

%

$&!

+ 𝑜(𝑡(%)¦ d𝑡
G

!
 

Evaluating the integral, we obtain 

𝐹(𝜆) ∼ P
𝜙(($)(0)
(2𝑛)! ⋅

Γ(𝑛 + 1/2)
𝜆$/'/(

0

$&!

= ³
𝜋
𝜆P

𝜙(($)(0)
2($	𝑛! ⋅

1
𝜆$

0

$&!

, 𝜆 → ∞ 

 
Ø Exercise 
Term-by-term integration 

X 𝑒1@(1 + 𝑧𝑡)1'	d𝑡
0

!
, 𝑧 → 0, |arg 𝑧| <

𝜋
2 

Expanding	(1 + 𝑧𝑡)1'	as	𝑧 → 0	gives 

(1 + 𝑧𝑡)1' =P(−1)$𝑧$𝑡$
%

$&!

+ 𝑅%(𝑡), 𝑅%(𝑡) = 𝑂(𝑧%/'𝑡%/') 

The integral thus becomes 

X 𝑒1@(1 + 𝑧𝑡)1'	d𝑡
0

!
=P(−1)$𝑧$X 𝑒1@𝑡$	d𝑡

0

!

%

$&!

+ 𝑂Z𝑧%/'X 𝑒1@𝑡%/'	d𝑡
0

!
[	

= P(−1)$ ⋅ 𝑛! 𝑧$
%

$&!

+ 𝑜(𝑧%) 

Therefore, the asymptotic expansion is 

X 𝑒1@(1 + 𝑧𝑡)1'	d𝑡
0

!
∼ P(−1)$ ⋅ 𝑛! 𝑧$

0

$&!

, 𝑧 → 0, |arg 𝑧| <
𝜋
2 

 
Exponential integral 

𝑒1-X
𝑒1@

𝑥 + 𝑡 d𝑡
0

!
, 𝑥 → ∞ 



Similarly, by expanding	(1 + 𝑡/𝑥)1'	as	𝑥 → ∞, we have 

𝑒1-X
𝑒1@

𝑥 + 𝑡 d𝑡
0

!
=
𝑒1-

𝑥 X
𝑒1@

1 + 𝑡
𝑥
d𝑡

0

!
	

=
𝑒1-

𝑥 ¥P
(−1)$

𝑥$ X 𝑒1@𝑡$	d𝑡
0

!

%

$&!

+ 𝑂Z
1

𝑥%/'X 𝑒1@𝑡%/'	d𝑡
0

!
[¦	

= 𝑒1-P
(−1)$ ⋅ 𝑛!
𝑥$/'

%

$&!

+ 𝑜 `
1

𝑥%/'a 

The asymptotic expansion of the integral, which is also for the function	Ei(𝑥), is 

𝑒1-X
𝑒1@

𝑥 + 𝑡 d𝑡
0

!
∼ 𝑒1-P

(−1)$ ⋅ 𝑛!
𝑥$/'

0

$&!

, 𝑥 → ∞ 

 
Error function 

erf 𝑥 =
2
√𝜋

X 𝑒1@"d𝑡
-

!
, 𝑥 ∈ ℝ 

1. As	𝑥 → 0/, with Taylor expansion we have 

𝑒1@" = P
(−1)$

𝑛! 𝑡($
%

$&!

+ 𝑅%(𝑡), 𝑅%(𝑡) =
(−1)%/'

𝑁! X 2𝑒1G"(𝑡 − 𝑠)(%/'	d𝑠
@

!
 

The remainder term can be bounded as 

|𝑅%(𝑡)| ≤
2
𝑁!X

(𝑡 − 𝑠)(%/'	d𝑠
@

!
=

𝑡(%/(

(𝑁 + 1)! = 𝑐'𝑡(%/( 

The integral becomes 

erf 𝑥 =
2
√𝜋

X ¢P
(−1)$

𝑛! 𝑡($
%

$&!

+ 𝑅%(𝑡)£d𝑡
-

!
=

2
√𝜋

P
(−1)$

𝑛!
𝑥($/'

2𝑛 + 1

%

$&!

+ 𝑜(𝑥(%/() 

Therefore, the asymptotic expansion of	erf 𝑥	at	𝑥 = 0	is 

erf 𝑥 ∼
2
√𝜋

P
(−1)$

𝑛!
𝑥($/'

2𝑛 + 1

0

$&!

, 𝑥 → 0/ 

2. As	𝑥 → ∞, note that 

erf 𝑥 = 1 −
2
√𝜋

X 𝑒1@"d𝑡
0

-
= 1 − erfc 𝑥 

With the change of variable	𝑢 + 𝑥( = 𝑡(, we have 

erfc 𝑥 =
𝑒1-"

𝑥√𝜋
X

𝑒1M

·1 + 𝑢/𝑥(
	d𝑢

0

!
 

Now we expand	(1 + 𝑢/𝑥()1'/(	as	𝑥 → ∞, which is 



�1 +
𝑢
𝑥(�

1'/(
= P(−1)$

(2𝑛 − 1)‼
𝑛! ⋅ (2𝑥()$ 𝑢

$
%

$&!

+ 𝑅%(𝑢), 𝑅%(𝑢) = 𝑂 Z
𝑢%/'

𝑥(%/([ 

The integral becomes 

erfc 𝑥 =
𝑒1-"

𝑥√𝜋
¥P(−1)$

(2𝑛 − 1)‼
𝑛! ⋅ (2𝑥()$

%

$&!

X 𝑒1M𝑢$	d𝑢
0

!
+ 𝑂Z

1
𝑥(%/(X 𝑒1M𝑢%/'	d𝑢

0

!
[¦	

=
𝑒1-"

𝑥√𝜋
¥P(−1)$

(2𝑛 − 1)‼
(2𝑥()$

%

$&!

+ 𝑜 `
1

𝑥(%/'a¦ 

Therefore, the asymptotic expansion of	erf 𝑥	at	𝑥 → ∞	is 

erf 𝑥 ∼ 1 −
𝑒1-"

𝑥√𝜋
P(−1)$

(2𝑛 − 1)‼
(2𝑥()$

0

$&!

, 𝑥 → ∞ 

 

Integral with	𝒆1𝒙𝒕𝟐 	kernel 

X 𝑒1-@" sin 𝑡 d𝑡
0

!
, 𝑥 → ∞ 

Denote	𝜙(𝑡) = sin 𝑡, and its Taylor series is 

sin 𝑡 = 𝑎'𝑡 + 𝑎8𝑡8 +⋯ =P
(−1)$

(2𝑛 + 1)! 𝑥
($/'

0

$&!

 

From the previous result, as	𝑥 → ∞	we have 

X 𝑒1-@" sin 𝑡 d𝑡
0

!
∼
1
2X 𝑒1-M	(𝑎' + 𝑎8𝑢 +⋯)	d𝑢

0

!
=
1
2P

(−1)$

(2𝑛 + 1)!X 𝑒1-M	𝑢$	d𝑢
0

!

0

$&!

	

=
1
2P

(−1)$

(2𝑛 + 1)!
1

𝑥$/'X 𝑒1M	𝑢$	d𝑢
0

!

0

$&!

=
1
2𝑥P

(−1)$
𝑛!

(2𝑛 + 1)!
1
𝑥$

0

$&!

 

The first few terms in the asymptotic expansion is 

X 𝑒1-@" sin 𝑡 d𝑡
0

!
∼
1
2𝑥 `1 −

1
6𝑥 +

1
60𝑥( −

1
840𝑥8 +⋯a , 𝑥 → ∞ 

 

Integral with	𝒆1𝒙𝒕𝟑 	kernel 

X 𝑒1-@%d𝑡
'

!
, 𝑥 → ∞ 

With the change of variable	𝑢 = 𝑥𝑡8, we have 

X 𝑒1-@%d𝑡
'

!
∼

1
3𝑥'/8X 𝑒1M	𝑢1

(
8	d𝑢

-

!
=
Γ(1/3)
3𝑥'/8 −

𝑒1-

3𝑥 .1 + 𝑂
(𝑥1')/, 𝑥 → ∞ 



Asymptotic Analysis of Integrals (2): Laplace’s Method 

We analyze the asymptotic expansion of the following integral 

𝐹(𝜆) = X 𝑒?B(@)𝑔(𝑡)	d𝑡
C

*
, 𝜆 → ∞ 

With	𝑅(𝑡) ∈ 𝐶[𝑎, 𝑏]	and	𝑔(𝑡)	an absolutely integrable function. 
 
Ø Nonlocal contributions (3.2) 
We know that	𝑅	can reach its maximum	𝑅PQR	within	[𝑎, 𝑏]. Denote	𝑅|(𝑡) = 𝑅(𝑡) − 𝑅PQR, then 

𝐹(𝜆) = 𝑒?B&'( X 𝑒?BS(@)𝑔(𝑡)	d𝑡
C

*
, max𝑅|(𝑡) = 0 

Without loss of generality, we can take	𝑅PQR = 0. For the previous examples, we have 

𝑒1?@ , 𝑅(𝑡) = −𝑡, 𝑡 ∈ [0, 𝑇], 𝑅PQR = 0 

𝑒1?@" , 𝑅(𝑡) = −𝑡(, 𝑡 ∈ [−𝛼, 𝛽], 𝑅PQR = 0 

Define the set	𝑇	as 
𝑇 = {𝑡 ∈ [𝑎, 𝑏]	|	𝑅(𝑡) = 0} 

We assume that	𝑇	is finite. For	𝛿 > 0, define sets	𝑇T 	and	𝐼T 	as 
𝑇T = {𝑡 ∈ [𝑎, 𝑏]	|	𝑑(𝑡, 𝑇) < 𝛿}, 𝐼T = [𝑎, 𝑏] ∖ 𝑇T 

Note that	𝑇T 	is open and	𝐼T 	is closed and compact. Then	𝑅(𝑡)	has a maximal value in	𝐼T, which 
is denoted as	−𝐾T < 0. We can show that 

FX 𝑒?B(@)𝑔(𝑡)	d𝑡
F)

F ≤ X 𝑒?B(@)|𝑔(𝑡)|	d𝑡
F)

≤ 𝑒1?U)X |𝑔(𝑡)|	d𝑡
C

*
= 𝑜(𝜆I), ∀𝑝 ∈ ℝ 

 
Ø Contributions from endpoints (3.3) 
Consider	𝑇 = {𝑎}	as the left endpoint. We assume	𝑅, 𝑔 ∈ 𝐶0[𝑎, 𝑎 + 𝛿). 

𝐹(𝜆) ∼ X 𝑒?B(@)𝑔(𝑡)	d𝑡
*/T

*
= X 𝑒?B(*/V)𝑔(𝑎 + 𝜏)	d𝜏

T

!
 

First we consider	𝑅+(𝑎) ≠ 0, and since	𝑅(𝑎)	is maximum we have	𝑅+(𝑎) < 0. We need to find 
a change of variable	𝜏 = 𝜏(𝑠)	such that	𝑅(𝑎 + 𝜏) = −𝑠. Based on the inverse function theorem, 
we know that	𝜏(𝑠)	exists because 

𝜏(0) = 0, 𝑢(𝜏, 𝑠) = 𝑅(𝑎 + 𝜏) + 𝑠,
𝜕𝑢
𝜕𝜏¿(V,G)&(!,!)

= 𝑅+(𝑎) ≠ 0 

With this change of variable, we can directly apply Watson’s Lemma with	𝜎 = 0	and 

𝜙(𝑠) = 𝑔.𝑎 + 𝜏(𝑠)/	𝜏+(𝑠) 



This leads to the following asymptotic expansion 

𝐹(𝜆) ∼ X 𝑒1?G𝑔.𝑎 + 𝜏(𝑠)/	𝜏+(𝑠)	d𝑠
T*

!
=P

𝜙($)(0)
𝜆$/'

0

$&!

, 𝜆 → ∞ 

The calculation of higher derivatives of	𝑔(𝑎 + 𝜏(𝑠))	follows Faà di Bruno formula, while those 
for	𝜏(𝑠)	follows the formula for the inverse function. In particular, we have 

𝜙(0) = 𝑔(𝑎)	𝜏+(0) = −
𝑔(𝑎)
𝑅+(𝑎) 

The leading order term gives 

𝐹(𝜆) ∼ −
𝑔(𝑎)
𝑅+(𝑎) ⋅

1
𝜆 + 𝑜 `

1
𝜆a , 𝜆 → ∞ 

 

If	𝑅+(𝑎) = 𝑅++(𝑎) = ⋯ = 𝑅(41')(𝑎) = 0	and	𝑅(4)(𝑎) < 0, then we have 

𝑅(𝑎 + 𝜏) = 𝑅(𝑎) +
1
𝑘! 𝑅

(4)(𝑎)𝜏4 + 𝑜(𝜏4) 

The change of variable	𝜏 = 𝜏(𝑠)	now should satisfy	𝑅(𝑎 + 𝜏) = −𝑠4. 
 
If	𝑇 = {𝑏}	is the right endpoint, we have 

𝐹(𝜆) ∼
𝑔(𝑏)
𝑅+(𝑏) ⋅

1
𝜆 + 𝑜 `

1
𝜆a , 𝜆 → ∞ 

 
Ø Contributions from interior maxima (3.4) 
Consider	𝑇 = {𝑡PQR}	with	𝑎 < 𝑡PQR < 𝑏. We have	𝑅+(𝑡PQR) = 0	and assume	𝑅++(𝑡PQR) < 0.  

𝐹(𝜆) ∼ X 𝑒?B(@&'(/V)𝑔(𝑡PQR + 𝜏)	d𝜏
T

1T
 

 
Morse Lemma 
For	𝑓 ∈ 𝐶8(Ω), 𝑥! ∈ Ω	and a non-degenerate	𝐷(𝑓, there exists a local coordinate transform 
𝑥 = 𝑥(𝑦)	such that 

𝑓.𝑥(𝑦)/ = 𝑦'( +⋯+ 𝑦I( − 𝑦I/'( −⋯− 𝑦$( + 𝑓(𝑥!) 

 
From Morse Lemma, we can find a transform	𝜏 = 𝜏(𝑠)	such that 

𝑅 − 𝑅PQR =
1
2𝑅

++(𝑡PQR)(𝑡 − 𝑡PQR)( +⋯ = −𝑠( 

Take	𝑅PQR = 0	and this leads to 

𝐹(𝜆) ∼ X 𝑒1?G"𝑔.𝑡PQR + 𝜏(𝑠)/	𝜏+(𝑠)	d𝑠
K

1L
∼ ³

𝜋
𝜆P

𝜙(($)(0)
2($	𝑛! ⋅

1
𝜆$

0

$&!

 



Here we use the previous result with 

𝜙(𝑠) = 𝑔.𝑡PQR + 𝜏(𝑠)/	𝜏+(𝑠), 𝜙(0) = 𝑔(𝑡PQR)	𝜏+(0) 

The derivative	𝜏+(𝑠)	is obtained from 

		𝑅.𝑡PQR + 𝜏(𝑠)/ = −𝑠(, 𝑅+.𝑡PQR + 𝜏(𝑠)/	𝜏+(𝑠) = −2𝑠 

𝑅++.𝑡PQR + 𝜏(𝑠)/	[𝜏+(𝑠)]( + 𝑅+.𝑡PQR + 𝜏(𝑠)/	𝜏++(𝑠) = −2 

At	𝑠 = 0, we have 

𝑅++(𝑡PQR)	[𝜏+(0)]( = −2, 𝜏+(0) = ­−
2

𝑅++(𝑡PQR)
 

The leading order term gives 

𝐹(𝜆) ∼
𝑔(𝑡PQR)

·|𝑅++(𝑡PQR)|
­2𝜋
𝜆 + 𝑜 `

1
√𝜆
a , 𝜆 → ∞ 

The interior maxima dominates over the endpoints. 
 
Example 1: Gamma function 

Γ(𝑧) = X 𝑒1@𝑡"1'	d𝑡
0

!
, 𝑧 → ∞ 

Consider a change of variable	𝑡 = 𝑧𝑠, we have 

𝑧Γ(𝑧) = X 𝑒1@𝑡"	d𝑡
0

!
= X 𝑒1"G/"(WX "/WX G)	𝑧d𝑠

0

!
= 𝑧 ⋅ 𝑧"X 𝑒"(WX G1G)	d𝑠

0

!
 

We recognize	𝑅(𝑠) = ln 𝑠 − 𝑠	with	𝑠PQR = 1	and	𝑅(𝑠PQR) = −1. Now we have 

Γ(𝑧) = 𝑧"𝑒1"X 𝑒"(WX G1G/')	d𝑠
0

!
, 𝑅Á(𝑠) = ln 𝑠 − 𝑠 + 1 

We want a coordinate transform	𝑠 = 𝑠(𝑢)	such that 

ln 𝑠 − 𝑠 + 1 = −𝑢(, −𝑠𝑒1G = −𝑒1Y'/M"Z, 𝑠 = −𝑊.−𝑒1Y'/M"Z/ 

Now	𝑠	is expressed using the Lambert W function. The asymptotic expansion becomes 

Γ(𝑧) ∼ 𝑧"𝑒1"X 𝑒1"M"𝑠+(𝑢)	d𝑢
T

1T
 

To obtain each coefficient, consider 
𝑠 = 1 + 𝑐'𝑢 + 𝑐(𝑢( + 𝑐8𝑢8 + 𝑜(𝑢8) 

We thus obtain 
ln(1 + 𝑐'𝑢 + 𝑐(𝑢( + 𝑐8𝑢8 +⋯) = 𝑐'𝑢 + (𝑐( − 1)𝑢( + 𝑐8𝑢8 +⋯ 

𝑐' = √2, 𝑐( =
2
3 , 𝑐8 =

1
9√2

 



𝑠+(𝑢) = √2 +
4
3𝑢 +

1
3√2

𝑢( + 𝑜(𝑢() 

Directly calculating the integral over the entire real axis, we have 

Γ(𝑧) ∼ 𝑧"𝑒1"­
2𝜋
𝑧 Z1 +

1
12𝑧 +

1
288𝑧( −

139
51840

1
𝑧8 + 𝑂 `

1
𝑧>a[ 

 
Example 2: Weakly diffusive regularization of shock waves (3.6) 
The shock wave equation is given as 

𝑢@ + 𝑢𝑢- = 0, 𝑢(𝑥, 0) = 𝑢!(𝑥) 
The solution can be written as 

𝑢(𝑥, 𝑡) = 𝑢!(𝑥 − 𝑢(𝑥, 𝑡)𝑡) 
After finite time, the initial	𝑢!(𝑥)	profile will experience catastrophic steepening that develops 
a shock wave. By including the diffusion term, the shock is regularized. 

𝑢@ + 𝑢𝑢- = 𝜈𝑢-- , 𝑢(𝑥, 0) = 𝑢!(𝑥) 
This is Burgers’ equation with small	𝜈 → 0/. With the Cole-Hopf transformation, we have 

𝜑@ = 𝜈𝜑-- , 𝑢 = −2𝜈
𝜑-
𝜑  

This leads to 
𝑢@ + 𝑢𝑢- − 𝜈𝑢-- = −2𝜈(ln𝜑)-@ + 4𝜈((ln𝜑)-(ln𝜑)-- + 2𝜈((ln𝜑)---	

= [−2𝜈(ln𝜑)@ + 2𝜈([(ln𝜑)-]( + 2𝜈((ln𝜑)--]-	

= Æ−2𝜈
𝜑@
𝜑 + 2𝜈(

𝜑--
𝜑 Ç

-
= Æ−2𝜈

𝜑@ − 𝜈𝜑--
𝜑 Ç

-
= 0 

Now we can choose	𝜑!(𝑥)	as 

𝑢!(𝑥) = −2𝜈
𝜑!+

𝜑!
, 𝜑!(𝑥) = expZ−

1
2𝜈 X 𝑢!(𝜂)	d𝜂

-

!
[ 

The diffusion equation gives 

𝜑(𝑥, 𝑡) =
1

√4𝜋𝜈𝑡
X 𝜑!(𝜉) exp Z−

(𝑥 − 𝜉)(

4𝜈𝑡 [ 	d𝜉
ℝ

	

=
1

√4𝜋𝜈𝑡
X exp Z−

1
2𝜈X 𝑢!(𝜂)	d𝜂

\

!
−
(𝑥 − 𝜉)(

4𝜈𝑡 [ 	d𝜉
ℝ

 

From the Cole-Hopf transformation, we can obtain 

𝑢(𝑥, 𝑡) = X𝑒?B(\)𝑔(𝜉)	d𝜉
ℝ

⋅ «X 𝑒?B(\)	d𝜉
ℝ

¬
1'

 

The parameter	𝜆	and functions	𝑅(𝜉)	and	𝑔(𝜉)	correspond to 



𝜆 =
1
2𝜈 , 𝑅(𝜉; 𝑥, 𝑡) = −X 𝑢!(𝜂)	d𝜂

\

!
−
(𝑥 − 𝜉)(

2𝑡 , 𝑔(𝜉; 𝑥, 𝑡) =
𝑥 − 𝜉
𝑡  

We first find the interior maxima of	𝑅(𝜉), which gives 

𝑅+(𝜉) = −𝑢!(𝜉) +
𝑥 − 𝜉
𝑡 = 0, 𝜉(𝑥, 𝑡) = 𝑥 − 𝑡𝑢!(𝜉) 

From the Laplace’s method, we have 

𝑢(𝑥, 𝑡) =
𝑔(𝜉) + 𝑂(𝜈)
1 + 𝑂(𝜈) =

𝑥 − 𝜉
𝑡 + 𝑂(𝜈), 𝜈 → 0 

Taking the limit	𝜈 = 0, we can recover the solution of the unperturbed problem as 
𝑥 − 𝑡𝑢 = 𝜉 = 𝑥 − 𝑡𝑢!(𝑥 − 𝑡𝑢), 𝑢(𝑥, 𝑡) = 𝑢!(𝑥 − 𝑢(𝑥, 𝑡)𝑡) 

 
Now consider a matrix	𝑨(𝒖)	with real eigenvalues	𝜆' < 𝜆( < ⋯ < 𝜆$ 

𝒖 = (𝑢', 𝑢(, ⋯ , 𝑢$), 𝒖@ + 𝑨(𝒖)𝒖- = 𝟎, 𝒖(𝑥, 0) = 𝒖! 
With the diffusion term, we have 

𝒖@ + 𝑨(𝒖)𝒖- = 𝜀𝒖-- , 𝒖(𝑥, 0) = 𝒖! 
This vector problem becomes much more difficult. 
 
Ø Multidimensional integrals (3.7) 

𝐹(𝜆) = X𝑒?B(𝒙)𝑔(𝒙)	d𝒙
]

, 𝒙 ∈ ℝ$ 

Suppose that	𝑅 ∈ 𝐶0	takes its maximum at	𝒙PQR = 𝟎	in the interior of	Ω	with 𝑅PQR = 0. 

𝑅(𝒙) = 𝑅PQR +
1
2𝒙

𝑻𝑯𝒙 + 𝑜(|𝒙|(), 𝑯 =
𝜕(𝑅
𝜕𝑥,𝜕𝑥_

(𝒙PQR) 

We assume that 𝑯	is negative definite. The case of semi-definite	𝑯	is more complicated. 
 

Note: If	𝑯 = 𝟎, then we need to consider	𝑅(>)(𝟎). As a simple case, for	𝑛 = 2	we have 
𝑅(𝑥, 𝑦) = 𝑎'𝑥> + 𝑎(𝑥8𝑦 + 𝑎8𝑥(𝑦( + 𝑎>𝑥𝑦8 + 𝑎=𝑦> + 𝑜(|𝑥( + 𝑦(|() 

If	𝑥 ≠ 0, we have 

𝑅(𝑥, 𝑦) = 𝑥> Æ1 + 𝑎(
𝑦
𝑥 +⋯𝑎= �

𝑦
𝑥�

>
Ç + 𝑜(|𝑥( + 𝑦(|() 

To require a polynomial with	deg 𝑅 = 4	always being negative is extremely complicated. This 
leads to the theory of singular points. 
 
The integral can be similarly localized as 

𝐹(𝜆) ∼ X 𝑒?B(𝒙)𝑔(𝒙)	d𝒙
|𝒙|aT

 

Based on Morse Lemma, there exists new coordinates	𝑦', ⋯ , 𝑦$	such that 



𝑅.𝒙(𝒚)/ = −𝑦'$ −⋯− 𝑦$( = −𝒚𝑻𝒚 

Therefore, the integral becomes 

𝐹(𝜆) ∼ X 𝑒1?Y)+"/⋯/),"Z𝑔.𝒙(𝒚)/	𝐽(𝒚)	d𝒚
|𝒚|aT*

 

Assume that all functions are	𝐶0. The Taylor expansion gives 

𝜙(𝒚) = P P 𝐶4+⋯4- 	𝑦4+⋯𝑦4-
'a4+,⋯,4-a$.5!

 

Here	𝑚	denotes the polynomial degree. We need to evaluate the following type of integral 

X 𝑒1?Y)+"/⋯/),"Z	𝑦4+⋯𝑦4- 	d𝑦'⋯d𝑦$
ℝ,

 

Consider the function 

𝐺(𝑥', ⋯ , 𝑥$) = X 𝑒1?Y)+"/⋯/),"Z/(-+)+/⋯/-,),)	d𝑦'⋯d𝑦$
ℝ,

	

= ZX 𝑒1?)+"/-+)+ 	d𝑦'
ℝ,

[⋯ZX 𝑒1?),"/-,), 	d𝑦$
ℝ,

[ = �
𝜋
𝜆�

$
( expZ

𝑥'( +⋯+ 𝑥$(

4𝜆 [ 

Then we have 

𝜕.𝐺(𝑥', ⋯ , 𝑥$)
𝜕𝑥4+⋯𝜕𝑥4-

F
𝒙&𝟎

= X 𝑒1?Y)+"/⋯/),"Z	𝑦4+⋯𝑦4- 	d𝑦'⋯d𝑦$
ℝ,

 

The integral is thus asymptotic to 

𝐹(𝜆) ∼ �
𝜋
𝜆�

$/(
Æ𝑔(𝟎)𝐽(𝟎) + 𝑜 `

1
𝜆aÇ 

To obtain the Jacobian	𝐽(𝟎), note that	𝒙 = 𝑲𝒚	and we have 

𝑅(𝒙) =
1
2𝒙

𝑻𝑯𝒙 =
1
2𝒚

𝑻𝑲𝑻𝑯𝑲𝒚 = −𝒚𝑻𝒚,
1
2𝑲

𝑻𝑯𝑲 = −𝑰 

From definition, we have	𝐽 = |det𝑲|, which is obtained as 

1
2$
|det𝑲|(|det𝑯| = 1, 𝐽 = |det𝑲| =

2$/(

·|det𝑯|
 

The leading term of the asymptotic expansion is 

𝐹(𝜆) ∼ `
2𝜋
𝜆 a

$
( 𝑒?B(𝟎)𝑔(𝟎)

·|det𝑯|
Z1 + 𝑜 `

1
𝜆a[ 

 
Example: Partition function of random matrix theory 

A random matrix	𝑴 = (𝑎,_) ∈ ℍ$×$, the space of Hermite matrices with	𝑴f = 𝑴. We have 



𝐼(𝜆, 𝜀) = X exp «
tr	𝑉(𝑴)

𝜀 ¬ d𝑴
ℍ,×,

 

The matrix includes diagonal elements	𝑎'', ⋯ , 𝑎$$	and the off-diagonal elements	𝑥,_ ± 𝑖𝑦,_. 

Therefore, we can choose these variables as the coordinates for	ℍ and obtain 

d𝑴 = RÙd𝑎,,
,

S ∧ ¢Ùd𝑥,_ ∧ d𝑦,_
,,_

£ 

The function	𝑉	is chosen as 

𝑉(𝑡, 𝒂) = 𝑎! + 𝑎'𝑡 + 𝑎(𝑡( +⋯+ 𝑎(4𝑡(4 , 𝜆(4 < 0 
For a random matrix, the parameter	𝑎!	is selected such that	𝐼(𝜆, 𝜀) = 1. Since every Hermite 
matrix can be written as	𝑴 = 𝑼f𝚲𝑼	with a unitary matrix	𝑼. The unitary space is denoted as	𝕌. 
The mapping	𝕌$×$ × ℝ$ → ℍ$×$,	(𝑼, 𝚲) ↦ 𝑼f𝚲𝑼 = 𝑴	is surjective. The integral becomes 

𝐼(𝜆, 𝜀) =
1
𝑁!X d𝑼

𝕌,×,
X exp «

tr	𝑉(𝚲)
𝜀 ¬ ⋅Ù.𝜆, − 𝜆_/

(

,i_

	d𝜆'⋯d𝜆$
ℝ,

 

The integral to study can be expressed as 

𝐹(𝒂, 𝜀) = X exp ¥
1
𝜀P𝑉(𝜆, , 𝒂)

$

,&'

¦ ⋅Ù.𝜆, − 𝜆_/
(

,i_

	d𝜆'⋯d𝜆$
ℝ,

 

 
Ø Exercise 
Laplace’s method 1 

𝐹(𝜆) = X 𝑒1?j-/
'
-k	d𝑥

/0

!
, 𝜆 → +∞ 

For this integral, we have	𝑔(𝑥) = 1	and 

𝑅(𝑥) = −`𝑥 +
1
𝑥a , 𝑥! = 1, 𝑅PQR = 𝑅(𝑥!) = −2, 𝑅++(𝑥!) = −2 

Now we have 

𝐹(𝜆) = 𝑒1(?X 𝑒1?j-/
'
-1(k	d𝑥

/0

!
, 𝑅Á(𝑥) = 2 − `𝑥 +

1
𝑥a 

We want a coordinate transform	𝑥 = 𝑥(𝑠)	with	𝑥(0) = 1	such that 

2 − `𝑥 +
1
𝑥a = −𝑠(, 𝑥(𝑠) =

𝑠( + 2 + 𝑠√𝑠( + 4
2  

The Taylor series of	𝑥(𝑠)	is 

𝑥(𝑠) = 1 + 𝑠 +
𝑠(

2 +
𝑠8

8 −
𝑠=

128 +
𝑠l

1024 + 𝑂
(𝑠m)	

𝑥+(𝑠) = 1 + 𝑠 +
3
8 𝑠

( −
5
128 𝑠

> +
7

1024 𝑠
n + 𝑂(𝑠o) 



Denote	𝜙(𝑠) = 𝑥+(𝑠), the integral becomes 

𝐹(𝜆) ∼ 𝑒1(?X 𝑒1?G"𝜙(𝑠)	d𝑠
/0

10
= 𝑒1(?³

𝜋
𝜆P

𝜙(($)(0)
2($𝑛!

1
𝜆$

0

$&!

, 𝜆 → +∞	 

Based on the Taylor coefficients, we have 

𝐹(𝜆) ∼ 𝑒1(?³
𝜋
𝜆 R1 +

3
16 𝜆

1' −
15
512 𝜆

1( +
105
8192 𝜆

18 + 𝑂(𝜆1>)S , 𝜆 → +∞ 

 
Laplace’s method 2 

𝐹(𝑥) = X 𝑒- pqr @ cos(𝑛𝑡) d𝑡
s
>

!
, 𝑥 → +∞, 𝑛 ∈ ℤ 

For this integral, we have	𝑔(𝑡) = cos 𝑛𝑡	and 
𝑅(𝑡) = cos 𝑡 , 𝑡! = 0, 𝑅PQR = 𝑅(0) = 1, 𝑅+(0) = 0, 𝑅++(0) = −1 

Now we have 

𝐹(𝑥) ∼ 𝑒-X 𝑒-(pqr @1') cos(𝑛𝑡) d𝑡
T

!
, 𝑅|(𝑡) = cos 𝑡 − 1 

We want a coordinate transform	𝜏 = 𝜏(𝑠)	with	𝜏(0) = 0	such that 

cos 𝜏 − 1 = −𝑠(, 𝜏(𝑠) = arccos(1 − 𝑠() = √2𝑠 +
𝑠8

6√2
+ 𝑂(𝑠=) 

Denote	𝜙(𝑠) = 𝑔(𝜏(𝑠))	𝜏+(𝑠), the integral becomes 

𝐹(𝑥) ∼ 𝑒-X 𝑒1?G"𝜙(𝑠)	d𝑠
/0

!
=
𝑒-

2
³
𝜋
𝑥P

𝜙(($)(0)
2($𝑛!

1
𝑥$

0

$&!

, 𝑥 → +∞	 

The Taylor series of	𝜙(𝑠)	is obtained as 

𝜙(𝑠) = .1 − 𝑛(𝑠( + 𝑂(𝑠>)/ R√2 +
𝑠(

2√2
+ 𝑂(𝑠>)S = √2 +

1 − 4𝑛(

2√2
𝑠( + 𝑂(𝑠>) 

Based on the Taylor coefficients, we have 

𝐹(𝑥) ∼ 𝑒-³
𝜋
2𝑥 R1 +

1 − 4𝑛(

8𝑥 + 𝑂(𝑥1()S , 𝑥 → +∞ 

 
Laplace’s method 3 

𝐹(𝑥) = X 𝑒1-√@
cos 𝑡
√𝑡

	d𝑡
'

!
, 𝑥 → +∞ 

First we consider a change of variable	𝜏 = √𝑡, which gives 



𝐹(𝑥) = 2X 𝑒1-V cos 𝜏( d𝜏
'

!
, 𝑥 → +∞ 

Denote	𝜙(𝜏) = 2 cos 𝜏(	with its Taylor series 
𝜙(𝜏) = 2 − 𝜏> + 𝑂(𝜏o) 

The integral becomes 

𝐹(𝑥) ∼ X 𝑒1-V𝜙(𝜏)	d𝜏
/0

!
= P

𝜙($)(0)
𝑥$/'

0

$&!

=
2
𝑥 −

24
𝑥= + 𝑂(𝑥

1m), 𝑥 → +∞	 

 
Laplace’s method 4 

𝐹(𝑥) = X 𝑒@𝑡-(1 + 𝑡()1-	d𝑡
'

!
, 𝑥 → +∞ 

First we rewrite the integrand as 

𝐹(𝑥) = X 𝑒- WX @1- WXY'/@"Z𝑒@	d𝑡
'

!
, 𝑥 → +∞ 

Now we recognize	𝑔(𝑡) = 𝑒@	with 

𝑅(𝑡) = ln `
𝑡

1 + 𝑡(a , 𝑡! = 1, 𝑅PQR = − ln 2 , 𝑅+(1) = 0, 𝑅++(1) = −1 

The contribution comes from the right endpoint. The leading order term is 

𝐹(𝑥) ∼
𝑒-B&'(𝑔(𝑡!)

·|𝑅++(𝑡!)|
³
𝜋
2𝑥 .1 + 𝑂

(𝑥1')/ = 21-𝑒³
𝜋
2𝑥 .1 + 𝑂

(𝑥1')/, 𝑥 → +∞ 

 
Laplace’s method 5 

𝐹(𝑥) = X 𝑒1- pqru" @	d𝑡
/0

!
, 𝑥 → +∞ 

With a change of variable	𝜏 = sinh 𝑡, we have 

𝐹(𝑥) = 𝑒1-X 𝑒1-V"
1

√1 + 𝜏(
	d𝜏

/0

!
, 𝑥 → +∞ 

Based on the following Taylor series 

𝜙(𝜏) =
1

√1 + 𝜏(
=P�−1/2𝑛 �

0

$&!

𝜏($ = 1 −
1
2 𝜏

( + 𝑂(𝜏>) 

𝐹(𝑥) ∼ 𝑒1-X 𝑒1-V"𝜙(𝜏)	d𝜏
/0

!
=
𝑒1-

2
³
𝜋
𝑥P

𝜙(($)(0)
2($𝑛!

1
𝑥$

0

$&!

, 𝑥 → +∞	 



The integral becomes 

𝐹(𝑥) ∼
𝑒1-

2
³
𝜋
𝑥 Z1 −

1
4𝑥 + 𝑂

(𝑥1()[ , 𝑥 → +∞ 

 
Laplace’s method 6 

𝐹(𝑥) = X 𝑒-Y@1v/Z	d𝑡
/0

10
, 𝑥 → +∞ 

With	𝑅(𝑡) = 𝑡 − 𝑒@, we can recognize 
𝑡! = 0, 𝑅PQR = −1, 𝑅|(𝑡) = 𝑡 − 𝑒@ + 1, 𝑅|+(0) = 0 

We want a coordinate transform	𝜏 = 𝜏(𝑠)	with	𝜏(0) = 0	such that 

𝜏 − 𝑒V + 1 = −𝑠(, 𝜏(𝑠) =P𝑎$𝑠$
$5'

= √2𝑠 −
1
3 𝑠

( +
√2
18 𝑠

8 + 𝑂(𝑠>) 

Denote	𝜙(𝑠) = 𝜏+(𝑠), the integral becomes 

𝜙(𝑠) = √2 −
2
3 𝑠 +

√2
6 𝑠( + 𝑂(𝑠8) 

𝐹(𝑥) ∼ 𝑒1-X 𝑒1-G"𝜙(𝑠)	d𝑠
/0

10
= 𝑒1-³

𝜋
𝑥P

𝜙(($)(0)
2($𝑛!

1
𝑥$

0

$&!

, 𝑥 → +∞	 

Based on the Taylor coefficients, we have 

𝐹(𝑥) ∼ 𝑒1-­
2𝜋
𝑥 Z1 +

1
12 𝑥

1' + 𝑂(𝑥1()[ , 𝑥 → +∞ 

 
Laplace’s method 7 
We want to prove the following asymptotic relation 

P�𝑛𝑠�
𝑠!
𝑛G

$

G&!

∼ ³
𝜋𝑛
2 , 𝑛 → +∞ 

The result of the integral below is given 

X 𝑒1$@𝑡G	d𝑡
/0

!
=

𝑠!
𝑛G/' , 𝑠 ∈ ℕ 

From the binomial theorem, we have 

X 𝑒1$@(1 + 𝑡)$	d𝑡
/0

!
=P�𝑛𝑠�X 𝑒1$@𝑡G	d𝑡

/0

!

$

G&!

=P�𝑛𝑠�
𝑠!
𝑛G/'

$

G&!

 

Therefore, we need to study the asymptotic behavior of the following integral 



𝐹(𝑛) = X 𝑒1$@(1 + 𝑡)$	d𝑡
/0

!
= X 𝑒1$@/$ WX('/@)	d𝑡

/0

!
, 𝑛 → +∞ 

With	𝑅(𝑡) = −𝑡 + ln(1 + 𝑡), we can recognize 
𝑡! = 0, 𝑅PQR = 0, 𝑅+(0) = 0, 𝑅++(0) = −1 

The leading order term is thus obtained as 

𝐹(𝑛) ∼
𝑒-B&'(𝑔(𝑡!)

·|𝑅++(𝑡!)|
³
𝜋
2𝑥 .1 + 𝑂

(𝑥1')/ = ³
𝜋
2𝑛 .1 + 𝑂

(𝑛1')/, 𝑛 → +∞ 

Finally, we have 

P�𝑛𝑠�
𝑠!
𝑛G

$

G&!

= 𝑛𝐹(𝑛) ∼ ³
𝜋𝑛
2 .1 + 𝑂(𝑛1')/, 𝑛 → +∞ 

 
Laplace’s method 8 

𝐹(𝑥) = X 𝑒1-@ sin 𝑡 d𝑡
/0

!
, 𝑥 → +∞ 

We directly recognize	𝜙(𝑡) = sin 𝑡	with its Taylor series 

𝜙(𝑡) = P
(−1)$

(2𝑛 + 1)! 𝑥
($/'

0

$&!

 

With the dominant contribution from the left endpoint	𝑡! = 0, we have 

𝐹(𝑥) = P
𝜙($)(0)
𝑥$/'

0

$&!

=P
𝜙(($/')(0)
𝑥($/(

0

$&!

=
1
𝑥(P

(−1)$

𝑥($

0

$&!

=
1

𝑥( + 1 

 
 
 
 
  



Asymptotic Analysis of Integrals (3): Steepest Descents 

We analyze the asymptotic expansion of the following integral 

𝐹(𝜆) = X𝑒?D(")𝑔(𝑧)	d𝑧
E

, 𝜆 → ∞ 

With a curve	𝛾 ∈ Ω ⊆ ℂ	and holomorphic functions	ℎ(𝑧)	and	𝑔(𝑧)	in	𝕆(Ω). If another curve	𝛾� 
is homotopic to	𝛾, then the result is the same. The goal is to find an appropriate	𝛾�	such that we 
can perform asymptotic analysis of the integral. 
 
Ø Contour lines of analytic functions (4.2) 
Consider an analytic function	ℎ ∈ 𝕆(Ω), we have 

ℎ(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦), 𝑧 = 𝑥 + 𝑖𝑦 
The Cauchy-Riemann equations are 

𝑢- = 𝑣) , 𝑢) = −𝑣- 

Both	𝑢(𝑥, 𝑦)	and	𝑣(𝑥, 𝑦)	are harmonic 
𝑢-- = 𝑣-) = −𝑢)) , 𝑣-- = −𝑢-) = −𝑣)) 

The derivative	ℎ+(𝑧)	can be expressed as 
ℎ+(𝑧) = 𝑢- + 𝑖𝑣- = 𝑢- − 𝑖𝑢) = 𝑣) + 𝑖𝑣- 

For	𝑧! = 𝑥! + 𝑖𝑦!, denote	ℎ(𝑧!) = 𝑢! + 𝑖𝑣!. Define two sets as 
𝛾M = {𝑧 ∈ Ω	|	𝑢(𝑥, 𝑦) = 𝑢!}, 𝛾w = {𝑧 ∈ Ω	|	𝑣(𝑥, 𝑦) = 𝑣!} 

If	ℎ+(𝑧!) ≠ 0, we have 
∇𝑢(𝑥!, 𝑦!) ≠ 0, ∇𝑣(𝑥!, 𝑦!) ≠ 0 

Without loss of generality, consider	𝑢- ≠ 0. The implicit function theorem implies	𝑥 = 𝜙(𝑦). 
Also note that 

∇𝑢 ⋅ ∇𝑣 = 𝑢-𝑣- + 𝑢)𝑣) = 0 

This shows that	𝛾M	and	𝛾w	are orthogonal to each other. 
 

𝑢(𝑥, 𝑦) 

𝛾M 𝛾w 𝛾w 𝛾M ℎ(𝑧) = 𝑧( 



Example 
ℎ(𝑧) = 𝑧(, 𝑢(𝑥, 𝑦) = 𝑥( − 𝑦(, 𝑣(𝑥, 𝑦) = 2𝑥𝑦 

𝛾M	are plotted by light curves, while	𝛾w	are plotted by dark curves. They are defined by 
𝛾M = {𝑥( − 𝑦( = 𝑐}, 𝛾w = {2𝑥𝑦 = 𝑐} 

 
Saddle points (4.4) 
If	ℎ+(𝑧!) = 0	and	ℎ++(𝑧!) ≠ 0, then we have 

ℎ(𝑧) = ℎ(𝑧!) +
1
2ℎ

++(𝑧!)(𝑧 − 𝑧!)( + 𝑜((𝑧 − 𝑧!)() 

There exists a transformation	𝑧 = 𝑧(𝑤)	such that	ℎ(𝑤) = ℎ(𝑧!) + 𝑤(. This goes back to the 
analysis of function	ℎ(𝑧) = 𝑧(, which has a critical point	𝑧! = 0. For a general critical point	𝑧!, 
the derivatives satisfy 

𝑢-(𝑥!, 𝑦!) = 0, 𝑢)(𝑥!, 𝑦!) = 0, Hess(𝑢) = å
𝑢-- 𝑢-)
𝑢-) 𝑢))å = −𝑢--( − 𝑢-)( < 0 

This shows that	(𝑥!, 𝑦!)	is a saddle point of	𝑢(𝑥, 𝑦). Similar argument for	𝑣(𝑥, 𝑦). 
 

If	ℎ+(𝑧!) = ℎ++(𝑧!) = ⋯ = ℎ(41')(𝑧!) = 0	and	ℎ(4)(𝑧!) ≠ 0, then we have 

ℎ(𝑧) = ℎ(𝑧!) +
1
𝑘! ℎ

(4)(𝑧!)(𝑧 − 𝑧!)4 + 𝑜((𝑧 − 𝑧!)4) 

We then can obtain a transformation that leads to	ℎ(𝑤) = ℎ(𝑧!) + 𝑤4. 
 
Ø Steepest descents (4.3, 4.5) 
The path	𝛾� = 𝛾' ∪ 𝛾( ∪⋯∪ 𝛾4 	satisfies that each	𝛾_ 	is a portion of contour levels	𝛾M	or	𝛾w . 

For	𝛾, 	that is along	𝛾M, we have 

FX 𝑒?D(")𝑔(𝑧)	d𝑧
E0

F = F𝑒?MX 𝑒,?w𝑔(𝑧)	d𝑧
E0

F ≤ 𝑒?MX |𝑔(𝑧)|	d𝑧
E0

= 𝐶𝑒?M 

We choose	𝛾, 	such that	𝑢 < 0, and the contribution goes to 0 as	𝜆 → ∞. On the other hand, 
for	𝛾_ 	that is along	𝛾w, we have 

X 𝑒?D(")𝑔(𝑧)	d𝑧
E1

= 𝑒,?wX 𝑒?M𝑔(𝑧)	d𝑧
E1

 

= 𝑒,?wX 𝑒?MY-(@),)(@)Z𝑔.𝑥(𝑡), 𝑦(𝑡)/[𝑥+(𝑡) + 𝑖𝑦+(𝑡)]	d𝑡
K1

L1
 

The integral then can be analyzed by Laplace’s method. Typically, the first portion is along	𝛾w 
in order to reach	𝛾M	with	𝑢 < 0. 
 



Example 1: Contribution from endpoints 

𝐹(𝜆) = X 𝑒1?""d𝑧
*/C,

!
, 𝑎, 𝑏 > 0 

We have	ℎ(𝑧) = −𝑧(	with 
𝑢 = 𝑦( − 𝑥(, 𝑣 = −2𝑥𝑦 

Start from	𝑧 = 0, we go along	𝛾w:	0 → 𝑎'	to reduce	𝑢. Based 
on different locations	𝑎 + 𝑏𝑖, we need to construct different 
paths	𝛾�, and there are two cases to consider: 
¨ Case 1: 𝑎 > 𝑏. We can easily find one	𝛾M	that connects	𝑧 = 𝑎 + 𝑏𝑖	to the real axis. 

𝛾�: (𝛾w:	0 → 𝑎') ∪ (𝛾M:	𝑎' → 𝑎 + 𝑏𝑖) 
We only need to evaluate along the first segment	𝛾w: 0 → 𝑎', which gives 

𝐹(𝜆) ∼ X 𝑒1?-"d𝑥
*+

!
∼ X 𝑒1?-"d𝑥

0

!
=
1
2
³
𝜋
𝜆 	Z1 + 𝑂 `

1
𝜆a[ , 𝜆 → ∞ 

¨ Case 2:	𝑎 < 𝑏. We still need another	𝛾w:	𝑐 + 𝑑𝑖 → 𝑎 + 𝑏𝑖	to connect. 
𝛾�: (𝛾w:	0 → 𝑎') ∪ (𝛾M:	𝑎' → 𝑐 + 𝑑𝑖) ∪ (𝛾w:	𝑐 + 𝑑𝑖 → 𝑎 + 𝑏𝑖) 

The first segment gives the same result. On the third segment, we have 

𝑥𝑦 = 𝑎𝑏 = 𝑐𝑑, 𝑥 =
𝑎𝑏
𝑦 , 𝑧 =

𝑎𝑏
𝑦 + 𝑖𝑦 

The integral becomes 

𝐼8(𝜆) = 𝑒1(,?*CX 𝑒
?x)"1*

"C"
)" y

`−
𝑎𝑏
𝑦( + 𝑖a 	d𝑦

C

:
 

Using Laplace’s method, we have 

𝑅PQR = 𝑅(𝑏) = 𝑏( − 𝑎(, 𝑔(𝑏) = −
𝑎
𝑏 + 𝑖, 𝑅+(𝑏) =

2(𝑎( + 𝑏()
𝑏  

The asymptotic expansion is 

𝐹(𝜆) ∼ 𝑒1(,?*C𝑒?B&'( R
𝑔(𝑏)
𝑅+(𝑏)

1
𝜆 + 𝑜 `

1
𝜆aS = −

𝑒1?(*/C,)"

2(𝑎 + 𝑏𝑖)
1
𝜆 + 𝑜 `

1
𝜆a , 𝜆 → ∞ 

The contribution from	𝐼8(𝜆)	is of much greater order than	𝐼'(𝜆). 
 
Example 2: Contribution from saddle points (4.5) 
In practice, many exponential integrals are specified on contours	𝐶	that have no endpoints, 
either because the contour is closed or because the contour tends to infinity in both directions. 
Along integration path	𝛾w(𝑡), we usually have	𝑢(𝑥(𝑡), 𝑦(𝑡))	taking its maximum at the saddle 
point of	ℎ(𝑧), where the dominant contribution to the integral arises.  
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If	ℎ ∈ Ω	only has one non-degenerate critical point	𝑧!	with	ℎ+(𝑧!) = 0	and	ℎ++(𝑧!) ≠ 0, then it 
is a saddle point. For a curve	𝛾w(𝑡)	that goes through this point	𝑧!, denote 

𝛾w(𝑡) = .𝑥(𝑡), 𝑦(𝑡)/, 𝑡 ∈ [𝛼, 𝛽], 𝛾w(𝑡!) = 𝑧! 

The asymptotic expansion of the integral	𝐹(𝜆)	becomes 

𝐹(𝜆) ∼ X 𝑒?DY"(@)Z𝑔.𝑧(𝑡)/	𝑧+(𝑡)	d𝑡
K

L
= 𝑒?D("!)X 𝑒?Dz(@)𝑔.𝑧(𝑡)/	𝑧+(𝑡)	d𝑡

K

L
 

Note that	ℎÁ(𝑡) = ℎ(𝑧(𝑡)) − ℎ(𝑧!)	is real as on	𝛾w(𝑡). From Laplace’s method, we have 

𝐹(𝜆) ∼ 𝑒?D("!) ç­
2𝜋

dℎÁ++(𝑡!)d
𝑔(𝑧!)	𝑧+(𝑡!)

1
√𝜆

+ 𝑜 `
1
√𝜆
aè , 𝜆 → ∞ 

To remove the dependence on parametrization, from	ℎ+(𝑧!) = 0	we have 

ℎÁ ++(𝑡!) = ℎ++(𝑧!)[𝑧+(𝑡!)]( 
Finally, we obtain the expression 

𝐹(𝜆) ∼ 𝑒?D("!) ç𝑒, Q{| "*(@!)­
2𝜋

|ℎ++(𝑧!)|
𝑔(𝑧!)

1
√𝜆

+ 𝑜 `
1
√𝜆
aè , 𝜆 → ∞ 

The angle of the tangent at which	𝛾w	passes through the saddle point	𝑧!	is needed.  
 
Ø Airy function (4.7) 
The Airy function is the solution of Airy’s equation 

𝑦++(𝑥) − 𝑥𝑦(𝑥) = 0 
Using the form of a Fourier-Laplace integral, we can obtain 

𝑦_(𝑥) =
1
2𝜋𝑖 X 𝑒"-1"%/8	d𝑧

}1
 

They can be shown to satisfy Airy’s equation. Note that 
𝑦'(𝑥) + 𝑦((𝑥) + 𝑦8(𝑥) = 0 

The function	𝑦'(𝑥)	is denoted as	Ai(𝑥). Denote	𝑥 = 𝑟𝑒,J, and for a fixed	𝜃	we aim to study 
the asymptotic behavior as	𝑟 → ∞. The integral becomes 

𝑦'.𝑟𝑒,J/ =
1
2𝜋𝑖 X 𝑒~v02"1"%/8	d𝑧

}+
 

First, we find a scaling	𝑧 = 𝜌𝑤	such that the two terms having the same order of magnitude. 

𝑟𝜌𝑤 ∼ 𝜌8𝑤8, 𝜌 ∝ √𝑟 
Now denote	𝛾' = 𝐶'/√𝑟	and	𝜆 = 𝑟8/(, still using	𝑧	as the integration variable, we have 

𝑦'.𝑟𝑒,J/ =
√𝑟
2𝜋𝑖 X 𝑒?D2(")	d𝑧

E+
, ℎJ(𝑧) = 𝑒,J𝑧 −

𝑧8

3  



¨ When	𝜃 = 0, we have	𝑥 → +∞. The critical points are obtained as 

ℎ!(𝑧) = 𝑧 −
𝑧8

3 , 𝑧' = 1, 𝑧( = −1 

With	𝑧 = 𝑥 + 𝑖𝑦, the real and imaginary parts are 

𝑢(𝑥, 𝑦) = 𝑥 `1 −
1
3 𝑥

( + 𝑦(a 

𝑣(𝑥, 𝑦) = 𝑦 `1 − 𝑥( +
1
3𝑦

(a 

At the critical points, we have 

𝑢' =
2
3 , 𝑢( = −

2
3 , 𝑣' = 𝑣( = 0 

This implies that	𝑧'	and	𝑧(	lie on one of the	𝛾w:	{𝑣 = 0}	curves, which is the real axis. For the 
path	𝐶', we can directly deform it to one hyperbola	𝛾w:	{𝑣 = 0}	shown in red. Given that 

ℎ!(𝑧() = −
2
3 , ℎ++(𝑧() = 2, 𝜃(𝑧() = arg 𝑧+(𝑡!) =

𝜋
2 

Then we have 

𝐹!(𝜆) = X 𝑒?D!(")	d𝑧
E3

= 𝑖𝑒1(?/8³
𝜋
𝜆 Æ1 + 𝑂 `

1
𝜆aÇ , 𝑥 → +∞ 

With	𝜆 = 𝑥8/(, the asymptotic expansion becomes 

𝑦'(𝑥) =
𝑒1

(
8-

%
"

2√𝜋	𝑥'/>
Æ1 + 𝑂 `

1
𝑥8/(aÇ , 𝑥 → +∞ 

 
¨ When	𝜃 = 𝜋, we have	𝑥 → −∞. The critical points are obtained as 

ℎs(𝑧) = −𝑧 −
𝑧8

3 , 𝑧' = 𝑖, 𝑧( = −𝑖 

With	𝑧 = 𝑥 + 𝑖𝑦, the real and imaginary parts are 

𝑢(𝑥, 𝑦) = −𝑥 `1 +
1
3𝑥

( − 𝑦(a , 𝑣(𝑥, 𝑦) = −𝑦 `1 + 𝑥( −
1
3𝑦

(a 

𝜃 = 0 

𝛾M 

𝛾w 

𝜃 = 𝜋 𝜃 = 𝜋 

𝛾M 

𝛾w 

𝛾M 

𝛾w 𝐶' 

𝛾w 



At the critical points, we have 

𝑢' = 𝑢( = 0, 𝑣' = −
2
3 , 𝑣( =

2
3 

Start in the lower half-plane, to obtain	𝑢 < 0	we need to follow the curve	𝛾w: {𝑣 = 𝑣(}	which 
goes through the saddle point	𝑧(. However, it deviates from our original	𝐶'. We need to connect 
at infinity the curve	𝛾w: {𝑣 = 𝑣'}	and close the loop. Given that 

ℎ!(𝑧') = −
2
3 𝑖, ℎ++(𝑧') = −2𝑖, 𝜃(𝑧') = arg 𝑧+(𝑡!) =

3𝜋
4  

ℎ!(𝑧() =
2
3 𝑖, ℎ++(𝑧() = 2𝑖, 𝜃(𝑧() = arg 𝑧+(𝑡!) =

𝜋
4 

Then we have 

𝐹s(𝜆) = −𝑒1
(,?
8 𝑒1

,s
>³

𝜋
𝜆 Æ1 + 𝑂 `

1
𝜆aÇ + 𝑒

(,?
8 𝑒

,s
>³

𝜋
𝜆 Æ1 + 𝑂 `

1
𝜆aÇ , 𝑥 → −∞ 

With	𝜆 = |𝑥|8/(, the asymptotic expansion becomes 

𝑦'(𝑥) =
1

√𝜋	|𝑥|'/>
sin `

2
3
|𝑥|

8
( +

𝜋
4a Æ1 + 𝑂 `

1
|𝑥|8/(aÇ , 𝑥 → −∞ 

We notice that completely different asymptotic formula can hold for representations of entire 
functions as	𝑥 → ∞	in different sectors. This is called the Stokes phenomenon. 
 
Ø Effect of branch points (4.8) 

𝐹(𝜆) = X𝑒?D(")𝑔(𝑧)	d𝑧
E

, 𝜆 → ∞ 

We consider	ℎ ∈ 𝕆(Ω)	and 𝑔(𝑧)	is a meromorphic function or a multivalued function. The 
curve	𝛾 ∈ Ω	does not intersect with the branch cuts. When	𝑔(𝑧) ∈ 𝑚(Ω), we need to consider 
the additional contributions from the residues, besides those from the steepest descent paths. 

X	
E
= X	

E�
+ 2𝜋𝑖PRes.𝑒?D(")𝑔(𝑧), 𝑧_/

%

_&'

, 𝛾� = 𝐶'+ ∪ 𝐶(+  

The asymptotic analysis of the residue at	𝑧!	is as follows. Given the Laurent series 

𝑔(𝑧) = P 𝑔4(𝑧 − 𝑧!)4
451.

, ℎ(𝑧) =Pℎ4(𝑧 − 𝑧!)4
45!

 

Pole Branch point 

− + 



The residue contribution is a factor	𝑒?D("!)	times a polynomial	𝑝(𝜆)	of degree	𝑚 − 1. 

Res.𝑒?D(")𝑔(𝑧), 𝑧!/ = 𝑒?D("!) ⋅ 𝑝.1'(𝜆) 

 
When	𝑔(𝑧)	is a multivalued function, we start with the following example. 

𝐼 = ë 𝑓(𝑧)	d𝑧
|"|&;

, 𝑓(𝑧) = 𝑧H , 𝜎 ∉ ℤ 

The branch cut is the positive real axis, and we choose the branch	𝜃 ∈ [0,2𝜋). Directly using 
the anti-derivative	𝐹(𝑧), we have 

𝐹(𝑧) =
𝑧H/'

𝜎 + 1 , 𝐼 = 𝐹.𝜌𝑒,(s/ − 𝐹(𝜌) =
𝜌H/'

𝜎 + 1 .𝑒
,(sH − 1/ 

Note that the result depends on	𝜌. If	𝜎 + 1 > 0, then we have	𝐼 → 0	as	𝜌 → 0. 
 
To apply the steepest descent method for a multivalued function	𝑔(𝑧), we first need to choose 
a new branch cut that follows	𝛾w	in the direction of decreasing	𝑢. Assume	𝑔(𝑧)	is given as 

𝑔(𝑧) = (𝑧 − 𝑧!)H𝑔�(𝑧), 𝑔�(𝑧) ∈ 𝕆(Ω), 𝑔+(𝑧!) ≠ 0 
The same can be applied if	𝑔(𝑧) = ln(𝑧 − 𝑧!) 𝑔�(𝑧). 
¨ When	𝜎 > −1, the contribution from the circle	|𝑧 − 𝑧!| = 𝜌	goes to zero as	𝜌 → 0.  
¨ When	𝜎 < −1, using integration by parts we have 

X 𝑒?D(")𝑔�(𝑧)(𝑧 − 𝑧!)H 	d𝑧
}!*

= 𝑒?D(")𝑔�(𝑧)
(𝑧 − 𝑧!)H/'

𝜎 + 1 F
�}!*

−X í𝑒?D(")𝑔�(𝑧)î
+ (𝑧 − 𝑧!)H/'

𝜎 + 1 d𝑧
}!*

 

The boundary terms is neglected as the branch cut is in the direction of 𝑢 < 0, with small	𝑒?D(") 
at the endpoints as	𝜆 → ∞. The new integral is of order	𝜎 + 1, and by repeatedly doing this we 
can obtain a final integral with	𝜎 > −1. 
 
Now for	𝜎 > −1, we study the contribution along the branch cut. Denote	𝐶!+ = 𝛾!/ ∪ (𝛾!1)1, 
with both	𝛾!/	and	𝛾!1	pointing towards	𝑧!. Along the branch cut, we have 

(𝑧 − 𝑧!)1H = 𝑒,(sH(𝑧 − 𝑧!)/H  
The integral along	𝐶!+ 	becomes 

𝐹!(𝜆) = X 	
E!4

−X 	
E!5

= .1 − 𝑒,(sH/X 𝑒?D(")𝑔�(𝑧)(𝑧 − 𝑧!)/H 	d𝑧
E!4

 

Then we apply Laplace’s method (endpoint) with contribution from the branch point	𝑧 = 𝑧!. 
 
 
 



Example 

𝐹(𝜆) = X
𝑒1?-" cos(2𝜆𝛽𝑥)

√𝑥( + 1
	d𝑥

/0

10
, 𝛽 > 1, 𝜆 → +∞ 

The effect of branch point is shown below, with	𝑔(𝑧)	and its branch point	𝑧!	given as 

𝑔(𝑧) =
1

·(𝑧 − 𝑥!)( + 1
, 𝑧! = 𝑥! + 𝑖 

In our example we have	𝑥! = 0, and since	𝛽 > 1	the saddle point is above the branch point. 

Due to symmetry, the integral is equivalent to 

𝐹(𝜆) = X
𝑒1?""/(,?K"

√𝑧( + 1
	d𝑧

ℝ
= 𝑒1?K" X𝑒?D(")𝑔(𝑧)	d𝑧

ℝ
, ℎ(𝑧) = −(𝑧 − 𝑖𝛽)( 

The steepest descent path is constructed as 

𝐹!(𝜆) = X𝑒?D(")𝑔(𝑧)	d𝑧
E

, 𝛾 = 𝛾' ∪ 𝛾( ∪ 𝛾8 ∪ 𝛾> 

In the branch	(𝑧( + 1)'/( > 0	for	𝑧 ∈ ℝ, we have 

Im	·𝑧( + 1 < 0, 𝑧 ∈ 𝛾' ∪ 𝛾(, Im	·𝑧( + 1 > 0, 𝑧 ∈ 𝛾8 ∪ 𝛾> 

On	𝛾'	and	𝛾>, their contributions cancel out for the leading order term, because	𝑔(𝑧)	results in 
opposite signs on different sides of the branch cut at the saddle point	𝑧 = 𝑖𝛽	(i.e.,	𝑡 = 0). 

X 𝑒?D(")𝑔(𝑧)	d𝑧
E+

= X
𝑒1?@"

·(𝑡 + 𝑖𝛽)( + 1
	d𝑡

!

10
= X

𝑒1?@"

·(𝑡 − 𝑖𝛽)( + 1
	d𝑡

/0

!
 

X 𝑒?D(")𝑔(𝑧)	d𝑧
E6

= X
𝑒1?@"

·(𝑡 + 𝑖𝛽)( + 1
	d𝑡

/0

!
 

Along the branch cut, we have 

X 𝑒?D(")𝑔(𝑧)	d𝑧
E"

= X
𝑒?(K1@)"

√1 − 𝑡(
	𝑖d𝑡

'

K
= X

𝑒?(K1@)"

√𝑡( − 1
	d𝑡

K

'
, ·1 − 𝑡( = −𝑖·𝑡( − 1 

X 𝑒?D(")𝑔(𝑧)	d𝑧
E%

= X
𝑒?(K1@)"

√1 − 𝑡(
	𝑖d𝑡

K

'
= X

𝑒?(K1@)"

√𝑡( − 1
	d𝑡

K

'
, ·1 − 𝑡( = 𝑖·𝑡( − 1 

𝛾! 

𝛾" 𝛾# 

𝛾$ 



Therefore, we have 

𝐹!(𝜆) ∼ 2X
𝑒?(K1@)"

√𝑡( − 1
	d𝑡

K

'
, ℎÁ(𝑡) = (𝛽 − 𝑡)(, 𝜆 → ∞ 

The dominant contribution arises at the branch point	𝑧 = 𝑧! = 𝑖	(i.e.,	𝑡 = 1). To evaluate this 
integral, consider a change of variable 

𝑠 = ℎÁPQR − ℎÁ(𝑡) = (𝛽 − 1)( − (𝛽 − 𝑡)(, 𝑡(𝑠 = 0) = 1 
This leads to the transform 

𝑡 = 𝛽 − ·(𝛽 − 1)( − 𝑠 

The integral becomes 

𝐹!(𝜆) ∼ 2𝑒?(K1')" X
𝑒1?G

·𝑡(𝑠)( − 1
	𝑡+(𝑠)	d𝑠

(K1')"

!
 

From the power series expansion 

𝑡(𝑠) = 1 +
𝑠

2(𝛽 − 1) +
𝑠(

8(𝛽 − 1)8 + 𝑜
(𝑠() 

We have 

𝑡+(𝑠)

·𝑡(𝑠)( − 1
=

1 + 𝑂(𝑠)

2·(𝛽 − 1)𝑠
, 𝐹!(𝜆) ∼

𝑒?(K1')"

·𝛽 − 1
X

𝑒1?G

√𝑠
.1 + 𝑂(𝑠)/	d𝑠

0

!
 

From Watson’s Lemma, we have 

𝐹!(𝜆) ∼
𝑒?(K1')"

·𝛽 − 1
³
𝜋
𝜆 Z1 + 𝑂 `

1
𝜆a[ , 𝜆 → ∞ 

The leading order term of the asymptotic expansion is finally obtained as 

𝐹(𝜆) = 𝑒1?K"𝐹!(𝜆) ∼
𝑒1?((K1')

·𝛽 − 1
³
𝜋
𝜆 Z1 + 𝑂 `

1
𝜆a[ , 𝜆 → +∞ 

 
Ø Asymptotic analysis of integral transformation (4.8.1) 

1. Fourier transform: For	𝑓 ∈ 𝐿((ℝ, ℂ), we have	𝑓ñ ∈ 𝐿((ℝ, ℂ)	given as 

𝑓ñ(𝑘) = X𝑓(𝑥)𝑒1,4-	d𝑥
ℝ

, 𝑓(𝑥) =
1
2𝜋X𝑓

ñ(𝑘)𝑒,4-	d𝑘
ℝ

 

 
2. Laplace transform: For	𝑓: ℝ�! → ℂ	with	𝑐 ∈ ℝ	such that	𝑓(𝑡) = 𝑂(𝑒�@)	as	𝑡 → ∞, we 

have a holomorphic function	𝐹 ∈ 𝕆(Ω�), Ω� = {𝑠 ∈ ℂ	|	Re	𝑠 > 𝑐}	given as 

𝐹(𝑠) = X 𝑓(𝑡)𝑒1G@	d𝑡
0

!
, 𝑓(𝑡) =

1
2𝜋𝑖 X 𝐹(𝑠)𝑒G@	d𝑠

�*/,0

�*1,0
, 𝑐+ > 𝑐 



3. Mellin transform: For	𝑓: ℝ�! → ℂ	satisfying 

𝑓(𝑥) = ò𝑂
(𝑥1*), 𝑥 → 0/

𝑂(𝑥1C), 𝑥 → +∞
 

Define a domain	Ω*C = {𝑠 ∈ ℂ	|	𝑎 < Re	𝑠 < 𝑏}, then we have	𝜑 ∈ 𝕆(Ω*C)	given as 

𝜑(𝑠) = X 𝑓(𝑥)𝑥G1'	d𝑡
0

!
, 𝑓(𝑥) =

1
2𝜋𝑖 X 𝜑(𝑠)𝑥1G	d𝑠

�/,0

�1,0
, 𝑐 ∈ (𝑎, 𝑏) 

 
4. Z transform: For	{𝑎$}: ℤ → ℂ, we have	𝑓(𝑧) ∈ 𝕆(Ω)	for a domain	Ω	given as 

𝑓(𝑧) = P𝑎$𝑧1$
$∈ℤ

, 𝑎$ =
1
2𝜋𝑖 ë𝑓

(𝑧)𝑧$1'	d𝑧
E

 

An equivalent description is to take the coefficient of the generating function	𝑓(𝑧) 

𝑓(𝑧) = P𝑎$𝑧$
$∈ℤ

, 𝑎$ =
1
2𝜋𝑖 ë

𝑓(𝑧)
𝑧$/' d𝑧E

 

 
Example 1: Mellin transform & Gamma function 

Γ(𝑠 + 1) = X 𝑒1-𝑥G	d𝑥
0

!
 

We can equivalently write 

		Γ(𝑠 + 1) = X 𝑒D(-;G)	d𝑥
0

!
, ℎ(𝑥; 𝑠) = −𝑥 + 𝑠 ln 𝑥 

The saddle point is	𝑥! = 𝑠	which depends on	𝑠. Previously we let	𝑥 = 𝑠𝑦	and obtain 

Γ(𝑠 + 1) = 𝑠G/'X 𝑒G(WX )1))	d𝑦
0

!
 

 
Example 2: Z transform & Stirling formula 

𝑒" =P
𝑧$

𝑛!
$5!

,
1
𝑛! =

1
2𝜋𝑖 ë

𝑒"

𝑧$/' 	d𝑧E
 

The contour is constructed as	𝛾: 𝑧 = 𝜌𝑒,J 	with	𝜃 ∈ [−𝜋, 𝜋). We want to properly choose	𝜌	to 
perform asymptotic analysis. On this contour, we have 

𝐼 =
1
2𝜋𝑖 ë

𝑒"

𝑧$/' 	d𝑧E
=

1
2𝜋X 𝑒D(J;$,;)	d𝜃

s

1s
, ℎ(𝜃; 𝑛, 𝜌) = 𝜌𝑒,J − 𝑛 ln 𝜌 − 𝑖𝑛𝜃 

The saddle point	𝜃 = 𝜃!	satisfies	𝜌𝑒,J = 𝑛, which gives	𝜌 = 𝑛	and	𝜃 = 0. With the change of 
variable	𝜌 = 𝑛, we have 

ℎ = 𝑛𝑒,J − 𝑛 ln 𝑛 − 𝑖𝑛𝜃,
1
𝑛! =

𝑛1$

2𝜋 X 𝑒$Yv021,JZ	d𝜃
s

1s
 



Example 3: Fourier transform 

Consider	𝑓(𝑥) = 𝑂(𝑒1�|-|)	when	𝑥 → ±∞	for	𝑐 > 0. The Taylor coefficients are bounded as 

|𝑎$| = F
𝑓ñ($)(𝑘)
𝑛! F =

1
𝑛! FX

(−𝑖𝑥)$𝑓(𝑥)𝑒1,4-	d𝑥
ℝ

F ≤
1
𝑛! FX𝐴𝑒

1�|-||𝑥|$	d𝑥
ℝ

F =
2𝐴
𝑐$/' 

The radius of convergence is 

𝑅 = `limsup
$→0

|𝑎$|
'
$a

1'
≥ 𝑐 

So	𝑓ñ(𝑘)	is analytic in	{𝑘 ∈ ℂ	|	|Im	𝑘| ≤ 𝑐} near the real axis. The inverse Fourier transform is 

𝑓(𝑥) =
1
2𝜋X𝑓

ñ(𝑘)𝑒,4-	d𝑘
ℝ

 

When	𝑥 → −∞, denote	𝑥 = −𝜆	and	𝑘 = 𝑝 + 𝑖𝑞, we have 
ℎ(𝑘) = −𝑖𝑘, 𝑢 = 𝑞, 𝑣 = −𝑝 

The steepest descent paths	𝛾w are straight vertical lines pointing downward. For	𝑥 → +∞, the 
paths will be pointing upward. 

 
Example 4: Laplace transform 

		𝑓(𝑡) =
1
2𝜋𝑖 X 𝐹(𝑠)𝑒G@	d𝑠

�*/,0

�*1,0
, 𝑡 → ∞ 

When	𝑡 → ∞, we have	ℎ(𝑠) = 𝑠	and the steepest descent paths	𝛾w	are straight horizontal lines 
pointing to the left. 
 
Example 5: Mellin transform for summation 

𝑓(𝑥) =
1
2𝜋𝑖 X 𝜑(𝑠)𝑥1G	d𝑠

�/,0

�1,0
, 𝑥 → 0/, +∞ 

Let	𝑥 = 𝑒@, it is equivalent to find the behavior as	𝑡 → ±∞. 

𝑓(𝑥) =
1
2𝜋𝑖 X 𝜑(𝑠)𝑒1@G	d𝑠

�/,0

�1,0
, 𝑡 → −∞,+∞ 

𝑥 → −∞ 



When	𝑡 → +∞, we have	ℎ(𝑠) = −𝑠, and	𝛾w	point to the right. When	𝑡 → −∞, 𝛾w	to the left. 
We can use Mellin transform to calculate the sum of a series. 

𝐹(𝑥) =P𝜆4𝑓(𝜇4𝑥)
45'

, 𝜆4 ∈ ℂ,			𝜇4 > 0 

First, we obtain the Mellin transform for	𝑓(𝜇4𝑥), which is 𝜑(𝑠)/𝜇4G 	for	𝑠 ∈ Ω*C. The Mellin 
transform of	𝐹(𝑥)	is 

ℳ{𝐹(𝑥)} = Λ(𝑠)𝜑(𝑠), Λ(𝑠) =P𝜆4𝜇41G

45'

, 𝑠 ∈ {𝑠 ∈ ℂ	|	Re	𝑠 > 𝜎!} 

The series	Λ(𝑠)	is called the general Dirichlet series. Finally, the inverse transform gives 

𝐹(𝑥) =
1
2𝜋𝑖 X Λ(𝑠)𝜑(𝑠)𝑥1G	d𝑠

�/,0

�1,0
, 𝑐 ∈ (max{𝑎, 𝜎!} , 𝑏) 

 
Example 6: Harmonic sum 

ℎ(𝑥) =P`
1
𝑘 −

1
𝑘 + 𝑥a

45'

=P
1
𝑘 ⋅

𝑥/𝑘
1 + 𝑥/𝑘

45'

, 𝑥 → +∞ 

We can choose the following	𝜆4 , 𝜇4 	and	𝑓(𝑥) 

𝜆4 = 𝜇4 =
1
𝑘 , 𝑓(𝑥) =

𝑥
1 + 𝑥 , ℎ(𝑥) =P𝜆4𝑓(𝜇4𝑥)

45'

 

The Mellin transform	𝜑(𝑠)	is calculated as 

𝜑(𝑠) = X
𝑥G

1 + 𝑥 	d𝑥
0

!
=

𝜋
sin 𝜋(𝑠 + 1) = −

𝜋
sin 𝜋𝑠 , −1 < Re	𝑠 < 0 

The general Dirichlet series is 

Λ(𝑠) =P𝜆4𝜇41G

45'

=P
1

𝑘'1G
45'

= 𝜁(1 − 𝑠), Re	𝑠 < 0 

Take	𝑐 ∈ (−1,0), we have 

ℎ(𝑥) = −
1
2𝑖 X

𝜁(1 − 𝑠)
sin 𝜋𝑠 𝑥1G	d𝑠

�/,0

�1,0
, 𝑥 → +∞ 

We recognize that	𝑠 = 0	is a pole of order 2, while	𝑠 = 𝑛	are simple poles for	𝑛 ≥ 1. 

ℎ(𝑥) ∼ 𝜋 ¥Res(Φ(𝑠), 0) +PRes(Φ(𝑠), 𝑛)
$5'

¦ , Φ(𝑠) =
𝜁(1 − 𝑠)
sin 𝜋𝑠 𝑥1G, 𝑥 → +∞ 

The residues of the simple poles are calculated as 

Res(Φ(𝑠), 𝑛) = 𝜁(1 − 𝑛)𝑥1$ lim
G→$

𝑠 − 𝑛
sin 𝜋𝑠 =

(−1)$

𝜋 𝜁(1 − 𝑛)𝑥1$, 𝑛 ≥ 1 



For the residue at	𝑠 = 0, based on the following result 

𝜁(𝑠) =
1

𝑠 − 1 + 𝛾 + 𝑂
(𝑠 − 1) 

The Taylor series can be calculated as 

Φ(𝑠) =
1

𝜋𝑠 +⋯ ⋅ `−
1
𝑠 + 𝛾 +⋯a ⋅ (1 − 𝑠 ln 𝑥 +⋯) =

1
𝜋𝑠
(ln 𝑥 + 𝛾) + ⋯ 

Therefore, the residue is 

Res(Φ(𝑠), 0) =
ln 𝑥 + 𝛾

𝜋  

The asymptotic expansion of	ℎ(𝑥)	is 

ℎ(𝑥) ∼ ln 𝑥 + 𝛾 +P(−1)$𝜁(1 − 𝑛)𝑥1$
$5'

	

= ln 𝑥 + 𝛾 +
1
2𝑥 −P

(−1)$𝐵$
𝑛

1
𝑥$

$5(

, 𝑥 → +∞ 

Take	𝑥 = 𝑛, we have	ℎ(𝑛) = 𝐻$, which recovers the harmonic sum. 
 
Example 7: Mellin transform for summation 

𝐹(𝑥) =P𝑒1√4-
45'

, 𝑥 → 0/ 

We can choose the following	𝜆4 , 𝜇4 	and	𝑓(𝑥) 

𝜆4 = 1, 𝜇4 = √𝑘, 𝑓(𝑥) = 𝑒1- , 𝐹(𝑥) =P𝜆4𝑓(𝜇4𝑥)
45'

 

The Mellin transform	𝜑(𝑠)	is 

𝜑(𝑠) = X 𝑒1-𝑥G1'	d𝑥
0

!
= Γ(𝑠), Re	𝑠 > 0 

The general Dirichlet series is 

Λ(𝑠) =P𝜆4𝜇41G

45'

=P𝑘1G/(
45'

= 𝜁 �
𝑠
2� , Re	𝑠 > 2 

Take	𝑐 > 2, we have 

𝐹(𝑥) =
1
2𝜋𝑖 X Φ(s)	d𝑠

�/,0

�1,0
, Φ(𝑠) = Γ(𝑠)𝜁 �

𝑠
2� 𝑥

1G, 𝑥 → 0/ 

The steepest descent paths point to the left in this case. We obtain 

𝐹(𝑥) ∼ Res(Φ(𝑠), 2) +PRes(Φ(𝑠), −𝑛)
$5!

, 𝑥 → 0/ 



All are simple poles. The residue at	𝑠 = 2	is 

Res(Φ(𝑠), 2) =
Γ(2)
𝑥( lim

G→(
(𝑠 − 2)𝜁 �

𝑠
2� =

2
𝑥( 

The residues at	𝑠 = −𝑛	are 

Res(Φ(𝑠), −𝑛) = 𝜁 �−
𝑛
2� 𝑥

$ lim
G→1$

(𝑠 + 𝑛)Γ(𝑠) =
(−1)$

𝑛! 𝜁 �−
𝑛
2�𝑥

$, 𝑛 ≥ 0 

The asymptotic expansion of	𝐹(𝑥)	is 

𝐹(𝑥) ∼
2
𝑥( +P

(−1)$

𝑛! 𝜁 �−
𝑛
2� 𝑥

$

$5!

, 𝑥 → 0/ 

 
Example 8: Polylogarithm 

Li4(𝑧) =P
𝑧$

𝑛4
$5'

, 𝑘 ∈ ℕ∗, Li'(𝑧) = − ln(1 − 𝑧) 

The radius of convergence is	𝑅 = 1. As	𝑧 → 11, it converges when	𝑘 ≥ 2. Consider 
𝐹(𝑥) = Li4(𝑒1-), 𝑥 → 0/,				𝑧 = 𝑒1- → 11 

We can choose the following	𝜆4 , 𝜇4 	and	𝑓(𝑥) 

𝜆$ =
1
𝑛4 , 𝜇$ = 𝑛, 𝑓(𝑥) = 𝑒1- , 𝐹(𝑥) =P𝜆$𝑓(𝜇$𝑥)

$5'

 

Then we obtain 

𝜑(𝑠) = Γ(𝑠), Λ(𝑠) =P𝜆$𝜇$1G
$5'

= 𝜁(𝑘 + 𝑠), Re	𝑠 > 0 

Take	𝑐 > 0, we have 

𝐹(𝑥) =
1
2𝜋𝑖 X Φ(s)	d𝑠

�/,0

�1,0
, Φ(𝑠) = Γ(𝑠)𝜁(𝑘 + 𝑠)𝑥1G, 𝑥 → 0/ 

There is a pole of order 2 at	𝑠 = 1 − 𝑘	and other simple poles at	𝑠 = −𝑛	when	𝑛 ≠ 𝑘 − 1. The 
residues can be obtained as 

Res(Φ(𝑠), −𝑛) =
(−1)$

𝑛! 𝜁(𝑘 − 𝑛)𝑥$, 𝑛 ≠ 𝑘 − 1 

Res(Φ(𝑠), 1 − 𝑘) =
(−1)41'

(𝑘 − 1)! 𝑥
41'(𝐻41' − ln 𝑥) 

The asymptotic expansion of	Li4(𝑒1-)	is 

Li4(𝑒1-) ∼
(−1)41'

(𝑘 − 1)!
(𝐻41' − ln 𝑥)𝑥41' + P

(−1)$

𝑛! 𝜁(𝑘 − 𝑛)𝑥$
0

$&!
$�41'

, 𝑥 → 0/ 

 
 



Example 9: Partition function in number theory 
The partition function	𝑝$	denotes the number of possible partitions of a non-negative integer	𝑛. 
As	𝑛 → +∞, the asymptotic expansion of	𝑝$	is 

𝑝$ =
1

4𝑛√3
𝑒s�($/8.1 + 𝑜(1)/ 

The generating function	𝑓(𝑧)	is 

𝑓(𝑧) = 1 +P𝑝$𝑧$
$5'

=Ù
1

1 − 𝑧.
.5'

, |𝑧| < 1 

From the Z transform, we can write 

𝑝$ =
1
2𝜋𝑖 ë

𝑓(𝑧)
𝑧$/' 	d𝑧E

, 𝛾:	𝑧 = 𝜌𝑒,J , 0 < 𝜌 < 1 

However, the poles of	𝑓(𝑧)	on	|𝑧| = 1	are dense, which makes it hard for	𝜌 → 1. Consider 

𝐿(𝑥) = ln 𝑓(𝑒1-) = −P ln(1 − 𝑒1.-)
.5'

, 𝑥 → 0/,				𝑧 = 𝑒1- → 11 

We can choose the following	𝜆4 , 𝜇4 	and	𝑔(𝑥) 

𝜆. = −1, 𝜇. = 𝑚, 𝑔(𝑥) = ln(1 − 𝑒1-) , 𝐿(𝑥) = P 𝜆.𝑔(𝜇.𝑥)
.5'

 

Then we obtain 

𝜑(𝑠) = X ln(1 − 𝑒1-) 𝑥G1'	d𝑥
0

!
, Λ(𝑠) = P 𝜆.𝜇.1G

.5'

= −𝜁(𝑠) 

The Mellin transform is obtained as 

ln(1 − 𝑒1-) = −P
𝑒1�-

𝑙
�5'

, 𝜑(𝑠) = −P
1
𝑙 X 𝑒1�-𝑥G1'	d𝑥

0

!�5'

= −𝜁(𝑠 + 1)Γ(𝑠) 

Take	𝑐 > 1, we have 

𝐿(𝑥) =
1
2𝜋𝑖 X Φ(s)	d𝑠

�/,0

�1,0
, Φ(𝑠) = 𝜁(𝑠)𝜁(𝑠 + 1)Γ(𝑠)𝑥1G, 𝑥 → 0/ 

After analyzing the poles, and the zeros of	𝜁(𝑠)	and	𝜁(𝑠 + 1), we have 𝑠 = 0	being a pole of 
order 2, while	𝑠 = ±1	being simple poles. The contour can be chosen to close at	𝑠 = −𝑐, i.e., 
a rectangular contour. Using the following equations 

𝜁(𝑠) = 2G𝜋G1'𝜁(1 − 𝑠)Γ(1 − 𝑠) sin
𝜋𝑠
2 	

𝜁(𝑠 + 1) = 2G/'𝜋G𝜁(−𝑠)Γ(−𝑠) cos
𝜋𝑠
2 	

Γ(𝑠) = 𝜋[sin(𝜋𝑠) Γ(1 − 𝑠)]1' 



We can obtain an equation for	Φû(𝑠), which is 
Φû(𝑠) = (2𝜋)(GΦû(−𝑠), Φû(𝑠) = 𝜁(𝑠)𝜁(𝑠 + 1)Γ(𝑠) 

After calculating the residues, and study the relation between the integrals along	Re	𝑠 = ±𝑐, 
we reach an equation for	𝐿(𝑥) 

𝐿(𝑥) =
𝜋(

6𝑥 +
1
2 ln �

𝑥
2𝜋� −

𝑥
24 + 𝐿 Z

4𝜋(

𝑥 [ 

This implies that	𝐿(𝑥)	is close to a modular form. 
 
Ø Exercise 
Steepest descents 

𝐹(𝜆) = X 𝑒1?"" 	d𝑧
'

,
, 𝜆 → ∞ 

The steepest descent path is	𝛾�: (𝛾w:	𝑖 → 0) ∪ (𝛾w:	0 → 1). On the two segments, we have 

𝐼' = −𝑖 X 𝑒?@"d𝑡
'

!
, 𝐼( = X 𝑒1?@"d𝑡

'

!
	 

The dominant contribution arises from the endpoint	𝑡 = 1	in	𝐼'. Denote 

𝑅PQR = 𝑅(1) = 1, 𝑅Á(𝑡) = 1 − 𝑡( = 𝑠, 𝑡 = √1 − 𝑠 

We first obtain the following Taylor series 

𝜙(𝑠) =
1

√1 − 𝑠
= 1 +

1
2 𝑠 +

3
8 𝑠

( +
5
16 𝑠

8 + 𝑂(𝑠>) 

The integral becomes 

𝐼' ∼
𝑒?

2𝑖 X
𝑒1?G

√1 − 𝑠
	d𝑠

'

!
=
𝑒?

2𝑖 X 𝑒1?G𝜙(𝑠)	d𝑠
'

!
=
𝑒?

2𝑖 P
𝜙($)(0)
𝜆$/'

0

$&!

, 𝜆 → ∞ 

Based on the Taylor coefficients, we have 

𝐹(𝜆) ∼
𝑒?

2𝑖𝜆 R1 +
1
2 𝜆

1' +
3
4𝜆

1( +
15
8 𝜆18 + 𝑂(𝜆1>)S , 𝜆 → +∞ 

 
Hankel function 

𝐻�
(')(𝜆) =

1
𝜋𝑖 X 𝑒? r�Xu(")1�"	d𝑧

0/s,

10
, Re	𝜆 > 0 

In specific, we want to study the asymptotic behavior as	𝜆 → +∞	of the scaled Hankel function 

𝐻�?
(')(𝜆) =

1
𝜋𝑖 X 𝑒? r�Xu(")1�?"	d𝑧

0/s,

10
, 𝜆 → +∞, 𝑐 = cosh𝛼 > 1 



We recognize	ℎ(𝑧) = sinh 𝑧 − 𝑧 cosh𝛼. The saddle points are calculated as 
ℎ+(𝑧) = cosh 𝑧 − cosh𝛼 = 0, 𝑧 = ±𝛼 + 2𝜋𝑘𝑖, 𝛼 > 0, 𝑘 ∈ ℤ 

The real and imaginary parts are 
𝑢(𝑥, 𝑦) = sinh 𝑥 cos 𝑦 − 𝑥 cosh𝛼 , 𝑣(𝑥, 𝑦) = cosh 𝑥 sin 𝑦 − 𝑦 cosh𝛼 

We notice the following contour levels 
𝛾M: {Re	𝑧 = 0,			𝑢 = 0}, 𝛾w: {Im	𝑧 = 𝑘𝜋,			𝑘 ∈ ℤ,			𝑣 = −𝑘𝜋 cosh𝛼} 

Therefore, we can construct the steepest descent path as 
𝛾�: (𝛾w :	− ∞ → 0) ∪ (𝛾M:	0 → 𝜋𝑖) ∪ (𝛾w: 𝜋𝑖 → ∞ + 𝜋𝑖) 

There is one saddle point	𝑧! = −𝛼	on the first	𝛾w	segment where	𝑢	is maximal along the path. 
Note that	𝑔(𝑧) = 1, and we also have 

ℎ(𝑧!) = − sinh𝛼 + 𝛼 cosh𝛼 , ℎ++(𝑧!) = − sinh𝛼 , arg 𝑧+(𝑡!) = 0 
From the following equation 

𝐹(𝜆) ∼ 𝑒?D("!) ç𝑒, Q{| "*(@!)­
2𝜋

|ℎ++(𝑧!)|
𝑔(𝑧!)

1
√𝜆

+ 𝑜 `
1
√𝜆
aè , 𝜆 → +∞ 

The leading term of the scaled Hankel function is 

𝐻�?
(')(𝜆) = −𝑖𝑒?(L pqruL1r�XuL)­

2
𝜋𝜆 sinh 𝛼 .1 + 𝑂

(𝜆1')/, 𝜆 → +∞ 

If we denote	𝜈 = 𝑐𝜆 = 𝜆 cosh𝛼, the expression becomes 

𝐻�
(')(𝜈 sech 𝛼) = −𝑖𝑒�(L1�QXuL)­

2
𝜋𝜈 tanh𝛼 .1 + 𝑂

(𝜈1')/, 𝜈 → +∞ 

 
Gamma function 

1
Γ(𝑧) =

1
2𝜋𝑖 X𝑡

1"𝑒@	d𝑡
}

, 𝐶: (−∞ − 𝑖𝜀 → 0 → −∞+ 𝑖𝜀) 

This provides an analytic continuation of	Γ1'(𝑧). The branch cut is along the negative real axis 
with	arg 𝑡 ∈ (−𝜋, 𝜋). We want to study the asymptotic behavior for	𝑧 = 𝜆𝑒,�	as	𝜆 → +∞	when 
𝜅 ∈ (−𝜋, 𝜋), which is the Stirling formula. With the transform	𝑡 = 𝜆𝜏, we have 

1
Γ(𝑧) =

.𝑧𝑒1,�/1"/'

2𝜋𝑖 X𝑒?YV1v07 WX VZ	d𝜏
}

, ℎ(𝜏) = 𝜏 − 𝑒,� ln 𝜏 

The saddle point is obtained as 

ℎ+(𝜏) = 1 −
𝑒,�

𝜏 = 0, 𝜏! = 𝑒,� , ℎ(𝜏!) = 𝑒,�(1 − 𝑖𝜅) 

The second-order derivative and the descent angle (see note below) are 

ℎ++(𝜏!) = 𝑒1,� , arg 𝑧+(𝑡!) =
𝜅 + 𝜋
2  



An example of the contour levels for	𝜅 = 0	and the saddle point on	𝛾w	are shown above. From 
the upper and lower side of the branch cut, we can use	𝛾M: {𝑢 < 0}	to connect to the steepest 
descent path	𝛾w: {𝑣 = 𝑣!}	that goes through the saddle point. Therefore, the integral becomes 

X𝑒?YV1v07 WX VZ	d𝜏
}

∼ 𝑒"('1,�) ç𝑖𝑒
,�
(­ 2𝜋

𝑧𝑒1,� + 𝑜 `
1
√𝜆
aè	

= 𝑖𝑒"𝑒,�('1")­
2𝜋
𝑧 .1 + 𝑂(𝜆1')/, 𝜆 → +∞ 

The leading term of the asymptotic expansion is 

1
Γ(𝑧) ∼

𝑧1"/'/(𝑒"

√2𝜋
.1 + 𝑂(𝜆1')/ 

Hence, we derive the following limit 

lim
|"|→/0
�∈(1s,s)

Γ(𝑧)
√2𝜋	𝑧"1'/(𝑒1"

= 1 

 
Note. The descent angle is obtained from the Taylor series of	ℎ(𝑧)	around the saddle point	𝑧! 

ℎ(𝑧) − ℎ(𝑧!) =
ℎ(I)(𝑧!)
𝑝!

(𝑧 − 𝑧!)I + 𝑂((𝑧 − 𝑧!)I/'), ℎ(I)(𝑧!) = dℎ(I)(𝑧!)d𝑒,L 

The imaginary part gives	𝑣(𝑧) = 𝑣(𝑥, 𝑦), which is 

𝑣(𝑧) − 𝑣(𝑧!) =
dℎ(I)(𝑧!)d

𝑝! 𝑟I sin(𝑝𝜃 + 𝛼) + 𝑂(𝑟I/'), 𝑧 − 𝑧! = 𝑟𝑒,J 

There are	2𝑝	curves of	𝛾w: {𝑣 = 𝑣!}	emanating from	𝑧!	with the tangent directions 

𝜃w =
𝑛𝜋 − 𝛼
𝑝 , 𝑛 = 0,1,⋯ ,2𝑝 − 1 

The descent angle is one of them and can be analyzed from the contour levels. 
 
 



Effect of branch point 

𝐹(𝜆) = X 𝑒1?-"𝑒>,?- ln[(𝑥 − 𝑥!)( + 1] 	d𝑥
/0

10
 

We recognize the functions	ℎ(𝑧)	and	𝑔(𝑧)	as 
ℎ(𝑧) = −𝑧( + 4𝑖𝑧 = −(𝑧 − 2𝑖)( − 4, 𝑔(𝑧) = ln[(𝑧 − 𝑥!)( + 1] 

The real and imaginary parts of	ℎ(𝑧)	are 
𝑢(𝑥, 𝑦) = −𝑥( + 𝑦( − 4𝑦, 𝑣(𝑥, 𝑦) = −2𝑥(𝑦 − 2) 

Note that	𝛾w: {Im	𝑧 = 2, 𝑣 = 0}	is a steepest descent path, and there lies a saddle point of	ℎ(𝑧) 
𝑧G = 2𝑖, ℎ(𝑧G) = −4, ℎ++(𝑧G) = −2 

The branch point of	𝑔(𝑧)	in the upper half plane that lies between	ℝ	and	𝛾w	is 
𝑧! = 𝑥! + 𝑖, ℎ(𝑧!) = −𝑥!( − 3 + 2𝑖𝑥!, ℎ+(𝑧!) = −2(𝑥! − 𝑖) 

The deformed path is the same as in a previous example. For	𝑥! ≠ 0, the branch cut in the 
steepest descent direction is a hyperbola, while for	𝑥! = 0	it is the imaginary axis. 

Possible asymptotic contributions to the integral come from either the saddle point	𝑧G	or the 
branch point	𝑧!. Comparing the real part	𝑢(𝑥, 𝑦)	at these two points, we have 

𝑢(𝑧G) = −4, 𝑢(𝑧!) = −𝑥!( − 3 
Hence, when	|𝑥!| < 1	the branch point dominate, while when	|𝑥!| > 1	the saddle point does.  
When	|𝑥!| = 1, both contributions may be important. For the special case	𝑥! = 0, the branch 
point still dominates. 
 
To obtain the branch point contribution, note that arg[(𝑧 − 𝑧!)( + 1]	is larger on the right side, 
so we always have the following sum of contributions from the two arcs along the branch cut 

𝐹!(𝜆) = 2𝑖𝜋X 𝑒?D(")	d𝑧
0

"!
= 2𝑖𝜋𝑒?D("!)X 𝑒1?@𝑧+(𝑡)	d𝑡

/0

!
 

There will be a transform	𝑧 = 𝑧(𝑡)	such that	ℎ(𝑧) − ℎ(𝑧!) = −𝑡	on the branch cut. The leading 
order term only needs	𝑧+(0) = −1/ℎ+(𝑧!). Hence, we obtain 

𝐹!(𝜆) ∼ −
𝜋𝑒(,?-!

𝜆(1 + 𝑖𝑥!)
𝑒1?Y-!"/8Z.1 + 𝑂(𝜆1')/, 𝜆 → +∞ 



The saddle point contribution is calculated as 

𝐹G(𝜆) ∼ 𝑒?D("8) ç𝑒, Q{| "*(@8)­
2𝜋

|ℎ++(𝑧G)|
𝑔(𝑧G)

1
√𝜆

+ 𝑜 `
1
√𝜆
aè	

∼ 𝑒1>?³
𝜋
𝜆 ln

(𝑥!( − 3 − 4𝑖𝑥!) .1 + 𝑂(𝜆1')/, 𝜆 → +∞ 

Comparing these two contributions, the saddle point is more important at	|𝑥!| = 1, because it 
involves	𝜆1'/(	instead of	𝜆1'	in addition to the same exponential decay. 
 
Inverse Fourier transform 

𝑓(𝑥) = X
𝑘( − 3𝑘 + 4

[(𝑘 − 2)( + 4]([(𝑘 + 3)( + 1] 𝑒
,4-	d𝑘

/0

10
, 𝑥 < 0 

The integrand has a simple pole at	𝑘' = −3 − 𝑖	and a pole of order 2 at	𝑘( = 2 − 2𝑖. We can 
obtain the residues at these two poles as 

Res(𝑔, 𝑘') = 𝑒-𝑒18,-
3(−3 + 7𝑖)
8(14 + 5𝑖)( = 𝐴'𝑒-𝑒18,- , Res(𝑔, 𝑘() = 𝐴(𝑒(-𝑒(,- 

Therefore, the exact result of the integral is 

𝑓(𝑥) = 2𝜋𝑖.𝐴'𝑒-𝑒18,- + 𝐴(𝑒(-𝑒(,-/, 𝑥 < 0 

As	𝑥 → −∞, the asymptotic behavior is 
𝑓(𝑥) ∼ 2𝜋𝑖𝐴'𝑒-𝑒18,- + 𝑂(𝑒(-), 𝑥 → −∞ 

 
Inverse Laplace transform 

𝑓(𝑡) =
1
2𝜋𝑖 X

tanh 𝑠
𝑠 𝑒G@	d𝑠

�/,0

�1,0
 

The simple poles of the function are 

𝑠∗ = 0, 𝑠4 =
2𝑘 + 1
2 𝜋𝑖, 𝑘 ∈ ℤ 

The residues at these poles are obtained as 

Res(𝑔, 0) = 0, Res(𝑔, 𝑠4) =
1
𝑠4
𝑒G9@ 

The inverse Laplace transform is obtained as the following exact result 

𝑓(𝑡) = −P
2𝑖

(2𝑘 + 1)𝜋 𝑒
((4/')s,

( @

4∈ℤ

 

 
 
 



Inverse Laplace transform 

𝑓(𝑡) =
1
2𝜋𝑖 X

𝑒1√G

√𝑠
𝑒G@	d𝑠

�/,0

�1,0
 

The branch cut is on the negative real axis. The integral then becomes 

𝑓(𝑡) =
1
2𝜋𝑖 ZX

𝑒,√1G

−𝑖√−𝑠
𝑒G@	d𝑠

!

10
+X

𝑒1,√1G

𝑖√−𝑠
𝑒G@	d𝑠

10

!
[	

=
1
2𝜋 ZX

𝑒,√-

√𝑥
𝑒1-@	d𝑥

/0

!
+X

𝑒1,√-

√𝑥
𝑒1-@	d𝑥

/0

!
[ =

1
𝜋X

cos√𝑥
√𝑥

𝑒1-@	d𝑥
/0

!
	

=
2
𝜋X 𝑒1@M" cos 𝑢 d𝑢

/0

!
=
2
𝜋P

(−1)$

(2𝑛)! X 𝑒1@M"𝑢($	d𝑢
/0

!

/0

$&!

	

=
1
√𝜋𝑡

P
(−1)$

2($𝑛!
1
𝑡$

/0

$&!

=
1
√𝜋𝑡

𝑒1'/>@ 

The inverse Laplace transform is also exact. 
  
 
 
  



Asymptotic Analysis of Integrals (4): Stationary Phase 

We analyze the asymptotic expansion of the following integral 

𝐹(𝜆) = X 𝑒,?F(@)𝑔(𝑡)	d𝑡
C

*
, 𝜆 → +∞ 

With the interval	[𝑎, 𝑏] ⊆ ℝ, functions	𝐼: [𝑎, 𝑏] → ℝ	and	𝑔: [𝑎, 𝑏] → ℂ. When	𝜆 → −∞, we can 
take the complex conjugate of the integral. For the method of steepest descent, with require the 
functions	𝐼(𝑡)	and	𝑔(𝑡)	to be analytic satisfying Cauchy-Riemann equation. However, we now 
only require them to be	𝐶0. The asymptotic analysis can only be performed on	[𝑎, 𝑏], and we 
cannot deform the integration path. 
 
Ø Oscillatory integral (5.1) 
Example: Fresnel integral 

X sin(𝑥() d𝑥
0

!
= X cos(𝑥() d𝑥

0

!
= ³

𝜋
8 , 𝐼 = X 𝑒,-"d𝑥

0

!
= 𝑒,s/>

√𝜋
2  

For an integral with parameter, we have 

X 𝑒,?-"d𝑥
0

!
=
1
2 𝑒

,s/>³
𝜋
𝜆 = 𝑂 `

1
√𝜆
a 

 
Ø Nonlocal contributions (5.2) 
Nonlocal contributions arise from	𝐼+(𝑡) ≠ 0. Assume	[𝑡', 𝑡(] ⊆ [𝑎, 𝑏]	such that	𝐼 ∈ 𝐶'[𝑡', 𝑡(] 
and	𝐼+(𝑡) ≠ 0, i.e.	𝐼(𝑡)	monotonically increases or decreases. For the interval	[𝑡', 𝑡(], we have 

X 𝑒,?F(@)𝑔(𝑡)	d𝑡
@"

@+
=
1
𝑖𝜆 ¥𝑒

,?F(@) 𝑔(𝑡)
𝐼+(𝑡)F

@+

@"

−X 𝑒,?F(@)
d
d𝑡
𝑔(𝑡)
𝐼+(𝑡) 	d𝑡

@"

@+
¦ 

With integration by part, we obtain a factor	(𝑖𝜆)1'. The bracket term is bounded by a constant 
independent of	𝜆, which gives 

FX 𝑒,?F(@)𝑔(𝑡)	d𝑡
@"

@+
F ≤

1
𝑖𝜆 ZF

𝑔(𝑡')
𝐼+(𝑡')

F + F
𝑔(𝑡()
𝐼+(𝑡()

F + X F
d
d𝑡
𝑔(𝑡)
𝐼+(𝑡)F d𝑡

@"

@+
[ = 𝑂 `

1
𝜆a 

More generally, with	𝑔!(𝑡) = 𝑔(𝑡)	we can derive an asymptotic expansion as 

X 𝑒,?F(@)𝑔(𝑡)	d𝑡
@"

@+
∼P«

𝑒,?F(@)

(𝑖𝜆)$/'
𝑔$(𝑡)
𝐼+(𝑡) ¬

@+

@"

$5!

, 𝑔$(𝑡) = −
d
d𝑡
𝑔$1'(𝑡)
𝐼+(𝑡)  

Compared with Laplace’s method in which the nonlocal contributions is 𝑂(𝑒1�?). Now for the 
method of stationary phase, the nonlocal contributions are larger. 



Ø Contributions from interior stationary phase points (5.3) 
Consider	𝐼 ∈ 𝐶'[𝑎, 𝑏]	with a stationary phase point	𝑡! ∈ (𝑎, 𝑏)	and	𝐼+(𝑡!) = 0. We require the 
point	𝑡!	as non-degenerate, stated as there exists	𝛿 > 0	such that	𝐼 ∈ 𝐶(%/'[𝑡! − 2𝛿, 𝑡! + 2𝛿] 
and	𝐼++(𝑡!) ≠ 0. We also require	𝑔 ∈ 𝐶(%	and the support of	𝑔	is within the interval. 

𝐹T(𝜆) = X 𝑒,?F(@)𝑔(𝑡)	d𝑡
@!/(T

@!1(T
, 𝜆 → +∞ 

Around	𝑡 = 𝑡!, the Taylor series of	𝐼(𝑡)	is  

𝐼(𝑡) = 𝐼(𝑡!) +
1
2 𝐼

++(𝑡!)(𝑡 − 𝑡!)( +⋯ 

Denote	𝜎 = sgn 𝐼++(𝑡!). According to Morse Lemma, we find a transformation such that 

𝐼(𝑡) = 𝐼(𝑡!) + 𝜎𝑠(, 𝐹T(𝜆) = 𝑒,?F(@!)X 𝑒,?HG"𝑔.𝑡(𝑠)/𝑡+(𝑠)	d𝑠
G4

G5
 

The lower and upper limits of the integral are calculated as 

𝑠± = ±·𝜎[𝐼(𝑡! ± 2𝛿) − 𝐼(𝑡!)], 𝑡(𝑠), 𝑠(𝑡) ∈ 𝐶(%/', 𝑡+(𝑠) ∈ 𝐶(% 

Then we have	𝑘(𝑠) = 𝑔(𝑡(𝑠))	𝑡+(𝑠) ∈ 𝐶(%	and we want to approximate	𝑘(𝑠)	by a polynomial. 
We first have the Taylor series 

𝑘(𝑠) = 𝑄(𝑠) + 𝑂(𝑠(%), 𝑄(𝑠) = P
𝑘(.)(0)
𝑚! 𝑠.

(%1'

.&!

 

However,	𝑘(𝑠)	does not vanish near	𝑠±. We modify it by constructing	𝑅(𝑠)	as 

𝑅'(𝑠) = [(𝑠/ − 𝑠)(𝑠 − 𝑠1)]% ,
1

𝑅'(𝑠)
= 𝑅((𝑠) + 𝑂(𝑠(%), 𝑅(𝑠) = 𝑅'(𝑠)𝑅((𝑠) 

The polynomial cutoff function	𝑅(𝑠)	has the following properties 

𝑅(𝑠) = 1 + 𝑂(𝑠(%), 𝑅(𝑠±) = ⋯ = 𝑅(%1')(𝑠±) = 0 

The polynomial approximation of	𝑘(𝑠)	is constructed as 

𝑃(𝑠) = 𝑄(𝑠)𝑅(𝑠), 𝑃(𝑠) = 𝑄(𝑠) + 𝑂(𝑠(%) = P
𝑘(.)(0)
𝑚! 𝑠.

(%1'

.&!

+ 𝑂(𝑠(%) 

This also implies that	𝑠±	are the zeros of	𝑃(𝑠)	of order	𝑁	and	deg 𝑃 = 6𝑁 − 2. Denote 

𝐽' = X 𝑒,?HG"𝑃(𝑠)	d𝑠
G4

G5
, 𝐽( = X 𝑒,?HG"[𝑘(𝑠) − 𝑃(𝑠)]	d𝑠

G4

G5
 

We apply the method of steepest descent for	𝐽'	as all functions are analytic. For	𝜎 = 1, we have 
ℎ(𝑠) = 𝑖𝑠(, 𝑢 = −2𝑥𝑦, 𝑣 = 𝑥( − 𝑦( 

The steepest descent path contributes to the integral at the saddle point	𝑠 = 0, and also at the 
endpoints	𝑠 = 𝑠±. However, we have	𝑃(𝑠±) = ⋯ = 𝑃(%1')(𝑠±) = 0, so for the first	𝑁	terms 



in the asymptotic expansion, the only contribution is from the saddle point. Along the diagonal 

that goes through the saddle point	𝑠 = 0, we have	𝑠 = 𝑢𝑒,Hs/>	and the integral becomes 

𝐽' = X 𝑒1?M"𝑃 `𝑢𝑒
,Hs
> a 𝑒

,Hs
> 	d𝑢

/0

10
= P

𝑘($)(0)
𝑛! 𝑒

,($/')Hs
>

(%1'

$&!

X 𝑒1?M"𝑢$	d𝑢
/0

10
	

= P
√𝜋𝑒,(($/')Hs/>

2($𝑛!
𝑘(($)(0)
𝜆$/'/(

%1'

$&!

+ 𝑂 `
1

𝜆%/'/(a , 𝜆 → +∞ 

Due to symmetry, only even order terms are retained. The term 	𝐽(	can be analyzed from 
integration by parts. We define a sequence of functions 

𝑤!(𝑠) = 𝑘(𝑠) − 𝑃(𝑠) = 𝑂(𝑠(%), 𝑤$(𝑠) = −
d
d𝑠 �

𝑤$1'
𝑠 � 

At	𝑠 = 𝑠±, we have	𝑤! = ⋯ = 𝑤%1' = 0, so the boundary terms are zero. We can obtain 

𝐽( =
1

(2𝑖𝜎𝜆)%X 𝑒,?HG"𝑤%(𝑠)	d𝑠
G4

G5
, |𝐽(| ≤

1
(2𝜆)%X

|𝑤%(𝑠)|	d𝑠
G4

G5
= 𝑂 `

1
𝜆%a 

The final result for	𝐹T(𝜆)	becomes 

𝐹T(𝜆) = X 𝑒,?F(@)𝑔(𝑡)	d𝑡
@!4

@!5
= 𝑒,?F(@!)𝑒

,Hs
> P

𝑖$H√𝜋
2($𝑛!

𝑘(($)(0)
𝜆$/'/(

%1'

$&!

+ 𝑂 `
1
𝜆%a , 𝜆 → +∞ 

If	𝐼, 𝑔 ∈ 𝐶0, then we can take	𝑁	arbitrarily large. To obtain the leading order term, note that 

𝑘(0) = 𝑔(𝑡!)𝑡+(0) = 𝑔(𝑡!)­
2𝜎

𝐼++(𝑡!)
= 𝑔(𝑡!)­

2
|𝐼++(𝑡!)|

 

We thus derive the practical result 

𝐹T(𝜆) = 𝑒,?F(@!)𝑒
,Hs
> ­

2𝜋
𝜆|𝐼++(𝑡!)|

𝑔(𝑡!) + 𝑂 `
1
𝜆a , 𝜆 → +∞ 

 
Ø Generic leading-order behavior (5.4) 
If there are no stationary phase points within	[𝑎, 𝑏], then we only need the contributions from 
the endpoints. The result is 

Polynomial cutoff function 



𝐹(𝜆) =
1
𝑖𝜆 «𝑒

,?F(C) 𝑔(𝑏)
𝐼+(𝑏) − 𝑒

,?F(*) 𝑔(𝑎)
𝐼+(𝑎)¬ + 𝑜 `

1
𝜆a , 𝜆 → +∞ 

If there are	𝑀	stationary phase points	𝑡', ⋯ , 𝑡�, then we have 

𝐹(𝜆) = P𝑒,?F(@9)𝑒
,H9s
> ­

2𝜋
𝜆|𝐼++(𝑡4)|

𝑔(𝑡4)
�

4&'

+ 𝑂 `
1
𝜆a , 𝜆 → +∞ 

Every	𝑡4 	contributes to the same	𝜆1'/(	order, which is different from the Laplace’s method. 
 
Example 1: Bessel function 
For integer order	𝑛 ∈ ℤ, the Bessel function can be defined as 

𝐽$(𝑥) =
1
𝜋X cos(𝑛𝑡 − 𝑥 sin 𝑡) 	d𝑡

s

!
= Re «

1
𝜋X 𝑒,($@1- r�X @)d𝑡

s

!
¬ , 𝑥 → +∞ 

We recognize 

𝐼(𝑡) = − sin 𝑡 , 𝑔(𝑡) = 𝑒,$@ , 𝑡! =
𝜋
2 , 𝐼(𝑡!) = −1, 𝐼++(𝑡!) = 1 

The leading order term is obtained as 

𝐽$(𝑥) ∼
1
𝜋 Re ç𝑒

1,?𝑒
,s
>­2𝜋

𝑥 𝑒
,$s
( è ∼ ­ 2

𝜋𝑥 cos �𝑥 −
𝑛𝜋
2 −

𝜋
4� + 𝑂 `

1
𝑥a , 𝑥 → +∞ 

Denote	𝑥$4 	as the	𝑘-th positive root of	𝐽$(𝑥). We have 

𝑥$4 ∼ 𝑘𝜋 +
𝜋
2 `𝑛 −

1
2a , 𝑘 → +∞ 

 
Example 2: Linear dispersive waves (5.5) 

𝑢(𝑥, 𝑡) = X𝐴(𝑘)𝑒,(4-1�@)	d𝑘
ℝ

, 𝜔 = 𝜔(𝑘) 

Consider	𝑥, 𝑡 → ∞	with	𝑥 = 𝑣�𝑡, we analyze the integral 

𝐹(𝑡) = X𝐴(𝑘)𝑒,j4w:1�(4)k@	d𝑘
ℝ

, 𝑡 → +∞ 

We recognize 
𝐼(𝑘) = 𝑘𝑣� − 𝜔(𝑘), 𝑔(𝑘) = 𝐴(𝑘), 𝐼+(𝑘) = 𝑣� − 𝜔+(𝑘) = 0 

This gives rise to the group velocity	𝑣� = 𝜔+(𝑘). 

 
Example 3: Schrödinger equation for a free particle 

𝑖ℏ
𝜕𝜓
𝜕𝑡 = 𝐻#𝜓 = −

ℏ(

2𝑚
𝜕(𝜓
𝜕𝑥( , 𝜔 =

ℏ
2𝑚𝑘(, 𝑣I =

ℏ𝑘
2𝑚 , 𝑣� =

ℏ𝑘
𝑚  

 
 



Ø Multidimensional oscillatory integrals (5.7) 

𝐹(𝜆) = X𝑒,?F(𝒙)𝑔(𝒙)	d𝒙
]

, 𝜆 → +∞ 

We assume	Ω ⊆ ℝ: 	and	𝐼, 𝑔 ∈ 𝐶0(Ω). If we have	𝐼+(𝒙) = ∇𝐼(𝒙) ≠ 𝟎	for all	𝒙 ∈ Ω, there are 
no stationary phase points, and we can write the integral as 

𝐹(𝜆) =
1
𝑖𝜆X

𝑔(𝒙)
|∇𝐼(𝒙)|( ∇𝐼

(𝒙) ⋅ ∇.𝑒,?F(𝒙)/	d𝒙
]

 

To apply the divergence theorem, using the identity	∇ ⋅ (𝑓𝒖) = 𝒖 ⋅ ∇𝑓 + 𝑓∇ ⋅ 𝒖, and we have 

𝐹(𝜆) =
1
𝑖𝜆X ∇ ⋅ «

𝑔(𝒙)𝑒,?F(𝒙)

|∇𝐼(𝒙)|( ∇𝐼(𝒙)¬ d𝒙
]

−
1
𝑖𝜆X 𝑒,?F(𝒙)∇ ⋅ «

𝑔(𝒙)∇𝐼(𝒙)
|∇𝐼(𝒙)|( ¬ d𝒙]

	

=
1
𝑖𝜆X

𝑔(𝒙)𝑒,?F(𝒙)

|∇𝐼(𝒙)|( ∇𝐼(𝒙) ⋅ 𝒏(𝒙)	d𝑆
�]

−
1
𝑖𝜆X 𝑒,?F(𝒙)∇ ⋅ «

𝑔(𝒙)∇𝐼(𝒙)
|∇𝐼(𝒙)|( ¬ d𝒙]

 

Again, we have	𝐹(𝜆) = 𝑂(𝜆1')	and a similar expansion as the one-dimensional case 

𝐹(𝜆) ∼P
1

(𝑖𝜆)$/'X
𝑒,?F(𝒙)𝑔$(𝒙)
|∇𝐼(𝒙)|( ∇𝐼(𝒙) ⋅ 𝒏(𝒙)	d𝑆

�]$5!

, 𝑔$(𝒙) = −∇ ⋅
𝑔$1'(𝒙)∇𝐼(𝒙)
|∇𝐼(𝒙)|(  

Now the problem becomes analyzing the boundary integral 

X 𝑒,?F(𝒙)ℎ(𝒙)	d𝑆
�]

 

The stationary phase points satisfy ∇𝐼(𝒙𝟎) ∥ 𝒏(𝒙!), the gradient is normal to the surface. 
 
If there is only one stationary phase point	𝒙! ∈ Ω, we have 

𝐹(𝜆) = X 𝑒,?F(𝒙)𝑔(𝒙)	d𝒙
|𝒙1𝒙!|i(T

+ 𝑂 `
1
𝜆a 

For a non-degenerate Hessian matrix with	det|𝐼++(𝒙!)| ≠ 0, from Morse Lemma there exists a 
local transformation	𝒙 = 𝒙(𝒚)	such that 

𝐼(𝒙) = 𝐼(𝒙!) + 𝑦'( +⋯+ 𝑦I( − 𝑦I/'( −⋯− 𝑦:( 

The boundary integral then becomes 

𝐹(𝜆) = X 𝑒,?Y)+
"/⋯/);"1);4+" 1⋯1)<

"Z𝑔.𝒙(𝒚)/	𝐽𝒙(𝒚)	d𝒚
|𝒚|iT+

+ 𝑂 `
1
𝜆a 

The leading order term is related to the following integral (with	𝑞 = 𝑑 − 𝑝) 

X 𝑒,?Y)+
"/⋯/);"1);4+" 1⋯1)<

"Z

ℝ<
d𝒚 = 𝑒

,s
> (I1�) �

𝜋
𝜆�

:/(
 

For multidimensional oscillatory integrals, the nonlocal contributions can be larger than those 
from the stationary phase points, strictly for	𝑑 ≥ 2, as shown by the asymptotic series 



𝐹(𝜆) ∼ 𝑒,?F(𝒙!)𝑒
,s
> (I1�) `

2𝜋
𝜆 a

:
( 𝑔(𝒙!)

·det|𝐼++(𝒙!)|
	+ 𝑂 `

1
𝜆a , 𝜆 → +∞ 

For higher dimensions, the cancellation from oscillations becomes less efficient, and intuitively 
the nonlocal contributions become important. 
 
Example: Gauss circle problem 
Consider a convex domain	Ω ⊆ ℝ(	and	𝜕Ω	is smooth (e.g., circle). For	𝜆 > 0, denote	𝜆Ω	as the 
scaled domain	{(𝜆𝑥, 𝜆𝑦)	|	(𝑥, 𝑦) ∈ Ω}. We want to know the number of integer lattice points in 
this domain, denoted as	#(𝜆Ω ∩ ℤ(). With the area	𝑆(Ω), we have 

#(𝜆Ω ∩ ℤ() = 𝜆(𝑆(Ω) + 𝐸(𝜆) 
The behavior of the remainder term	𝐸(𝜆)	is still an open question, which is the Gauss circle 
problem for	Ω	being a unit circle. Currently, the best result is 

𝐸(𝜆) = 𝑂.𝜆J/, 𝜃 =
517
824 + 𝜀 ≈ 0.6274⋯ 

It is also proved that	𝜃 > 0.5, which implies the conjecture 

limsup
~→/0

|𝐸(𝑟)|
√𝑟

= ∞, 𝜃 =
1
2 + 𝜀 

 
Ø Exercise 
Influence of integration intervals 

𝐹(𝜆) = X 𝑒,?@"𝑒r�X @	d𝑡
C

*
, 𝜆 → +∞ 

Follow the steepest descent method, we recognize 
ℎ(𝑧) = 𝑖𝑧(, 𝑢 = −2𝑥𝑦, 𝑣 = 𝑥( − 𝑦( 

For a real value	𝑥! ≠ 0, we will need the hyperbolic	𝛾w emanating from this point, which is 
𝛾w:		𝑥( − 𝑦( = 𝑥!( 

When	𝑥! > 0	we take the segment with	𝑥 ∈ [𝑥!, +∞), while when	𝑥! < 0	we take the segment 
with	𝑥 ∈ (−∞, 𝑥!]. At	𝑥! = 0, the contour line to use is	𝛾w: {𝑦 = 𝑥}. Now we can evaluate the 
integral along the hyperbola. For	𝑥! = −𝑎 < 0, we have 

𝐼(𝜆; −𝑎) = −𝑒,?*"X 𝑒(?-()))𝑒r�X(-())1,))[𝑥+(𝑦) + 𝑖]	d𝑦
0

!
 

Using Laplace’s method, we have 
𝑅PQR = 𝑅(0) = 0, 𝑔(0) = 𝑖𝑒1r�X * , 𝑅+(0) = 2𝑎 

The asymptotic expansion is 

𝐼(𝜆; −𝑎) ∼ −𝑖𝑒,?*"
𝑒1r�X *

2𝜆𝑎 + 𝑜 `
1
𝜆a , 𝜆 → +∞ 



Similarly, for	𝑥! = 𝑎 > 0	we have 

𝐼(𝜆; 𝑎) ∼ 𝑖𝑒,?*"
𝑒r�X *

2𝜆𝑎 + 𝑜 `
1
𝜆a , 𝜆 → +∞ 

When	𝑥! = 0, the saddle point needs to be analyzed. We consider the steepest descent path as 
the whole diagonal which gives 

𝐼G(𝜆; 0) = X 𝑒1(?)"𝑒r�X('/,))	(1 + 𝑖)	d𝑦
/0

10
 

Using Laplace’s method, we have 
𝑅PQR = 𝑅(0) = 0, 𝑔(0) = 1 + 𝑖, 𝑅++(0) = −4 

The asymptotic expansion is 

𝐼G(𝜆; 0) ∼ (1 + 𝑖)³
𝜋
2𝜆 + 𝑜 `

1
√𝜆
a , 𝜆 → +∞ 

Now we can summarize the leading order asymptotes for integrals over different intervals. 

[𝑎, 𝑏] = [−2𝜋,−𝜋], 𝐼 ∼
𝑖𝑒,?s"

2𝜋𝜆 −
𝑖𝑒,?>s"

4𝜋𝜆 + 𝑜(𝜆1') 

[𝑎, 𝑏] = [−𝜋, 𝜋], 𝐼 ∼ (1 + 𝑖)³
𝜋
2𝜆 + 𝑜.𝜆

1'/(/ 

[𝑎, 𝑏] = [𝜋, 2𝜋], 𝐼 ∼
𝑖𝑒,?s"

2𝜋𝜆 −
𝑖𝑒,?>s"

4𝜋𝜆 + 𝑜(𝜆1') 

The results match with the analysis from the stationary phase method. 
 
Degenerate stationary phase point 

𝐹T(𝜆) = X 𝑒,?F(@)	d𝑡
@!/(T

@!1(T
, 𝜆 → +∞ 

Now we consider a stationary phase point	𝑡!	with	𝐼+(𝑡!) = 𝐼++(𝑡!) = 0	but	𝐼+++(𝑡!) > 0. From 
previous analysis, around	𝑡 = 𝑡!, we first write the Taylor series of	𝐼(𝑡) 

𝐼(𝑡) = 𝐼(𝑡!) +
1
6 𝐼

+++(𝑡!)(𝑡 − 𝑡!)8 +⋯ 

Denote	𝜎 = sgn 𝐼+++(𝑡!). According to Morse Lemma, we find a transformation such that 

𝐼(𝑡) = 𝐼(𝑡!) + 𝜎𝑠8, 𝐹T(𝜆) = 𝑒,?F(@!)X 𝑒,?HG%𝑡+(𝑠)	d𝑠
G4

G5
 

The lower and upper limits of the integral are calculated as 

𝑠± = ·𝜎[𝐼(𝑡! ± 2𝛿) − 𝐼(𝑡!)]
% , 𝑡(𝑠), 𝑠(𝑡) ∈ 𝐶(%/', 𝑡+(𝑠) ∈ 𝐶(% 

We can similarly analyze	𝐹T 	using the method of steepest descent. For	𝜎 = 1, we have 
ℎ(𝑠) = 𝑖𝑠8, 𝑢 = 𝑦8 − 3𝑥(𝑦, 𝑣 = 𝑥8 − 3𝑥𝑦( 

The steepest descent path is constructed as shown in the figures. Different from the case for	𝑧(, 



now the path changes direction at the saddle point	𝑠 = 0	to ensure the real part having	𝑢 < 0. 
We only need to evaluate the integral along the diagonals, and note that 

X 𝑒,?G%d𝑠
E+∪E"

= `−𝑒
=,s
n + 𝑒

,s
n aX 𝑒1?M%d𝑢

/0

!
= √3Γ `

4
3a 𝜆

1'8 

Now we obtain 

X 𝑒,?HG%𝑡+(𝑠)	d𝑠
G4

G5
∼ √3Γ `

4
3a 𝜆

1'8	𝑡+(0) + 𝑂 `𝜆1
(
8a , 𝜆 → +∞ 

By taking derivatives of the transformation, we have 

𝑡+(0) = Z
6

|𝐼(8)(𝑡!)|
[

'
8
 

The final asymptotic expansion becomes 

𝐹T(𝜆) ∼ √3Γ `
4
3a 𝑒

,?F(@!) Z
6

𝜆|𝐼(8)(𝑡!)|
[

'
8
+ 𝑂 `𝜆1

(
8a , 𝜆 → +∞ 

 
Oscillatory integral 

𝐹(𝜆) = X cos(𝑛𝑡 − 𝜆 cos 𝑡) 	d𝑡
s/(

1s/(
= ReX 𝑒,($@1? pqr @)	d𝑡

s/(

1s/(
, 𝜆 → +∞ 

We recognize 
𝐼(𝑡) = − cos 𝑡 , 𝑔(𝑡) = 𝑒,$@ , 𝑡! = 0, 𝐼(𝑡!) = −1, 𝐼++(𝑡!) = 1 

The leading order term does not depend on	𝑛, since the stationary phase point is	𝑡! = 0. 

𝐹$(𝜆) ∼ Re Æ𝑒1,?𝑒
,s
>·2𝜋/𝜆Ç ∼ ·2𝜋/𝜆 cos �𝜆 −

𝜋
4� + 𝑂

(𝜆1'), 𝜆 → +∞ 

𝜎 = 1 𝜎 = −1 



Airy function 
The asymptotic behavior of	Ai(𝑥)	as	𝑥 → −∞	can also be obtained by the method of stationary 
phase. Denote	𝑟 = −𝑥 > 0 and	𝜆 = 𝑟8/(, we have 

Ai(−𝑟) =
√𝑟
2𝜋𝑖 X𝑒

?D(M)	d𝑢
}

, ℎ(𝑢) = −𝑢 −
𝑢8

3 , 𝜆 → +∞ 

The path can be deformed to the imaginary axis. This is 
because the integrand is analytic, and the integral over the two 
arcs tends to zero as	𝑅 → ∞	since the real part is negative. 
Therefore, we have 

Ai(−𝑟) =
√𝑟
2𝜋X 𝑒,?F(@)d𝑡

/0

10
, 𝐼(𝑡) = −𝑡 +

𝑡8

3  

There are two stationary phase points in the interval 

𝑡! = ±1, 𝐼(𝑡!) = ∓
2
3 , 𝐼++(𝑡!) = ±2 

The leading order terms are obtained as 

X 𝑒,?F(@)d𝑡
/0

10
= 𝑒1

(,?
8 𝑒

,s
>³

𝜋
𝜆 + 𝑒

(,?
8 𝑒1

,s
>³

𝜋
𝜆 + 𝑂.𝜆

18/(/, 𝜆 → +∞ 

Since the contribution from endpoints at infinity is zero, the next order term is modified 
accordingly. Finally, we have the asymptotic expansion for	Ai(𝑥)	as 

Ai(𝑥) =
|𝑥|1

'
>

√𝜋
cos `

2
3
|𝑥|

8
( −

𝜋
4a + 𝑂 `

|𝑥|1
l
>a , 𝑥 → −∞ 

 


