Fundamentals of Asymptotic Analysis

» Big-O and small-o notation (Book chapter 1.1)

For a domain (), consider general complex-valued functions f, g: 1 — C.

f(z)=0(g(z)), zZ€Q K >0, vzeQ, |f(2)| <K|g(2)|

f(z) = O(g(z)), Z - 7, 36 >0, Vz € B(zy,9), f(z) = O(g(z))
f(z) = O(g(z)), Z > 00 aM >0, Vi|z| > M, f(z)= O(g(z))

f(2) = o(g(z)), Z > z, Ve>0, 3§ >0, Vz € B(z,,98), |f(2)| <¢lg(2)|
fl2) = o(g(z)), Z > © Ve>0, IM >0, V|z| > M, |f(2)| <elg(2)]

The are several properties
¢ Ifg(z) # 0, then

exists

f@@) = O(g(z)), zZ=Z = lirzllszl;p gg

f(2)
9(z)

f@=0(g=), z-2z, < lim

zZ—-2Z,

¢ Iff =o0(g),then we have f = 0(g)
¢ Iff =0(g),g =0(h),then f = 0(h). Similarly, if f = 0(g),g = o(h), then f = o(h)
¢ Iff, =0(g,) forz > zyandn = 1,2,---,N, then
N N
zanfn:0<2|an”gn|>' Z = Zy
n=1 n=1
¢ Asz oz, iff; = 0(g1), f» = 0(g2) and g; = 0(g>), then f; + f, = 0(g>)
¢ Ifg(x) =0, then

f=0(gx) =

o[

Note: The relation between derivatives cannot be guaranteed. Same for big-O notation.

! ! 2 o3 1
flx) = o(g(x)) e f'x) = o(g (x)), e.g. f(x) =x*sin (F)
The relation between antiderivatives requires g > 0. As a counterexample, consider f(x) = 1

and g(x) = e™*. We have f(x) < g(x), but

fyf(x) dx

fyg(x) dx

=|ei3’—1|S2, as y > o

fo @ dr=y o, f g(x) dx



With these notations, the absolute and relative errors can be denoted as
f@=f@+0(), z-z
f@=f@1+01), z-z

» Asymptotic sequence and series (1.3)
Asymptotic sequence

If there is a sequence of functions {¢,: @ — C} such that for any n > m, we have

¢n(Z) = 0(¢m(z))r Z = Zy

Then we call {¢,,} as an asymptotic sequence around z,.

Example
Pn(2) = z™0*™, ng € Z, z = B(0,6)

Asymptotic series
For a function f: Q — C and an asymptotic sequence {¢, } around z,, if there exists a sequence

of constants {a,,} such that for any N € N, we have
N

[ =) atn@+o(pu@). 22

n=0
Then the formal infinite series below is an asymptotic series, and is an asymptotic expansion

of f(z) around z = z,.

0]

f@~) abu(®, 257

n=0

Note that:

¢ As a function series it is usually not convergent, and we need to truncate the sum.

¢ Fora given f(z), there can be many asymptotic series around z,.

¢ For a given {¢, } and {a,}, the asymptotic series can correspond to different functions

f(z) and g(z) as long as f — g = 0(¢,,). As an example, we can choose

1
f—g=e x*=o0(x"), x—-0

¢ Foragiven f and {¢,,}, the sequence {a, } can be uniquely determined as
O~ S ana ()
Yoz ¢y (2)
¢ Not every f can be expanded using {¢,,}




Existence theorem (1.4)

For an asymptotic series ® = {¢,,}, denote

Fo={fi0-Cl3ast ()~ ) an¢n(z)}

n

CN is the space of sequence {a, }: N - C. The mapping « is defined as

a:Fp - CY, fo{a,) a,=lim f(2) — Xiso adi(2)

229 ¢n(2)

Then «a is surjective.

Proof. For given {¢, } and {a, }, we want to construct a function f that has the corresponding
asymptotic expansion. If a; = 0, then we can reject ¢p,.. Without loss of generality, we can take
all a,, # 0. Since ¢,, = 0(¢p,,_1), we have a,,¢, = o(a,,_1¢,_1). This can be shown as
lan_ql ~
Ve=¢ IZ I ) 35 s.t. |¢n(z)| < E|¢n_1(Z)|, Ian¢n(z)| <& IaTL—1¢TL—1(Z)|
n

Take € = 1/2, and there exists a decreasing sequence {r;,} or positive radii 1, > 0 such that

1 _
Ian¢n(z)| < E Ian—1¢n—1(z)|' VLS B(Zo,Tn) N

Now introduce a sequence of cut-off functions {u,,(z)} defined as follows

1, IZ - ZOI < Tnt1
Un(z) = {linear of smooth, T < |z—2p| <1,
0, |z = zo| > 1,

We construct the function f(z) as

f@) =) aun@en@, z€0

n=0

For z € Q, we can find N such that |z — zy| > ry. We can see that the series is convergent
N

F) =) antn@pn(2)

n=0

Because {r; } is decreasing, then u,, (z) < p,_1(2). Also, note that

1
Ian¢n(z)| < Elan—l(pn—l(z)lr when ﬂn(z) #0

When |z — zy| < ry41, the remainder can be written as

Ry(@) = ()= ) antn(@) = [(D) = ) anttn@bn(d) = ) anitn(Dgn(2)

We want to prove Ry = o(¢y) as z = z,.



RY@I < D tn(DIandn(D] < iy @Dlawadna @I+ ) in@Dlandn(2)]

n=N+1 n=N+2

The second term can be manipulated as

1 1
.un(z)land)n(z)l < E.un(z)lan—1¢n—1(z)| < E.un—l(z)lan—1¢n—1(z)|
This leads to

[00] 1 oo
D 1 D1andn @ < e Dlawadun @l +5 ) in@Dlarda(2)]

n=N+1 n=N+1
IRv(D| < 2uni1(@D]ay1Pn+1(2)] < 2|an41Pn41(2)]
As ¢py41 = 0(dy), we prove Ry = o(¢y) and it is the asymptotic expansion of f(z). [

A similar result is Borel’s Lemma, which states that V{a,,}, 3f € C* such that f ™ (0) = a,,.

»  Asymptotic root finding (1.5)

Consider polynomials f;(x), and we want to find the root of the following equation

fGx,e) = folx) +efi(x) = 0

First we need the following implicit function theorem.

Theorem. For domains ), D € C with 0 € D, consider a holomorphic function f € 0(£) X D).
For a point x, € Q, if f(x,,0) = 0 and f,.(x,, 0) # 0, then there exists an open subset D’ S D
with 0 € D’ and an analytic ¢p: D' — Q such that Ve € D', f(¢(¢),¢) = 0 and ¢(0) = x,.

If deg(f;) < deg (fy), then denote d = deg(f,) = deg(f) and f; has d roots. We can infer

that x, is a simple root of f, since

of _9f

a(xo, 0) = E(xo) # 0

Example 1: Regular perturbation problem with deg(f;) < deg(f;)
fx,e)=x3—x+e=0, fo(x)=x>—-x, filx)=1

The roots of f,(x) are x; , 3 = 0, —1, +1. For each specific x;, consider
x=x; + exl.(l) + sle.(z) + -+ s”xi(N) +o(eM)
Then we have
flx, &) = (xl- + exi(l) + )3 - (xl- + sxi(l) + ) +e=0

Comparing the coefficients for each order of € gives



[€°): x? —x; =0

1

. ® ® _ 1 _
[81]_ Sxile. —X; +1=0, X 0= 1_—3xlz

. Nk @ @ _ @ 3%
[82]_ 3Xi [Xi ] + 3xi2xi - Xi = O, xl. = m
Example 2: Singular perturbation problem with deg(f;) > deg(f;)

flx,e) =ex®—x+1=0, d=>2

When € = 0, we only have one root x = 1. We want to understand the other d — 1 roots. As a

simple case, consider d = 2 and we have

1++vV1-—4¢
Xip =~ V1—4e=1-2c—2e?+ 0(e?)
Then we can write
1

x1=E—1—£+o(e), X, =1+¢e+0(e)

As & = 0, we have x; — oo and thus it disappears when solving f(x, 0) = 0. We consider roots
in the form x = £7Py with p > 0, such that f(x, €) = g(y, €”) becomes a regular perturbation
problem as follows
g-e7Wyd — e Py 4+ 1=0, y4 — gdp=P=ly 4 gdP-1 =
Therefore, we can choose
1

p= 1-1
Denote § = £”p. We can first solve for y;(8§) and then obtain x; = § 1y, (6).

dp—p—1=0, yd—y+eP =0

Example 3: Principle of dominant balance
flx,e) =ex®+ex?—x+1=0
Following the same procedure, consider x = ¢~y with p > 0, and we obtain
el™3Py3 4 g172Py2 — 7Py +1 =0
For the four terms, we notice 1 — 3p < 1 — 2p and —p < 0. This implies that terms I and III
are dominant, and we set 1 — 3p = —p, which gives p = 1/2. The equation becomes

y3 + 81/2},2 —y+ /2 =

From the algebraic perspective, the techniques for solving singular perturbation problems are
essentially proving that the field of Puiseux series is the algebraic closure of the field of formal

Laurent series over the complex domain C.



» Exercise
Asymptotic root finding
ex?® = (x — 1)?
When € = 0, the root x; = x, = 1 are not simple roots. To obtain the perturbation around these

roots, consider
tVex3/2 =x -1, fi:xi+\/gxi(1)+€xi(2)+---
We have x; , = 1 and

3 3 2
%=1 +§(\/Exi(1) +ex® + ) +§(\/Ex(1) +ex® + ) o

i i

By comparing the coefficients, we obtain
3 21
3?1,2=1ix/§+§ei§s3/2+5£2+0(85/2), g— 0%

Another root X3 goes to infinity as € - 0*. Consider x = ¢~?y with p > 0, and we obtain
g173Py3 = ¢72Py2 — 2 Py + 1
From the dominant balance, we set 1 — 3p = —2p, which gives p = 1 and
Yy -y*+2ey—¢e*=0
We need to take the root y, = 1 when € = 0 to ensure y is bounded away from zero.
y=1+ey, +e%y, +3y; +ety, + -
By comparing the coefficients, we obtain
y=1-—2e—3e?—10e3 —42e* + -
Then the third root is given as

1
X3 :E_Z —3e—10e% — 423 + 0(e%)



Asymptotic Analysis of Integrals (1): Watson’s Lemma

We will study the following four types of exponential integrals with corresponding methods.

T
f e Mp(t) dt Watson’s Lemma
0
b
f e RO g(1) dt Laplace’s method
a
f e M@ g(z) dz Method of steepest descent
v
b
f eM® g () dt Method of stationary phase
a

In this chapter, we will discuss the first type of integral.

Example: Incomplete Gamma function (2.1)
X
v(z,x) = f e"ttz" 1 dt, x>0, z>0
0

1. Asx — 0%, with Taylor expansion we have

)N+1

& (—1)n ~1
=N ke, Re =T

t
e S(t—s)Nds
NI fo

The remainder term can be bounded as

N+1

N+1
N+ Al

1t N
Ry (D] Smfo (t—s)"ds =
The integral becomes
(_ )n n z—-1 (_ )n N+z
y(z,x)_f Z e + Ry(0) |t dt—z )

Therefore, the asymptotic expansion of y(z,x) atx = 0 is

o —1)" xntz
V(Z,x)~z() ) x - 0*

n' n+z

n=0

2. As x — oo, note that
y(x,z) =T(2) —f e~ttz 1 dt
X

In this case, et is dominant for the convergence. Denote t = x + s and we have

o oo S z—1
f etttz 1dt = e‘xxz‘lf e”s (1 + —) ds
X 0 x

Now we expand (1 + s/x)?"1 as x - oo, which is



N 7 — 1\ S\ gN+1
=20 o m=o(Sw)
n=0
Z—1 _ 1 ©
—f ess"ds+0<N+1f essN“ds)]
0

(z—l) (z—n) (1)

xN

The integral becomes

- -
f etz 14t = e *x2% 1
X

—X,Z—1

Therefore, the asymptotic expansion of y(z, x) at x — oo is
)/(Z,x)~F(Z)_Z(Z—1)--.(Z_n),e_xx2—n—1, X — 00
n=0

Another way to derive the result is to use integration by parts.

» Watson’s Lemma (2.2)
Suppose T > 0 and ¢(t): [0, T] — C is absolutely integrable

f ()] dt < oo

Further suppose that there exists ¢ > —1 and g(t) € C*® neart = 0* such that ¢p(t) = t?g(t).

Then the exponential integral is finite for all A > 0, with the following asymptotic expansion

T X (n)
F(/l)zfe"lt¢(t)dt~zg © Mo+ntl) o

nl Aa+n+1

n=0
Proof. Choose s > 0 arbitrarily, and we have

T T
f e Mp(t) dt| < e‘lsf lp(t)| dt < Me™s = o(2=(0*™#D),  wvneN
S S

Therefore, we can split up the integral and only focus on [0, s]. For a sufficiently small s > 0

such that g € (0, s) and ¢(t) = t°g(t). The Taylor expansion of g(t) is
g

-1
9O =) —gMO" +Ry(®),  Ru(®) = 0"

The integral becomes

s N 0) rs s
f e Mp(t) dt = z g n'( )f e Mot dt + 0 (f e Ao tN+1 dt)
0 : 0 0

n=0

Denote the integral that appears as F,(4) for each integer p > 0. With x = At, we have



S

—Atyo+p A —-X X\ 7P dx 1 Ao —X A 0+Dp
e t dt = . e (I) T—W . e X dx

RO = |

0

[0¢]

1
= Wl[‘(a +p+1) - f e *xo*P dxl

As

One trick to manipulate the second term is to use the Cauchy inequality.

f e *xtP dx = f e 2-e 2x%P dx < f (e 2) dx - f (e 2x0+p) dx
As As As As
= 8_15/2 . \[f e—XxZ(O"I‘p) dx S e—AS/Z . \[f e—sz(O'-l-p) dx
As S

Since 4 is very large, we can reduce the lower bound of the integral and remove its dependence

on A. It can also be written as 0(A~?"""1) for any n € N. Eventually, we have

2 4@
F(A)~zg (0).F(a+n+1)

n! Aa+n+1 ’ A — o0

n=0

Generalizations of Watson’s Lemma (2.3)

¢ Replace the condition as A € Qg = {z € C | |arg z| < 6}, and consider || — .
¢ Replace the condition as Re(a) > —1.

¢ The function g can be only finitely differentiable as g € C™.

¢ IfT — +oo, then we only need to require e "t ¢(t) to be absolutely integrable.

Example 1

oo

FQA) = f e MIn(1+ t?) dt

Similarly choose s > 0 arbitrarily, and from Cauchy inequality we have

* “ ®1n2(1 4+ t2
f e MIn(1 +t2) dt < jf tZe—2At gt - jf (t—Z) dt = o(179 " 1)
S S S

This is the only step we need to modify from the previous proof. With the Taylor expansion of
¢(t) = In(1 + t2), we have

= 2 £2n o (—D)™ (2n)!
F(A) ~ f e M [Z(—l)nﬂ 7] dt = Z n_ jzn+1’ Ao oo
0 n=1 n=1

Although the series is not convergent, in the sense of asymptotic analysis it is valid. Therefore,

after truncating the sum, the result makes sense.



Example 2

B
F(D) =f e M Ht)dt, a,B>0

We consider ¢p(t) € C* around t = 0. For a sufficiently small s > 0, note that

BZ
S e—)lsz f
s2

This implies that we only need to analyze the symmetric part, which is

B
f e—/ltzd)(t) dt ¢2(—\/\/?‘ du = 0(AP), Vp ER

S

s s N pem
F) ~ f e M () dt = 2[ e~At* [Z¢)(2—Tl)(!())tzn +o(t*V)|dt

Evaluating the integral, we obtain

CHEM(0) T(n+1/2) e o@(0) 1
F(A) ~ ; (Zn)' ) n+1/2 - \/;nZO 22n pni 'A_n’ A -

> Exercise

Term-by-term integration
® T
f e t(1+ zt)"1 dt, z-0, |arg z| <§
0
Expanding (1 + zt)~! as z - 0 gives

(1+2t)1 = Z(—l)”z"t" +Ry(D),  Ry(t) = 0(zV+1eN+1)

The integral thus becomes

fooe_t(l +zt) 1 dt = i(—l)”z"f

n=0

[oe] 0]

e~ ttndt+ 0 (z"’“ f e teN+1 dt)
0

- Z(—nn nlz" + 0(zV)

Therefore, the asymptotic expansion is

T

f e t(1+zt)~1dt ~ Z(—l)” -nlz", z—0, larg z| < >
0 n=0

Exponential integral

© -t
e"‘f de, X — o
o X+t



Similarly, by expanding (1 + t/x) ™! as x - oo, we have
(o) e—t e—x o e—t
R AR i
o X+t x Jo 14 L
x

e~* [xn (=" [ 1 (@
= = f e~ tthrdt+0 Wf e teN+1 dt
X X X
n=0 0 0

n=0

The asymptotic expansion of the integral, which is also for the function Ei(x), is

x foo e - (1" - nl
e
0

dt ~e™* _ X — 00
x+t xntl
n=0
Error function
2 (* .,
erfxz—f e tdt, x €R
v Jo

1. Asx — 0%, with Taylor expansion we have

(_1)N+1
N!

t
f 2e~S"(t — s)2N*1 ds
n 0

e_tz _ Z (—1!)n tzn + RN(t), RN(t) =

The remainder term can be bounded as

2N+2

2N+2
N+ At

2 t
IRN(t)I S mf (t - S)2N+1 dS = = Cl
70

The integral becomes

N N
2 X (_1)11 2 (_1)n x2n+1
fx =— Z—tzn Ry (t dt:_z AR 2N+2
ertx \/Efo n! + Ry (1) Jr n! 2n+1+0(x )
n=0 n=0
Therefore, the asymptotic expansion of erfx at x = 0 is

2 ® (_1)n x2n+1
fx ~ — -
erx NI n! 2n+1’

n=0

x - 07

2. As x — oo, note that
2

erfx =1——
N
With the change of variable u + x? = t?, we have

f e~t’dt = 1 — erfcx
X

e~—X> ™ e~ U
erfcx = f du
Tl J1+u/x?
Now we expand (1 + u/x%)~1/? as x - oo, which is



. )” uN+1
(1+ Z(— 4 R, RN(u)=o(m>

The integral becomes

e[ (2n — DN 1 (@
— n —U,n -u,,N+1
erfcx = x\/_ E (-1) I (2x Z)nf udu+0 <X2N+2_[0 e %u du)]

- iﬁ Z o (xi)]

Therefore, the asymptotic expansion of erf x at x — oo is

n(2n—1)”
erfx ~1— \/_Z( 1) 2 X >

Integral with e *" kernel

(o)
2 .
f e *sintdt, X — 00
0

Denote ¢p(t) = sint, and its Taylor series is

sint = a;t + ast3 z Z(n +)1)' Zntl

From the previous result, as x — oo we have

-fooe_gct2 Sintdt~1fooe_xu (a i u_l_)du:lz ( 1)" fooe_xu u™ du
0 2), 1+ as 2 L. 2n + 1)

1w (D" 1 (® 1 n 1
== f e " um" du=—Z(—1)"——
2 @2n+ 1)txnt1 ], 2x 2n+ 1)!xn
n=0 n=0
The first few terms in the asymptotic expansion is

foo"“ tdt 1(1 1+ ! ! + ) X — ©
j ¢ s 2 6x ' 60x2  840x3 ’

Integral with e *" kernel

1
3
f e *t"dt, X —
0

With the change of variable u = xt3, we have

1 1 x 2 re/3 e ™
f e~ Xt ~ VE f e *u3du= 3(x—1//3) — g(l + O(x‘l)), X —
0 0




Asymptotic Analysis of Integrals (2): Laplace’s Method

We analyze the asymptotic expansion of the following integral

b
FQ) = f eMROgt)ydt, A1- o

a

With R(t) € Cla, b] and g(t) an absolutely integrable function.

» Nonlocal contributions (3.2)
We know that R can reach its maximum Ry, within [a, b]. Denote R(t) = R(t) — Rpyax, then

b
F(A) = e*Rmax f e D g(t)dt, maxR() =0

a

Without loss of generality, we can take R,,,,x = 0. For the previous examples, we have

e, R(t)=-t, t€[0,T], Rmax=0

e_)ltzi R(t) = _tzi t E [_al ﬁ]) Rmax = O
Define the set T as
T ={t €lab]|R(t) =0}

We assume that T is finite. For § > 0, define sets Tg and I as

Ts={t€lab]|dT) <8}, Is=I[ab]\Ts
Note that Ty is open and I is closed and compact. Then R (t) has a maximal value in I5, which

is denoted as —K5 < 0. We can show that
)
1

» Contributions from endpoints (3.3)
Consider T = {a} as the left endpoint. We assume R, g € C®[a, a + §).

b
OGO de < e [ gl de=o@),  VpER
a

f e RO g(t) dt

Is

8

a+é 1)
F(A) ~ f e RO g(t) dt = f e @D g(q + 1) dr
a 0

First we consider R’ (a) # 0, and since R(a) is maximum we have R'(a) < 0. We need to find

a change of variable T = 7(s) such that R(a + t) = —s. Based on the inverse function theorem,
we know that 7(s) exists because
ou
7(0) = 0, u(t,s) =R(a+71) +s, F =R'(a) #0

(,5)=(0,0)
With this change of variable, we can directly apply Watson’s Lemma with ¢ = 0 and

¢(s) = gla+1(s))7'(s)



This leads to the following asymptotic expansion

s 2 H@®
e gla+1(s))t'(s)ds = Z¢An—+(10)’ 1 - o

n=0

H@~f

0

The calculation of higher derivatives of g(a + 7(s)) follows Faa di Bruno formula, while those

for 7(s) follows the formula for the inverse function. In particular, we have

_9(a)
0)=g@)7'(0
#(0) = (@) 7'(0) = ~ s
The leading order term gives
gla) 1 1
FO~~p@ 7 of3) A-w
IfR'(a) = R"(a) = - = R*D(a) = 0 and R® (a) < 0, then we have

1
R(a+ 1) =R(a) + FR(R)(Q)TIC + o(7%)
The change of variable T = 7(s) now should satisfy R(a + 7) = —sk.

If T = {b} is the right endpoint, we have

gb) 1 1
F(A)“'qu)'I*'°<Z)' A=

» Contributions from interior maxima (3.4)
Consider T = {t .} With a < t.x < b. We have R’ (t,.¢) = 0 and assume R"' (t.x) < 0.

B
F(A) ~ f eMRUmaxtDg (¢ +1)drT
-5

Morse Lemma
For f € C3(Q), x, € Q and a non-degenerate D?f, there exists a local coordinate transform

x = x(y) such that

fO)) =yi+ 4+ yE =i — =y + f(x0)

From Morse Lemma, we can find a transform 7 = 7(s) such that

1
R — Rpax = ER”(tmaX)(t — b)) F o = —s2

Take R,2x = 0 and this leads to

B @) 1
F(ﬂ.) ~ f ~As* ( max + T(S)) T (S) ds ~ IZ ¢22n 'fl') /111



Here we use the previous result with

¢(s) = g(tmax + () T'(s),  ¢(0) = g(tmax) 7'(0)

The derivative 7'(s) is obtained from

R(tmax + 7(s)) = =52, R'(tmax + 7(s)) T'(s) = —2s

R”(tmaX + T(s)) [T'(s)]? + R’(tmaX + T(S)) t'(s) = -2

Ats = 0, we have

2
R”(tmax) [T,(O)]Z =2 T,(O) B \/%

The leading order term gives

tmax 2 1
F(/l)~g(—) —n+0<—), A—> o
IR”(tmaX)I

The interior maxima dominates over the endpoints.

Example 1: Gamma function
I'(z) = f e~ttz71 de, Z >
0

Consider a change of variable t = zs, we have

[ee] (00} [00]

zl(2) = f e~ ttZ dt = f e~ zs+z(Inz+Ins) ,q¢ = 5. sz ez(ns—s) 4g
0 0 0

We recognize R(s) = Ins — s with s, = 1 and R(Sppa¢) = —1. Now we have

[00]

I'(z) = Zze—zf ez(ns—s+1) ds, ﬁ(s) —lns—s+1
0

We want a coordinate transform s = s(u) such that
Ins —s+1=—-u? —se S = —e_(1+u2), s = _W(_e—(1+u2))

Now s is expressed using the Lambert W function. The asymptotic expansion becomes

5
I'(z) ~ zze‘zf e‘zuzs’(u) du
-5

To obtain each coefficient, consider
s=1+cu+ cu?+ czud + o(u3)

We thus obtain
In(1 + c;u + c,u? + cgud + )

Cl:\/i, cy, =

=cu+ (c; — Du? + cgu® + -
2 1

-, C3 —_- -

3 W2



4 1
s'(w) =2 + U +—u? + o(u?)

3v2

Directly calculating the integral over the entire real axis, we have
) . _, |2 14 1 N 1 139 i+0<i)
wre |z 12z ' 28822 518407° = \z*

Example 2: Weakly diffusive regularization of shock waves (3.6)

The shock wave equation is given as
u; +uu, =0, u(x,0) = uy(x)
The solution can be written as
u(x, t) = ug(x — ulx, t)r)
After finite time, the initial uy(x) profile will experience catastrophic steepening that develops
a shock wave. By including the diffusion term, the shock is regularized.
U + Ul = Vi, u(x,0) = uy(x)
This is Burgers’ equation with small v — 0*. With the Cole-Hopf transformation, we have

Dy
Pt = VPxx) u=-2v—

@
This leads to

Uy + Uly — VUyy, = —21/(111 (p)xt + 41/2(11’1 (p)x(ln (p)xx + 21/2(11’1 (p)xxx
= [-2v(In @), + 2v?[(In @), ]* + 2v?(In @)y ]«
—v
=|-2v %y 21/2%] - [—ZVM] =0
Now we can choose ¢, (x) as

; 1
uy(x) = _zvz_' @o(x) = exp (‘Zfo uo(m) d’?)

0

The diffusion equation gives

1 (x —&)?
p(x,t) = \/ﬁfﬂg%(f) exp <—W> d¢

1 1 (¢ (x — §)?
- fReXP<—5 f g () dy — > )df

From the Cole-Hopf transformation, we can obtain

-1
u(x,t) = fe“@g(f) df'U e R ds‘l
R R

The parameter A and functions R(§) and g(&) correspond to



1 § —&)?2 —
A= 51 R(S;; x,t) = _.[0 uO(n) dT] _%' g(f, X,t) = ?

We first find the interior maxima of R(&), which gives

x—=3
R =—u@)+——=0 {xt)=x—tu(s)
From the Laplace’s method, we have

w2 LO+00) x—¢
’ 1+0W) t
Taking the limit v = 0, we can recover the solution of the unperturbed problem as

+ 0(v), v-0

x—tu=¢&=x—tuy(x — tu), ulx, t) = uyg(x — ulx, t)t)

Now consider a matrix A(u) with real eigenvalues 4, < 1, < -+ < 4,
u = (ug, Uy, , Uy), u, +A(w)u, =0, u(x,0) =u,
With the diffusion term, we have
u, + A(w)u, = ey, u(x,0) = u,

This vector problem becomes much more difficult.

» Multidimensional integrals (3.7)
FQQ) = fe’m(x)g(x) dx, x€eR"
Q

Suppose that R € C™ takes its maximum at x,,,,, = 0 in the interior of 1 with R, = 0.

1 0%R
R(x) = Ryax + =xTHx + 0(]x]?),

2 H= axiaxj (xmax)

We assume that H is negative definite. The case of semi-definite H is more complicated.

Note: If H = 0, then we need to consider R™ (0). As a simple case, forn = 2 we have
R(x,y) = a;x* + a,x3y + azx?y? + ayxy® + asy* + o(|x? + y?|?)
If x # 0, we have
y 7\
= x4 Z4a(Z 2 2|2
R(x,y) =x 1+a2x+ as(x) ]+0(|x + y2|?)
To require a polynomial with deg R = 4 always being negative is extremely complicated. This

leads to the theory of singular points.

The integral can be similarly localized as
FQQ) ~ f e R g(x) dx
|x|<6
Based on Morse Lemma, there exists new coordinates y4, -*+, y,, such that



T

R(x() = -yt ——yi=—y"y

Therefore, the integral becomes

FQA) ~ f e~ 20t g(x(y)) I (y) dy

lyl<é&’

Assume that all functions are C®. The Taylor expansion gives

o) = Z Z Cieykey Vi, " Yiem

m=20 1<kq,-- kms<n

Here m denotes the polynomial degree. We need to evaluate the following type of integral
f e_/l(y%+"'+yrzl) yk1 ykm dyl dyn
RTL
Consider the function

G(le - xn) = f e—)I(Y%+...+y,%)+(x1y1+...+xnyn) dy, --- dy,
RN

n 2 5
= —Ayi+xsy —AYE+xnyn — (T2 u
(fmane S dy1> (fRne dyn> (A) exp( 47

Then we have

™G (x4, Xp)
axkl cee aka

= f e_l(y%+"'+y121) yk1 ykm dyl dyn
x=0 R™

The integral is thus asymptotic to
M~ ()" gy + o2
F~(3) |sor@+o(3)]

To obtain the Jacobian J(0), note that x = Ky and we have

1 1 1
R(x) = ExTHx = EyTKTHKy = —yTy, EKTHK =]

From definition, we have | = |det K|, which is obtained as

1 n/2
—|detK|*|detH| =1, ] =|detK|=—=
2 |det H|

The leading term of the asymptotic expansion is
n
2m\z e** @ g(0 1
FQA) ~ (—”) —g()(1 +o (—))
A |det H| A

Example: Partition function of random matrix theory

A random matrix M = (a;;) € H™ ", the space of Hermite matrices with M T = M. We have



I(/l,e)zf

]HITLXTL

exp ltr Vg(M)l M

The matrix includes diagonal elements a,4,***, dyn, and the off-diagonal elements x;; * iy;;.

Therefore, we can choose these variables as the coordinates for H and obtain

dM = (1_[ daii> N 1_[ dxij A dyl]
i i,j

The function V is chosen as

V(t,a) = ag + a,t + ayt? + - + ay t2¥, A <0
For a random matrix, the parameter a, is selected such that (4, €) = 1. Since every Hermite
matrix can be written as M = UTAU with a unitary matrix U. The unitary space is denoted as U.
The mapping U™ x R® — H™", (U,A) » UTAU = M is surjective. The integral becomes

o=y [ avf ev ltrvm)l Je-2) aa-a,
[Uan [Rn

I3
i<j

The integral to study can be expressed as

F(a,¢) = fRn exp Ei V(/li,a)] . H(Ai - Aj)z dA, - dA,

i i<j

» Exercise
Laplace’s method 1

+ oo

1
FQ) = f e_’l(’”f) dx, A -+
0

For this integral, we have g(x) = 1 and
1
R(x) = — <x + ;), %o=1, Rpa=R0Go)=-2  R"(x,) = 2

Now we have

+ oo

F(}) = e‘”f e_'l(x%_z) dx, R(x)=2- (x + %)

0

We want a coordinate transform x = x(s) with x(0) = 1 such that

1 s2+2+sVs?+4
2—<x+—) =—s?  x(s)= >

The Taylor series of x(s) is
2 3 (5 7

S
X()=14s+5 %5~ 128 102z

3 5
x'(s)=1+s+=-s>——s*+ s® + 0(s?®)

8% T128° T1024

+ 0(s°)




Denote ¢ (s) = x'(s), the integral becomes

+00 (2n) 0) 1
F ~ e [ o) ds = e \Ez 90 2> +oo
—® n=0

22nn| /111’

Based on the Taylor coefficients, we have

3 15 105
F(A) ~€_ZA\/§(1 EA 1 ml_z m/l 3+0(A 4)) A — 4o

Laplace’s method 2

T

4
F(x) = f eXcost cos(nt) dt, X — 400, nez
0

For this integral, we have g(t) = cosnt and
R(t) = cost, to =0, Rnax = R(0) =1, R'(0) =0, R"(0) =-1
Now we have

s
F(x) ~ exf ex(cost=1) co5(nt) dt, R(t) =cost—1
0

We want a coordinate transform T = 7(s) with 7(0) = 0 such that

S3
cost— 1= —s?, 7(s) = arccos(1 — s2) = V2s + — + 0(s°)

62
Denote ¢ (s) = g(t(s)) t'(s), the integral becomes

+ o0

@m(0) 1
F(x)~exf e 5% ¢ (s) ds__fz¢22"rgl)xn' x = +00
0

The Taylor series of ¢(s) is obtained as

2.2 4 i 4y | — 1—4n” , 4
qb(s)z(l—ns + 0(s ))(\/E+2\/§+0(s ))—\/E+ N s+ 0(s*)

Based on the Taylor coefficients, we have
F(x) X/n 1+1_4n2+0( ~2) +
~ — - 400
Xy~ e 2x 8x x ’ X

Laplace’s method 3

F(x)—fle_’“/—&” dt, x- 4w
0 Vit

First we consider a change of variable T = +/t, which gives



1
F(x)=2f e *Tcost?dr, X = 400
0

Denote ¢p(7) = 2 cos 72 with its Taylor series
() =2—-1*+0(?®)

The integral becomes

+oo o] (TL) 0 2 24
F(x) ~f e ¢(r)dr = ¢x"+(1) _____|_0( x79),
0

X

n=0

Laplace’s method 4
1
F(x) = f ett*(1+ t?)~* dt, x > oo

0
First we rewrite the integrand as

1

F(x) — f exlnt—xln(1+t2)et de, x — 400
0

Now we recognize g(t) = et with

R(® =In (1 + t2

The contribution comes from the right endpoint. The leading order term is
meax t
F(x) ~ g( 0) / —(1+0G™) =27 / (1+0(™),
RII

Laplace’s method 5

), t=1  R..=-In2, R(1)=0,

400
F(x) = f excosh’tqe x5 oo
0

With a change of variable T = sinh t, we have

1
Vit

+0o
F(x) = e_xf e~ X7 dt, x = 400
0

Based on the following Taylor series

0]

P = V1 + 12

e e srse = SO

X — +o00

R"(1)=-1

X = +o00

Z 1/2 2"=1—112+0(T4)
2

X — +o00



The integral becomes
Foo ~ S [F(1- L+ 0 +
X 2 \x 4x @), xore

Laplace’s method 6
+00 ,

F(x) = f ex(t=¢") gt , X > 4o

With R(t) = t — et, we can recognize
to =0, Rpax = —1, R(t)=t—et+1, R'(0)=0
We want a coordinate transform T = 7(s) with 7(0) = 0 such that
1, 2
T—e'+1=—s? 7(s) =Zans”=\/§s—§sz+§s3+0(s4)

nz1

Denote ¢ (s) = 7' (s), the integral becomes

P(s) = \/E—gs +‘/gs2 +0(s?)

+eo T p@(0) 1
F(x) ~e™* f_oo e’ p(s) ds = e_x\EZWx_”' X — +oo
n=0

Based on the Taylor coefficients, we have

21 1
F(x) ~e™ ’7<1+Ex‘1+0(x‘2)>, X — oo

Laplace’s method 7

We want to prove the following asymptotic relation

n
(n) s! mn
—~ |— n — +oo
s/ns 2’
s=0

The result of the integral below is given

+ oo S'
f e Mt dt = —, s€EN
0 ns+1

From the binomial theorem, we have

n

v —nt n s — Y ny (*7 —ntes 4 — ny s
fo e ™1 +1t) dt—Z(s)fO e tdt_z(s)nsﬂ

s=0 s=0

Therefore, we need to study the asymptotic behavior of the following integral



+00 +o0

F(n) = f e ™1+ t)"dt = f e N+ gt n > oo
0 0

With R(t) = —t + In(1 + t), we can recognize
to=0, Ryax =0, R'(0) =0, R"(0) =-1
The leading order term is thus obtained as

(1+0(x™)) = \/;(1 +0(n™), n-+ow

e*hmxg(to) [T
JIR" ()] N2x

Finally, we have

F(n) ~

3 ()2 —nr - [+ 06, ne e

s=0

Laplace’s method 8

+ oo

F(x)=f e *tsintdt, X > 4o
0

We directly recognize ¢ (t) = sin t with its Taylor series

=" 2n+1

¢(0) = L (2n + 1!

n

With the dominant contribution from the left endpoint t, = 0, we have

oo [0¢]

SO0 o0 1o (=D 1
F(x) = X+l x2n+2 42 x2n  x2 41
n=0 n=0 n=0




Asymptotic Analysis of Integrals (3): Steepest Descents

We analyze the asymptotic expansion of the following integral

F(A) = fe’”‘(z)g(z) dz, A1-o
¥

With a curve y € Q € C and holomorphic functions h(z) and g(z) in @(Q). If another curve ¥
is homotopic to y, then the result is the same. The goal is to find an appropriate ¥ such that we

can perform asymptotic analysis of the integral.

» Contour lines of analytic functions (4.2)
Consider an analytic function h € O({), we have
h(z) = u(x,y) +iv(x,y), z=x+1iy
The Cauchy-Riemann equations are
Uy = Vy, Uy = —Vy
Both u(x, y) and v(x, y) are harmonic

Uy = Uy = —Uy, = —V

y = “Uyy Vxx xy
The derivative h'(z) can be expressed as

ren . . .

h'(z) = uy +iv, = uy, — iuy, = v, + ivy

For zy = xy + iy,, denote h(zy) = uy + iv,y. Define two sets as
te=1zeQlulxy) =ul, r=1{Zzec|vlxy) =1}
Ifh'(zy) # 0, we have
Vu(xy, vo) # 0, Vv(xy,vo) # 0
Without loss of generality, consider u,, # 0. The implicit function theorem implies x = ¢ (y).
Also note that
Vu - Vv = u, v + uyvy, =0

This shows that y,, and y,, are orthogonal to each other.

Vu ]/U ]/U ]/u
10 [ o
50 /
\\ ~~*\\\.; ////
| AN
5 uﬂ\\\\\\\\\“
-10 AN N

-10 -5 0 5 10




Example

h(z) = z2, u(x,y) = x? —y?, v(x,y) = 2xy
¥y are plotted by light curves, while y,, are plotted by dark curves. They are defined by

Yu=*=y*=c}, y={_2xy=c}

Saddle points (4.4)
Ifh'(z,) = 0and h''(z,) # 0, then we have

A(2) = h(zo) + 5" (20)(2 — 20)? + 0((z — )
There exists a transformation z = z(w) such that h(w) = h(z,) + w?. This goes back to the
analysis of function h(z) = z2, which has a critical point z, = 0. For a general critical point z,,
the derivatives satisfy

Upx Uxy
Uyy Uyy

Uy (x0,¥0) = 0, uy(xO'yO) =0, Hess(u) = = —Ufy — uazcy <0

This shows that (x,, ¥,) is a saddle point of u(x, y). Similar argument for v(x, y).

Ifh'(z,) = h"(zy) = -+ = K%V (z,) = 0 and h¥(z,) # 0, then we have
1 %) k k
h(z) = h(z,) + Fh (2)(z — 20)" + 0((z — 20)™)

We then can obtain a transformation that leads to h(w) = h(z,) + w*.

»  Steepest descents (4.3, 4.5)
The path ¥ = y; Uy, U -+ U yy satisfies that each y; is a portion of contour levels y,, or y,.

For y; that is along y,,, we have

f e*(@ g(z) dz
Vi

Auf eilvg(z) dz
Vi

4

< e’h‘f lg(2)| dz = Ce™
Yi

We choose y; such that u < 0, and the contribution goes to 0 as A — oo. On the other hand,

for y; that is along y,,, we have

f eM@g(z)dz = ei’“’f e g(z) dz
Yj Yj

Bj
_ emuf ezu(x(t),y(t))g(x(t),y(t))[x’(t) +iy'(t)] dt

The integral then can be analyzed by Laplace’s method. Typically, the first portion is along y,,

in order to reach y,, withu < 0.



Example 1: Contribution from endpoints .

atbi
a+bi ,
F() =f e2’dz,  a,b>0 1 =x
0 e, Y>=0
We have h(z) = —z? with
u=y2-x2  v=-2xy otbi, > Ctdi
Start from z = 0, we go along y,,: 0 — a4 to reduce u. Based 0 T Tu
on different locations a + bi, we need to construct different %

paths ¥, and there are two cases to consider:
¢ Case 1: a > b. We can easily find one y,, that connects z = a + bi to the real axis.
7: (i 0> a;) U (yy:ay = a+ bi)

We only need to evaluate along the first segment y,,: 0 — a,, which gives

F(A) ’Vfale_)“‘zdx~fooe‘l"zdx—l\[E 1+0<l) A - o
0 o VA )’

¢ Case 2: a < b. We still need another y,,: ¢ + di = a + bi to connect.
Vi 0> a) U (y:ay »c+di) U (i c+di » a+ bi)

The first segment gives the same result. On the third segment, we have

ab ab
xy =ab =cd, X =—, z=—+1iy
y y
The integral becomes
. b 2_a’b? ab
L) = e—“a”fd el(y v )<_F+ l) dy

Using Laplace’s method, we have
a 2(a* + b?
Rmax = R(b) =b*—a?,  g(b)=—7+i, R(b)= (T)

The asymptotic expansion is

—A(a+bi)?
- p-2iAab yARmay [ IP) L (1) __emmr (l)
FQ) ~ em e (R'(b),1+0,1 2a+ated) 0@

The contribution from I5(4) is of much greater order than I; (1).

Example 2: Contribution from saddle points (4.5)

In practice, many exponential integrals are specified on contours C that have no endpoints,
either because the contour is closed or because the contour tends to infinity in both directions.
Along integration path y,,(t), we usually have u(x(t), y(t)) taking its maximum at the saddle

point of h(z), where the dominant contribution to the integral arises.



If h € Q only has one non-degenerate critical point z, with h'(z,) = 0 and h''(z,) # 0, then it

is a saddle point. For a curve y,, (t) that goes through this point z,, denote
r® = (x®,y®), telapl vt =2
The asymptotic expansion of the integral F (1) becomes

B B
FQ) ~ f eMz0) g(z(t)) 2/ (t) dt = et f e g(z()) z' () dt

a a

Note that A(t) = h(z(t)) — h(z,) is real as on ¥, (t). From Laplace’s method, we have

2m 1 1
~ ZO) ! —_ —_ - 00
F(}) ~ e [ /Ifl” (t0)|g(20) z'(to) ﬁ+ o(ﬁ) , A

To remove the dependence on parametrization, from h'(z,) = 0 we have

" (to) = h"(20)[2' (to)]?
Finally, we obtain the expression

F(L) ~ M (20) | giargz’ (o) z—ng(zo)i +o0 <i) ) 1> oo
|h" (zo)| VA v

The angle of the tangent at which y,, passes through the saddle point z, is needed.

» Airy function (4.7) a
The Airy function is the solution of Airy’s equation N\

y"(x) —xy(x) =0 k
Using the form of a Fourier-Laplace integral, we can obtain o

1 .3
Yj(x) = ﬁfcjezx z°/3 dz

\
0> (8/¢2-)%

They can be shown to satisfy Airy’s equation. Note that %)
y1(x) + ¥, (x) + y3(x) =0
The function y; (x) is denoted as Ai(x). Denote x = re'®, and for a fixed 8 we aim to study

the asymptotic behavior as r — oo. The integral becomes

. 1 ;
yi(re®?) = ﬁfc ere'%z-2/3 4,
1

First, we find a scaling z = pw such that the two terms having the same order of magnitude.
row ~ p3w3,  pxAr
Now denote y; = C;/v/r and 2 = r3/2 still using z as the integration variable, we have
\Jr 3

. . z
yi(re®) = ﬂf ete@ dz,  hy(z) =efz— 3
Y1



¢ When 6 = 0, we have x = +oo. The critical points are obtained as
3

ho(z) =2z BEY z; =1, z, =—1 9
With z = x + iy, the real and imaginary parts are
1 o
u(x,y) = x<1 —§x2 + yz)
0
1
v(x,y) = y<1 — x? +§y2)
-1k
At the critical points, we have -
2 2 2L KWl '
U =5, U=—7, V=0;=0 2 -1 0 2

3 3
This implies that z; and z, lie on one of the y,,: {v = 0} curves, which is the real axis. For the

path C;, we can directly deform it to one hyperbola y,,: {v = 0} shown in red. Given that

2 T
ho(z,) = —3 h'(z,) =2, 0(z;) = argz'(ty) = 2
Then we have
T 1
Fo(D) = f eto(® dz = ie‘2’1/3\/; [1 +0 <I)] x > 40

Yv

With 2 = x3/2, the asymptotic expansion becomes

3

e 3" 1
yi1(x) = —Zx/ﬁxl/‘* [1 +0 <_x3/2)] ) X = +00

¢ When 6 = m, we have x - —oo. The critical points are obtained as

43
h,(z) =—2z -3 z, =1, zZ, = —I

With z = x + iy, the real and imaginary parts are

1 1
ulx,y) = —x (1 +§x2 —yz), v(x,y) = -y (1 + x? —§y2)




At the critical points, we have

2 2
u1:u2:0, U1=—§, v2:§

Start in the lower half-plane, to obtain u < 0 we need to follow the curve y,: {v = v,} which
goes through the saddle point z,. However, it deviates from our original C;. We need to connect

at infinity the curve y,,: {v = v,} and close the loop. Given that

h’O (Zl) = - § iP
2 s
§i, h'"(z;) = 2i, 0(z;) = argz'(ty) = %

n . 1A 37-[
h''(zy) = —2i, 0(z,) = argz'(ty) = 4

ho(z;) =
Then we have
_2ir _im [ 1 21 im [T 1
E, (1) =—e 3e 4\/%[1+0<;)]+e3e4\/%[1+0<1)], X — —oo
With A = |x|3/2, the asymptotic expansion becomes

@ = e (it +3) [+ 0 ()
=" = - —_— — —00
SRRV I )l

We notice that completely different asymptotic formula can hold for representations of entire

functions as x — oo in different sectors. This is called the Stokes phenomenon.

»  Effect of branch points (4.8)

F(Q) = felh(z)g(z) dz, A1-o
14
We consider h € O(Q) and g(z) is a meromorphic function or a multivalued function. The

curve ¥ € Q does not intersect with the branch cuts. When g(z) € m(£), we need to consider

the additional contributions from the residues, besides those from the steepest descent paths.

N
f = f + 2711'2 Res(e@g(z2),z)), F=CluU(y
Y y j=1
The asymptotic analysis of the residue at z is as follows. Given the Laurent series

9D =) gl-a)l, k@ =) kG-t
kz—m

k=0

\

\ \ \ Pole | Branch point




The residue contribution is a factor e#*(%0) times a polynomial p(1) of degree m — 1.

Res(e’”l(z)g(z),zo) =eM@) . p. (D)

When g(z) is a multivalued function, we start with the following example.

I = f(z)dz, f(z) =2z°, o &7

lz|=p

The branch cut is the positive real axis, and we choose the branch 8 € [0,27). Directly using

the anti-derivative F (z), we have
o+1 o+1

— i2m) _ :'D
oc+1’ I—F(pe ) F(p) o+1

Note that the result depends on p. If 0 + 1 > 0, then we have I — 0 as p — 0.

F(z) = (ef2m — 1)

To apply the steepest descent method for a multivalued function g(z), we first need to choose

a new branch cut that follows y,, in the direction of decreasing u. Assume g(z) is given as
9(2) = (z—-2)°9(2), J@e0), g'(z)#0

The same can be applied if g(z) = In(z — z,) §(2).

¢ When o > —1, the contribution from the circle |z — z,| = p goes to zero as p — 0.

¢ When o < —1, using integration by parts we have

(Z _ Z0)0'+1

o+1

1 (z — z9)t?

_ f @ ()] L2 g,
C

An(z) 5 _ o dz = Ah(z) 5
|| 5@ - 20)° dz = 9 52) (; o

!
0

ac
The boundary terms is neglected as the branch cut is in the direction of u < 0, with small e#*®
at the endpoints as 4 — oo. The new integral is of order ¢ + 1, and by repeatedly doing this we

can obtain a final integral with o > —1.

Now for 0 > —1, we study the contribution along the branch cut. Denote Cy = y§ U (y5) ™,
with both ¥4 and y§ pointing towards z,. Along the branch cut, we have
(2~ 20)7 = 2 (z — 7)1
The integral along C; becomes
W= = =(-e) | Mg -1 dz
o v Yo

Then we apply Laplace’s method (endpoint) with contribution from the branch point z = z,.



Example

+oo ,—Ax?
FO) :f e cos(248x) q

X, > 1, A -+

—o0 sz +1 B

The effect of branch point is shown below, with g(z) and its branch point z, given as
1

Zozxo‘l'i

9D ===y

In our example we have x, = 0, and since > 1 the saddle point is above the branch point.

| When zo < 0| | When zo = 0| When zo > 0|
V1 s Va
(64 Y2 vs C’ oY %ﬁ
—C»'\ 20 20 20 ¢’
C E C

Due to symmetry, the integral is equivalent to
e—/122+2ilﬁz

R VzZ+1

The steepest descent path is constructed as

Fo(D) = felh(z)g(z) dz, Yy=v1Uy,Uy3 Uy,
y

In the branch (z? + 1)/2 > 0 for z € R, we have

F(A) = dz = e~ 1#* f e(@ g(z) dz, h(z) = —(z — iB)?
R

Im+yz2+1<0, ZEy; Uy, Im+yz2+1>0, ZEy3; Uy,

On y; and y,, their contributions cancel out for the leading order term, because g(z) results in

opposite signs on different sides of the branch cut at the saddle point z = if8 (i.e., t = 0).

—At2
lh(z) dz = ¢ d
fyl 90 dz = f \/(t+lﬁ)2 f Je—prst

At?

Ah(z) dz =
fh 9@z = f \/(t+lﬁ)2+

Along the branch cut, we have

1 o A(B-t)? B o A(B-t)?

[ = _— — 2 = —j 2 _
Bmldt 1\/mdt, V1-—t iVt 1

ﬁ el(ﬁ_t)z B el(ﬁ_t)z

fe’”’(z)g(z)dzz — idt = ﬁdt, V1—t2 =itz -1
Y3 1 Vil— 1V -

f eM@ g(z)dz =
Y2




Therefore, we have
B eﬂ-(ﬁ_t)z
1 VtZ -1

The dominant contribution arises at the branch point z = z, = i (i.e., t = 1). To evaluate this

Fo(1) ~ 2 dt, h(®)=(@F—-1t)?? A1->o

integral, consider a change of variable

S:Emax_rl(t):(ﬁ_l)z_(lg_t)zf t(S=0)=1
This leads to the transform

t=B—(B-12—s

The integral becomes

apone [T e
Fy(1) ~ 2eMP-1 f —— t'(s)ds
’ o Jts)?2 -1
From the power series expansion
tis) =1+ SR s + o(s?)
R ATV

We have

t'(s)  1+0() eMB-1? ro o=ds

Fy(1) ~ 7 (1 + 0(5)) ds

Jt&)2—1 2B -Ds

From Watson’s Lemma, we have
9

e MB-V* 1
Fo()L)’*'\/ﬁ I<1+0<I)>’ A—>

The leading order term of the asymptotic expansion is finally obtained as

VB =1/

_ap? e—)l(Zﬁ—l) 1
F(A) = e~ Fy(1) ~ 1+0<i) Ao 4o

JE-1 N2

»  Asymptotic analysis of integral transformation (4.8.1)

1. Fourier transform: For f € L?(R, C), we have f € L2(R, C) given as

fl) = fRf e **dx,  f(x)= % fRf(k)e”‘x dk

2. Laplace transform: For f: R, —» C with ¢ € R such that f(t) = 0(e*) ast - o0, we
have a holomorphic function F € 0(Q,), Q. = {s € C| Re s > c} given as

oo 1 c'+ico
F(s) = f f®estdt, f(t) = —f F(s)est ds, c'>c
0 21 c'—ico



3. Mellin transform: For f: R,y — C satisfying
_(0(x™9), x - 07F
fe) = {O(x‘b), x =+
Define a domain Qg = {s € C| a < Re s < b}, then we have ¢ € Q(£,,;) given as

c+ico

0@ = [ ferd, e =gn] eutds,  ce@b)

c—ico

4. Z transform: For {a,}: Z - C, we have f(z) € O(Q) for a domain Q given as
1
f(z) = z a,z ", a, = —_%f(z)z"‘1 dz
2mi
nez 14
An equivalent description is to take the coefficient of the generating function f(z)

=T o= D

2mi
nez 14

Example 1: Mellin transform & Gamma function

's+1) = f e *x5 dx
0
We can equivalently write

I's+1) = f ehs) dx h(x;s) = —x+slnx
0

The saddle point is x, = s which depends on s. Previously we let x = sy and obtain

[oe]

I'(s+1) = s”lf esny=y) qy

0

Example 2: Z transform & Stirling formula

. z" 1_ 1 e’ q
=) g

nz0

The contour is constructed as y: z = pe'® with 8 € [—m, ). We want to properly choose p to
perform asymptotic analysis. On this contour, we have
1 e’
I j—

- : n+1
2mi vZ

1 (" -
dz = —— f e"@mP)dg,  h(8;n,p) = pe’® —nlnp —ind
2r J)_,

The saddle point 8 = 6, satisfies pe'® = n, which gives p = nand § = 0. With the change of

variable p = n, we have

. 1 n" " 9
h=ne® —nlnn — iné, —=— | ene?-i0) 4g

| =i
n! 2w J_,



Example 3: Fourier transform
Consider f(x) = 0(e~¢"*!) when x — oo for ¢ > 0. The Taylor coefficients are bounded as

F® (k)

n!

24

Cn+1

|lan| =

1
< —
“n!

‘ = %U}R(—ix)"f(x)e‘ikx dx

fAe‘dx'IxI" dx
R

The radius of convergence is

1\ 1
R = (limsuplanlﬁ) >c

n—-oo

So f (k) is analytic in {k € C | |Im k| < c} near the real axis. The inverse Fourier transform is
1 . .
- k) etkx
FG) = 5 | Foe™ ak

When x — —oo, denote x = —A and k = p + iq, we have
h(k) = —ik, u=q, v=-—p
The steepest descent paths y,, are straight vertical lines pointing downward. For x — +o0, the

paths will be pointing upward.

> %
(o) ko o
ky(*) =
Uz A o\ k3
A
A ks
v U \Z v Us
Us

Example 4: Laplace transform

1 c'+ioo
t) =—— F(s)estds, t
FO=535] F@etds, e

When t — oo, we have h(s) = s and the steepest descent paths y,, are straight horizontal lines

pointing to the left.

Example S: Mellin transform for summation
1 c+ioco
FO=gz| e@rrds, xo0te

Let x = et, it is equivalent to find the behavior as t - +oo.

c+ico

flx) = i . p(s)e B ds, t - —oo, 400

ioco



When t — 400, we have h(s) = —s, and y,, point to the right. Whent — —oo, y,, to the left.

We can use Mellin transform to calculate the sum of a series.
F(x) = Z’lkf(ﬂkx): A €C ppe >0
k=1

First, we obtain the Mellin transform for f (1 x), which is ¢ (s)/u;, for s € Q. The Mellin

transform of F(x) is

MA{F(x)} = A(s)p(s), A(s) = Zlkygs, se{s€eC|Res > gy}

k=1

The series A(s) is called the general Dirichlet series. Finally, the inverse transform gives

F(x) = ﬁfcfmA(s)q)(s)x‘s ds, ¢ € (max{a,0,},b)

Example 6: Harmonic sum

h) Z(l 1 ) 1 x/k N
— - — — [ b d (0]
x k- k+x) T Lk Tk x

k=1

We can choose the following A, uy and f(x)

1 X
he=mo=7 fO=Tom h@ =) ()
k=1
The Mellin transform ¢(s) is calculated as
()—foo * dx = T = " 1<Res<0
O\ = o 1+x x_sinn(s+1)_ sinms’ €s

The general Dirichlet series is

A(s)=2/1ku,;s=zkls—{(1—s) Res <0

k=1 k=1

Take ¢ € (—1,0), we have

c+ico 1—35
h0 =g [ Carmatds, xota
sin s
We recognize that s = 0 is a pole of order 2, while s = n are simple poles forn > 1.
(A-s) _
h(x) ~ m|Res(®(s),0) + ) Res(®(s),n)|, d(s) = s X X — +oo
nz1

The residues of the simple poles are calculated as

Res(®(s),n) = (1 —n)x™™ Ll_t}Trll sln_nz (_ )" (1 —n)x™, n=>1




For the residue at s = 0, based on the following result

1
((s)=m+y+0(s—1)

The Taylor series can be calculated as

P(s) =

1 1

Therefore, the residue is
Inx +y

Res(®(s),0) =
The asymptotic expansion of h(x) is
h(x) ~Inx+y+ Z(—l)"((l —n)x™ "
nz1

(-1)"B, 1

1
=lnx+y+—-— E——, x = +oo
14 2x n x™
n=2

Take x = n, we have h(n) = H,,, which recovers the harmonic sum.

Example 7: Mellin transform for summation
F(x)=Ze‘*/Ex, x— 0t
k=1
We can choose the following A, u; and f(x)
=1 wme=vVk  f@=eT,  F@ =) Afu)
k=1
The Mellin transform ¢@(s) is
p(s) = f e *x5"1dx = I'(s), Res >0
0
The general Dirichlet series is
s
A(s)=ZAk,u,;S=Zk‘S/2=Z(§), Res > 2
k=1 k=1

Take ¢ > 2, we have
1 c+ioco s
W= | 0@ds, 0@ =T@i()x,  xo0r
The steepest descent paths point to the left in this case. We obtain

F(x) ~ Res(®(s),2) + z Res(®(s), —n), x - 07

nz0



All are simple poles. The residue at s = 2 is

re) . S 2
Res(@(s),2) = — 5~ lim(s = 2)¢ (3) = =

The residues at s = —n are

Res(®(s),—n) = {(— %) x" Sl_i)rzln(s +n)l'(s) = (—nl')" { (— E) x™, n=0

The asymptotic expansion of F(x) is

F(x)~é+2(_1)n((_2)xn’ x - 07t

n!

n=0

Example 8: Polylogarithm

n
Lip (z) = Zfl—k keN, L) =—In(1—2)

nz1
The radius of convergence is R = 1. As z — 17, it converges when k > 2. Consider
F(x) = Lip(e™), x—>0" z=e*->1"

We can choose the following A, u; and f(x)

S = f@=e F@ =) dnf ()
nz1
Then we obtain
o(s) =T(s),  A(s) = Zanu;s —¢(k+s), Res>0
nz1

Take ¢ > 0, we have
1 c+ioo
F(x) = %f d(s) ds, Dd(s) =T(s){(k +s)x75, x - 0%
c—ioo

There is a pole of order 2 at s = 1 — k and other simple poles at s = —n whenn # k — 1. The

residues can be obtained as

(="
Res(®(s),—n) = — {(k —n)x™, n+xk—-1

Res(®(s),1—k) = ﬂx"‘l(H —Inx)

’ (k —1)! et

The asymptotic expansion of Li, (e ™) is
—1 k-1 ® —1)"
Lip(e™™) ~ L(Hk_l —Inx)xk1 + z D {(k —n)x™, x - 0%

(k—1)! i n!

n¥xk—-1



Example 9: Partition function in number theory
The partition function p,, denotes the number of possible partitions of a non-negative integer n.

Asn — +oo, the asymptotic expansion of p,, is

1
— m\/2n/3
P 4n\/§e V2/3(1 + 0(1))

The generating function f(z) is

1
f@=1+) p=| 1= <1

nx1 m=1

From the Z transform, we can write

1 [ f@

Pn 2mi J, Zn+1

dz, 7y:z=pe?, 0<p<1

However, the poles of f(z) on |z| = 1 are dense, which makes it hard for p — 1. Consider

L(x)=Inf(e™) =— z In(1 —e™™), x—>0" z=e*->1"

m21

We can choose the following A, uy and g(x)

Im==1  pm=m g@=I-e), L@ =) Ang(uny)

m=1

Then we obtain

o) = [ MA-exdr, MG = Y At = ()

m=1
The Mellin transform is obtained as

—lx

In(1—e™¥) = —Z el ) (s) = —Z%fooe"xxs‘l dx = ={(s + 1)I'(s)

=21 =21

Take ¢ > 1, we have

1 c+ioco
L(x) = %f ' d(s) ds, Dd(s) ={(s){(s+ DI'(s)x~5, x - 0%

After analyzing the poles, and the zeros of {(s) and {(s + 1), we have s = 0 being a pole of
order 2, while s = 1 being simple poles. The contour can be chosen to close ats = —c, i.e.,

a rectangular contour. Using the following equations

2(s) = 2515-1¢(1 — $)F(1 — s) sin%s

{(s+ 1) =25"17S¢(=s)T'(—s) cos%s

I'(s) = w[sin(mws) T'(1 — s)] !



We can obtain an equation for ®(s), which is

®(s) = 2m)*®(=s),  B(s) ={(s){(s + DI(s)
After calculating the residues, and study the relation between the integrals along Re s = *c,

we reach an equation for L(x)

L _7T2+1l (X) X+L 47'[2
) =ex T2\ 22 x

This implies that L(x) is close to a modular form.

> Exercise

Steepest descents
1 2
F(A)zf e dz, A1-o
i
The steepest descent path is 7: (3,,: i = 0) U (3,: 0 = 1). On the two segments, we have

1 1
I = —if er’de, I, =f e~ " dt
0 0

The dominant contribution arises from the endpoint ¢ = 1 in /;. Denote
RmaX:R(l):]-; ﬁ(t)=1—t2=s, t=+vV1l—s

We first obtain the following Taylor series
(s) = L 14l +32+5 +0(%)
¢(s) = — = 2s 8S 16S S

The integral becomes

er (1 p—As et 1 e — ¢(n)(0)
I~ ds = = | e 2¢(s) ds = —z .2

Based on the Taylor coefficients, we have

Fay ~ & 1132 B0 000 1o+
~ - - —_— - (00]
W ~27(1+32 p 8 ‘

Hankel function
1 o+l .
Hﬁl) ) = Ef eAsinh(n)-vz 4 Re1>0
In specific, we want to study the asymptotic behavior as A — +oo of the scaled Hankel function

1 co+1Ti .
HS)(A) = _if eAsinh(2)—ciz g7 A > +oo, c=cosha >1
7-[ (o)



We recognize h(z) = sinh z — z cosh a. The saddle points are calculated as

h'(z) = coshz — cosha =0, z = ta + 2nki, a >0, kel
The real and imaginary parts are

u(x,y) = sinhxcosy — x cosha, v(x,y) = coshxsiny — y cosha
We notice the following contour levels

Yu:{Rez =10, u=0}, Vo:lImz =km, k €Z, v =—kmcosha}
Therefore, we can construct the steepest descent path as
7:(y: —00 > 0) U (yy: 0 = mi) U (y: wi = o0 + i)

There is one saddle point z; = —a on the first y,, segment where u is maximal along the path.
Note that g(z) = 1, and we also have

h(z,) = —sinha + a cosh«, h''(z,) = —sinha, argz'(ty,) =0

From the following equation

F(1) ~ eM(@) | giargz’(to) ,,Z—ng(zo)i +o0 (i) , A- +oo
|h"" (2o)] Vi W2

The leading term of the scaled Hankel function is

HSL)(A) — _l-el(acosha—sinha) (1 + O(A_l)); A - 4o

A sinh a

If we denote v = cA = A cosh a, the expression becomes

2
(€Y) — _ipv(a—tanha) -1
H;Y (v sech a) ie ’m/ e (1+00v™), v-+w

Gamma function
1 1 ot _ ,
@—ﬁct et dt, C:(—o0—ig >0 - —o0 + i)
This provides an analytic continuation of I'"1(z). The branch cut is along the negative real axis
with argt € (—m, ). We want to study the asymptotic behavior for z = Ae‘* as 1 - +oo when
K € (—m, ), which is the Stirling formula. With the transform t = A7, we have

1 (ze‘i")_z+1

— A(t-e*Int) — o+ _ plK
O T Ce dr, h(t)=t—e*Int

The saddle point is obtained as
el . .
h(t)=1- - = 0, T, = e'’, h(ty) = e™ (1 — ix)
The second-order derivative and the descent angle (see note below) are
K+m
2

h'(ty) = e, argz'(ty) =



Reh(T)

3 3 3
) % i ) -
-3 -3 -

An example of the contour levels for k = 0 and the saddle point on y,, are shown above. From

Im A(T)

N
N

-
-

o
o

-
-

0

-3

the upper and lower side of the branch cut, we can use y,,: {u < 0} to connect to the steepest

descent path y,,: {v = v,} that goes through the saddle point. Therefore, the integral becomes

fel(r—ei" Int) dr ~ ez(1-iK) ie%c 277'-' +o0 <i
c ze VA

. 21
= jeZeir(1-2) 7(1 +0(™Y), A - 4o

The leading term of the asymptotic expansion is

1 Z—z+1/2 z
I'(z) V2m

Hence, we derive the following limit

(1+0™)

I I'(2) B
|z|1—>r¥|-loo 21 ZZ—l/Ze—Z -

Ke€(—T,m)

Note. The descent angle is obtained from the Taylor series of h(z) around the saddle point z,

)
h(z) — h(ze) = pp(,z") @20 +0((z — 2)"*Y),  h®(z,) = [hP (z0)|e'®

The imaginary part gives v(z) = v(x,y), which is

B | (p)( 0)|
v(z) —v(z)) = ———— ol

—————7Psin(pf + @) + O(rP*),  z—z,=re'®
There are 2p curves of y,,: {v = v} emanating from z, with the tangent directions

nmw—a
0, = ma n=201,-2p—-1

The descent angle is one of them and can be analyzed from the contour levels.




Effect of branch point
+00 ,
F(}) = f e M edAX n[(x — x4)% + 1] dx

We recognize the functions h(z) and g(z) as

h(z) = —z? + 4iz = —(z — 2i)? — 4, g(2) =In[(z — xg)? + 1]
The real and imaginary parts of h(z) are

ux,y) =—x*+y? -4y, vlxy)=-2x(y - 2)
Note that y,,: {Im z = 2, v = 0} is a steepest descent path, and there lies a saddle point of h(z)
Zs = 2i, h(z) = —4, h"(zs) = =2

The branch point of g(z) in the upper half plane that lies between R and y,, is

Zy = Xo + 1, h(zy) = —x2 — 3 + 2ix,, h'(zy) = —2(xy — i)
The deformed path is the same as in a previous example. For x, # 0, the branch cut in the

steepest descent direction is a hyperbola, while for x, = 0 it is the imaginary axis.

| When zo < 0| When zo = 0 When zo > 0|

fa C’ ¢ ﬁ
FC’R\ " 5 o O

%) C C

Possible asymptotic contributions to the integral come from either the saddle point z; or the
branch point z,. Comparing the real part u(x, y) at these two points, we have

u(z) = —4, u(zo) = —x2 -3
Hence, when |x,| < 1 the branch point dominate, while when |x,| > 1 the saddle point does.
When |x,| = 1, both contributions may be important. For the special case x, = 0, the branch

point still dominates.

To obtain the branch point contribution, note that arg[(z — z,)? + 1] is larger on the right side,
so we always have the following sum of contributions from the two arcs along the branch cut

+ oo

F,(A) = 2i7rf eM@ 4z = 2ine“‘(20)f e Mz (t) dt
Zg 0

There will be a transform z = z(t) such that h(z) — h(z,) = —t on the branch cut. The leading
order term only needs z' (0) = —1/h'(z,). Hence, we obtain

T[eZiAxo

Fol) ~ =30 ¥ )

e M=+ (14 0017Y), A- 4w



The saddle point contribution is calculated as

, 2n 1 1
F.(1) ~ elh(zs) eiargz (ts) z)—+o0 <_)
@ w0t G

~ e“”\/gln(xg — 3 —4ixy) (1+0Q™)), A - 4o

Comparing these two contributions, the saddle point is more important at |x,| = 1, because it

involves 1~1/2 instead of A~! in addition to the same exponential decay.
p y

Inverse Fourier transform

e k* — 3k + 4

f("):foo 2 a3t ke x<0

The integrand has a simple pole at k; = —3 — i and a pole of order 2 at k, = 2 — 2i. We can
obtain the residues at these two poles as
3(—=3 + 7i)
8(14 + 5i)?
Therefore, the exact result of the integral is

Res(g, k;) = e¥e 3% = A,e¥e 3%, Res(g,k,) = A,e?*e?™
9, k1 9

f(x) = 2mi(Aje*e 3% + A,e2*e?*), x <0

As x — —oo, the asymptotic behavior is
f(x) ~ 2miA,e¥*e 3% + 0(e?*), X = —00

Inverse Laplace transform

) = 1 f”i“’tanhs ot g
f= 20 )i S e
The simple poles of the function are
2k+1 |
s =0, Sk = 5 i, keZ

The residues at these poles are obtained as

1
Res(g,0) =0, Res(g, sy) = S—eskt
k

The inverse Laplace transform is obtained as the following exact result

2i
f® = _;Z(Zkﬂ)ne

(2k+1)7‘rit



Inverse Laplace transform

1 c+ioco e—\/E
f(t) = ﬁ —BSt ds

c—ico S

The branch cut is on the negative real axis. The integral then becomes

1 0 ei\/—s —00 e—i\/—s
t) = — est ds+f ——eStds
f© 2mi (f_oo —iv—s o iV-s )

1 f+°° elVx +o0 g—ix ) cos\/_
=— et dx + e ¥t dx Xt dx
2”( o Vx 0 Vx ™ 0 Vx

+00
2 [+ 2 (1) [+
=— e~ cosudu = — ) e~ 2 dy
), Tl (2n)!

Z( vt 1 e ~1/at
\/_ 22npl tn 7'[t

The inverse Laplace transform is also exact.




Asymptotic Analysis of Integrals (4): Stationary Phase

We analyze the asymptotic expansion of the following integral
b .
FQ) = f eMOg(t)dt, A - +oo
a

With the interval [a, b] € R, functions I: [a, b] - R and g: [a, b] » C. When A - —o0, we can
take the complex conjugate of the integral. For the method of steepest descent, with require the
functions I(t) and g(t) to be analytic satisfying Cauchy-Riemann equation. However, we now
only require them to be C®. The asymptotic analysis can only be performed on [a, b], and we

cannot deform the integration path.

» Oscillatory integral (5.1)

Example: Fresnel integral

f sin(x?) dx = f cos(x?)dx = ’_' | = f el dy = pin/4 \
0 0 8 0 2

For an integral with parameter, we have
@ 1 . T 1
ei/lxzdx — _em/4\/: =0 <_)
J eer=gemni=o(g

» Nonlocal contributions (5.2)
Nonlocal contributions arise from I'(t) # 0. Assume [t;,t,] € [a, b] such thatI € C[t,, t,]
and I'(t) # 0, i.e. I(t) monotonically increases or decreases. For the interval [t, t,], we have

[fon0 20
. deI'(t)

t2

tz 1| ......9®
iAI(t) — iAI(t)
ft e g(t)dt 7 [e 0

With integration by part, we obtain a factor (i) 1. The bracket term is bounded by a constant
1 (‘Q(Q) ‘g(tz)

el Tlrepl ™t f:z dt) =0 G)

1
More generally, with g, (t) = g(t) we can derive an asymptotic expansion as

t2 eM® g ()] d gn-1(8)
iAI(t) - € ga\b __99n
J, en@a=D, (oo S
nz 1

1 ty

independent of A, which gives

d g
deI'(t)

) )
t

1

S_
il

Compared with Laplace’s method in which the nonlocal contributions is 0 (e ~*). Now for the

method of stationary phase, the nonlocal contributions are larger.



» Contributions from interior stationary phase points (5.3)

Consider I € C[a, b] with a stationary phase point t, € (a,b) and I’ (t,) = 0. We require the
point t, as non-degenerate, stated as there exists § > 0 such that I € C2N*1[t, — 26, t, + 26]
and I"'(to) # 0. We also require g € C?Y and the support of g is within the interval.

Fs(1) = f eMOg(t)dt, A - +oo

Around t = t,, the Taylor series of I(t) is

1(t) = 1(ty) +%I"(t0)(t —to)% + -

Denote 0 = sgn ' (t,). According to Morse Lemma, we find a transformation such that

1(t) =1(ty) + 052,  Fs(A) = e () fs+ei’1‘”2g(t(s))t’(s) ds

The lower and upper limits of the integral are calculated as

sy =+ Joll(ty £ 28) — I(ty)], t(s),s(t) € C?N*1, t'(s) e cN

Then we have k(s) = g(t(s)) t'(s) € C?N and we want to approximate k(s) by a polynomial.

We first have the Taylor series
2N-1

Ks) = Q) +0G6™), Q) = )

m=0

k™ (0)
m!

Sm

However, k(s) does not vanish near s;. We modity it by constructing R(s) as
Ri(s) = [(s+ —s)(s = s)I", ﬁ = Ry(s) +0(s*™),  R(s) = Ry(s)R,(s)
The polynomial cutoff function R(s) has the following properties
R(s) =1+ 0(s?M), R(sy) = =RW-VU(s;) =0

The polynomial approximation of k(s) is constructed as
2N-1

P(s) = Q(s)R(s),  P(s) = Q(s) + O(s?") = Z

m=0

k@™ (0
m!

This also implies that s, are the zeros of P(s) of order N and deg P = 6N — 2. Denote
S+ . 2 St . 2
= etpe s, = [ etk - P ds
S_ S_

We apply the method of steepest descent for J; as all functions are analytic. For ¢ = 1, we have
h(s) = is?, u = —2xy, v=x?—1y?
The steepest descent path contributes to the integral at the saddle point s = 0, and also at the

endpoints s = s;. However, we have P(s;) = -+ = PN " (s,) = 0, so for the first N terms



1A5 T T T
: : 4 4+
[ Polynomial cutoff function o~ ———
1.0 ’
2+ ¢ 2|
© o
x5 0.5F 5 0 3= E‘;/ 0 G
(6] Sy S—
C) ¢
O-OE 2 2 Vol 9
L 4k 4
_0'5 L L L 1 1 L 1 1 1 1 1
-1.0 -0.5 0.0 0.5 1.0 -4 -2 0 2 4 -4 -2 0 2 4
s R(s) R(s)

in the asymptotic expansion, the only contribution is from the saddle point. Along the diagonal

that goes through the saddle point s = 0, we have s = ue'*™/* and the integral becomes
2N-1
+oo iom\ iom K™Y im+Dor [F®
Ji= f e_AuZP <ueT) e 4 du= z n|( )8 4 f e—luzun du

-® n=0 ' -®

N-1 \/Eei(2n+1)arr/4 k(2n) (O) 1

= z 221y An+1/2 0 <AN+1/2)' A= 4o
n=0

Due to symmetry, only even order terms are retained. The term J, can be analyzed from

integration by parts. We define a sequence of functions

d Wn-1
wo(s) = k(s) = P(s) = 0(s?),  wn(s) = —— (=)

Ats = s;, we have wy = --- = wy_; = 0, so the boundary terms are zero. We can obtain

S

— 1 o ilos? d < 1
]2 - (ZlO_A)N _[-_ e WN(S) S, I]ZI = (2/’1)1\]_[5

The final result for F5(4) becomes

(@)l ds = 0 (55)

tg ] ) ion = in\m k@M (0 1
R = [0 ar=eme Ty TNEETD 0 (), a0 4o
to n=0 '

If1,g € C™, then we can take N arbitrarily large. To obtain the leading order term, note that

20 — 4(t) 2
I"(t) IV [Tty

k(0) = g(to)t'(0) = g(to)

We thus derive the practical result

F. (ﬂ) iAl(to) lon 2n ( ) 0 1 2
=e 0/e 4 th) + <—), — 400
° A )7 T 77

»  Generic leading-order behavior (5.4)
If there are no stationary phase points within [a, b], then we only need the contributions from

the endpoints. The result is



iy 90) l,a)g(a) 1 L o
F(1) = l“b)l(b) “1()”()' 1o+

If there are M stationary phase points t4, -+, t};, then we have

M .
FQ) = ) eMwe s st +0 (1) P
2, ATEES] 7

Every t; contributes to the same A~1/2 order, which is different from the Laplace’s method.

Example 1: Bessel function

For integer order n € Z, the Bessel function can be defined as

1 (" 1" . .
J.(x) = —f cos(nt — xsint) dt = Re l—f el(”t_“mt)dtl, X — +oo
TJo TJo
We recognize
. T
I(t) = —sint, g(t) = e, ty = I1(ty) = —1, I'"(ty) =1

E )
The leading order term is obtained as

1 R _ia T 21 lr;n 2 ( nm n) +0 <1) 4
J. (%) ele e o —cos{x———2 7)) X

Denote x,,, as the k-th positive root of J,,(x). We have

s 1
Xnk~k7'[+§<n—§), k - 4+

Example 2: Linear dispersive waves (5.5)
u(x, t) = fA(k)ei(kx‘“”) dk, w = wk)
Consider x, t - oo with x = vt wﬂi analyze the integral
F(t) = f A(k)ei(k”g_“’(k))t dk, t—- 4o
R

We recognize
I(k) = kv, — w(k), g(k) = A(k), I'k) =v;—w'(k) =0

This gives rise to the group velocity v; = w'(k).

Example 3: Schrodinger equation for a free particle

SO o 0%y LA Rk Rk
' ot Y= 2m 0x2’ w_Zm ’ vp_Zm’ Vo =



» Multidimensional oscillatory integrals (5.7)
FQQ) = f eM®g(x)dx, 1- 4o
Q

We assume 2 € R% and I, g € C*(Q). If we have I'(x) = VI(x) # 0 for all x € Q, there are

no stationary phase points, and we can write the integral as

1 gl
7Y R TeE

To apply the divergence theorem, using the identity V- (fu) = u - Vf + fV - u, and we have

1 g(x)et e 1 ek g(@)VI(x)
= | 7 e ) [ e e

1 g(x)eill(x)
:ﬁfm V()2

Again, we have F(1) = 0(A™1) and a similar expansion as the one-dimensional case

VI(x) - V(eM®) dx

9(x)VI(x)

Vi(x) - n(x) dS —if ey . [T~y
i VIO|2

Q

1 eM® g, (x) o G (OVI(X)
F(A%;(iz)nﬂfaﬂ e L R 7T T

Now the problem becomes analyzing the boundary integral
f eM@p(x) dS
20

The stationary phase points satisfy VI(xg) Il n(x,), the gradient is normal to the surface.

If there is only one stationary phase point x, € (1, we have
. 1
F(2) = f M@ g(x) dx +0 (7)
[x—x|<26 A

For a non-degenerate Hessian matrix with det|I"' (x,)| # 0, from Morse Lemma there exists a

local transformation x = x(y) such that
I(x) = 1(xo) + yf + -+ 5 = Ygu1 — = — V4

The boundary integral then becomes
. 1
)= [ et g (x(3) o) dy + 0 5)
lyl<éy

The leading order term is related to the following integral (with ¢ = d — p)

- d/2
f QO+ +YEYRa—38) dy = =0 (E)
Rd A

For multidimensional oscillatory integrals, the nonlocal contributions can be larger than those

from the stationary phase points, strictly for d > 2, as shown by the asymptotic series



a
2

F() ~ ei}u(xo)e%"(p—q) (2_”)

1

det|I" (xo)|
For higher dimensions, the cancellation from oscillations becomes less efficient, and intuitively

the nonlocal contributions become important.

Example: Gauss circle problem
Consider a convex domain Q € R? and 0 is smooth (e.g., circle). For 2 > 0, denote A as the
scaled domain {(Ax, 1y) | (x,y) € Q}. We want to know the number of integer lattice points in
this domain, denoted as #(AQ N Z?). With the area S(Q), we have

#AQNZ?) =225() +EQ)
The behavior of the remainder term E () is still an open question, which is the Gauss circle

problem for Q being a unit circle. Currently, the best result is

o 517
EM) =0(2%), 6= s T~ 06274

It is also proved that 8 > 0.5, which implies the conjecture

limsup E@ = 6 = 1+ £
r—-+4o \/F ' 2

> Exercise

Influence of integration intervals
b
F(d) = f eMiesint 4t 1 - 4oo
a

Follow the steepest descent method, we recognize
h(z) = iz?, u = —2xy, v=x?—1y?
For a real value x, # 0, we will need the hyperbolic y,, emanating from this point, which is
Voi X2 —y? = x§
When x, > 0 we take the segment with x € [x,, +0), while when x, < 0 we take the segment
with x € (—o0, x,]. At x, = 0, the contour line to use is y,,: {y = x}. Now we can evaluate the

integral along the hyperbola. For x, = —a < 0, we have
I(A; _a) — _ei)La2 f eZ/lx(y)yesin(x(y)—iy) [X’(y) + i] dy
0
Using Laplace’s method, we have

Ryax = R(0) =0, g(0) = je~sina, R'(0) = 2a

The asymptotic expansion is

] Ze—sina 1
I(A; —a) ~ —ie'ta S T O <I)’ 1— 4o



Similarly, for x, = a > 0 we have

I1(A;a) ~ iei’lazeSil+o<1) A — 4o
’ 2a A’

When x, = 0, the saddle point needs to be analyzed. We consider the steepest descent path as

the whole diagonal which gives
+cx} 2 . .
I,(1;0) = f e 24y esin(+0y (1 4 §) dy

Using Laplace’s method, we have
Rmax = R(0) =0, g0)=1+1i, R"(0) = —4

The asymptotic expansion is

IS()I;O)~(1+i)\/§+o<%), A > +oo

Now we can summarize the leading order asymptotes for integrals over different intervals.

[ b] B [ . ] ; iei)lnz iei/’lél-n'2 N (A_l)
a,01= =L 2mA 41tA °
T
[a,b] = [, 7], I~(1+10) 71 +o0(17Y/2)
ieilrl:z iei)ATl:Z
= ~ _ -1
la,b] = [r,2m], I s 2 T o(17%)

The results match with the analysis from the stationary phase method.

Degenerate stationary phase point

to+28
Fs(1) = f eM® dt, 1 - 4o

Now we consider a stationary phase point t, with I'(t,) = I""(t,) = 0 butI'’(t,) > 0. From

previous analysis, around t = t,, we first write the Taylor series of I(t)

1(8) = I(to) + %1'"(1:0)@ — )3 + -

Denote 0 = sgn ' (t,). According to Morse Lemma, we find a transformation such that

S+
I(t) = I(to) + 0'53, F(g(/l) = eill(to)f eilas3tr(s) ds
s

The lower and upper limits of the integral are calculated as

sy = oll(ty £ 28) — I(ty)], t(s),s(t) € C?N*L, t'(s) e c?N
We can similarly analyze Fs using the method of steepest descent. For ¢ = 1, we have
h(s) = is3, u = y3 — 3x?%y, v =x3—3xy?

The steepest descent path is constructed as shown in the figures. Different from the case for z2,
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now the path changes direction at the saddle point s = 0 to ensure the real part having u < 0.

We only need to evaluate the integral along the diagonals, and note that
. 5im im\ [T 4 1
f es" ds = (—eT +es) f e~ du = V3T (—) 173
Y1Vy2 0 3

Now we obtain

St 3 4\ 1 _2

f ei295%¢/(s) ds ~ V3T <§)/1 3t'(0) + 0 (z 3), Ao 4o
S_

By taking derivatives of the transformation, we have
1

! O — 6 3
t(0) = (|1<3>(t0)|>

The final asymptotic expansion becomes
1

4 6 \? 2
F5(A) ~ V3T (5) eitito) 2\ 4o (z‘i), Ao 4o

AMB(to)]
Oscillatory integral
/2 /2 '
F(A) = f cos(nt — Acost) dt = Ref elnt—Acost) 4¢ A — 4+
-m/2 -m/2

We recognize
I1(t) = —cost, g(t) = e, to =0, 1(ty) = —1, I"(ty) =1

The leading order term does not depend on n, since the stationary phase point is t, = 0.

E,(1) ~ Re [e—ﬂeir”\/zn/z] ~ \2m/Acos (2~ %) +0Y), Ao+



Airy function

The asymptotic behavior of Ai(x) as x = —oo can also be obtained by the method of stationary

phase. Denote 7 = —x > 0 and A = r3/2, we have
r us
Ai(-r) = i_fe’”‘(”) du, hW=-u—-—, 1-+o
2mi J 3

The path can be deformed to the imaginary axis. This is

2

because the integrand is analytic, and the integral over the two
arcs tends to zero as R — oo since the real part is negative. * b
1
Therefore, we have o
\/; + oo . t3 0
Ai(-r) = —f eMOdr, 1) =-t+—= 05
2w )_, 3
1 )
There are two stationary phase points in the interval s
_2 :
to=11,  I(t) =F5,  1"(t) =42 SRR

The leading order terms are obtained as
too 2i1 im [T 200 im [TT
f e M)t = e_TeT\/% + eTe_T\/% +0(17%/2), A - 4o

Since the contribution from endpoints at infinity is zero, the next order term is modified

accordingly. Finally, we have the asymptotic expansion for Ai(x) as

1

Ai Ixl (2 | |% n) +0 <| |_%)
= _— —_—— —_ —
i(x) = cos (Z1x 2 X ) X

8



