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Topics to be covered: 

1. Dimensional analysis 

2. Euler-Maclaurin formula 

3. Formal power series & Lagrange inversion formula 

4. Fundamentals of asymptotic analysis 

 Asymptotic sequence and series 

 Asymptotic root finding 

5. Asymptotic analysis of exponential integrals 

 Watson’s lemma 

 Laplace’s method 

 Method of steepest descents 

 Method of stationary phase 

 Analysis of integral transformation: Fourier, Laplace, Mellin transforms 

6. Asymptotic analysis of differential equations 

 Majorant series, Cauchy theorem 

 Asymptotic behavior near ordinary and regular singular points 

 Asymptotic behavior near irregular singular points, Stokes phenomenon 

7. Asymptotic solutions of ODE with respect to parameters 

 Poincaré-Lighthill-Kuo (PLK) method (i.e., method of strained coordinates) 

 Method of multiple scales 

 WKBJ method 

8. Asymptotic solutions of linear boundary-value problem (BVP) 

 Outer and inner asymptotics 

 Boundary layers and internal layers 

 

Textbooks: 

• Peter D. Miller, Applied Asymptotic Analysis 

• James D. Murray, Asymptotic Analysis 

• Wolfgang Wasow, Asymptotic Expansions for Ordinary Differential Equations  



Introduction 

➢ Examples of asymptotic analysis 

Taylor expansion 

Consider a smooth function 𝑓 ∈ 𝐶∞(𝑎, 𝑏), for any 𝑛 ∈ ℕ we have 

𝑓(𝑥) = ∑
𝑓(𝑘)(𝑥0)

𝑘!
(𝑥 − 𝑥0)𝑘

𝑛

𝑘=0

+ 𝑜((𝑥 − 𝑥0)𝑛) 

If the Taylor series is convergent in 𝐵(𝑥0, 𝑟), for any 𝑥 ∈ 𝐵(𝑥0, 𝑟) we have 

lim
𝑁→∞

𝑆𝑁(𝑥) = 𝑓(𝑥), 𝑆𝑁(𝑥) = ∑
𝑓(𝑘)(𝑥0)

𝑘!
(𝑥 − 𝑥0)𝑘

𝑁

𝑘=0

 

On the other hand, the Peano form of the remainder states that 

lim
𝑥→𝑥0

𝑓(𝑥) − 𝑆𝑛(𝑥)

(𝑥 − 𝑥0)𝑛
= 0 

Note that there are two limits considering 𝑁 → ∞ and 𝑥 → 𝑥0, respectively. The convergence 

of Taylor series studies the limit of 𝑁 → ∞. However, for asymptotic analysis, we consider one 

fixed 𝑛 and study the behavior as 𝑥 → 𝑥0. 

 

Stirling formula 

𝑛! = √2𝜋𝑛 (
𝑛

𝑒
)

𝑛

(1 +
1

12𝑛
+

1

288𝑛2
+ 𝑜 (

1

𝑛2
)) , 𝑛 → ∞ 

Note that the power series usually does not converge in asymptotic analysis. It needs to be 

truncated in order to compute the values. 

 

Exponential integral 

Keep using integration by parts, the exponential integral has the following expansion 

𝐸𝑖(𝑥) = ∫
𝑒−𝑡

𝑡
 d𝑡

∞

𝑥

= [−
𝑒−𝑡

𝑡
]

𝑥

∞

+ ∫
𝑒−𝑡

𝑡2
 d𝑡

∞

𝑥

=
𝑒−𝑥

𝑥
+ ∫

𝑒−𝑡

𝑡2
 d𝑡

∞

𝑥

 

= 𝑒−𝑥 (
1

𝑥
−

1

𝑥2
+

2

𝑥3
− ⋯ + (−1)𝑁

𝑁!

𝑥𝑁+1
) + 𝐶 ∫

𝑒−𝑡

𝑡𝑁+2
 d𝑡

∞

𝑥

 

 

Sum of powers 

∑ 𝑘2

𝑛

𝑘=1

=
1

6
𝑛(𝑛 + 1)(2𝑛 + 1), ∑ 𝑘3

𝑛

𝑘=1

=
1

4
𝑛2(𝑛 + 1)2 



The sum of powers can be calculated based on the Faulhaber's formula, in which the Bernoulli 

numbers 𝐵𝑟 are used. 

∑ 𝑘𝑝

𝑛

𝑘=1

=
𝑛𝑠+1

𝑠 + 1
+

1

2
𝑛𝑠 +

𝑠

12
𝑛𝑠−1 −

𝑠(𝑠 − 1)(𝑠 − 2)

720
𝑛𝑠−2 − ⋯ 

=
1

𝑠 + 1
∑ (

𝑠 + 1
𝑟

) 𝐵𝑟 𝑛𝑠+1−𝑟

𝑠

𝑟=0

 

 

Prime number theorem (PNT) 

The prime-counting function 𝜋(𝑥) is defined to be the number of primes less than or equal to 𝑥, 

for any real number 𝑥. The asymptotic expansion of 𝜋(𝑥) is 

𝜋(𝑥) =
𝑥

ln 𝑥
+ 𝑜 (

𝑥

ln 𝑥
) , 𝑥 → ∞ 

The Riemann hypothesis is equivalent to proving the remainder as 𝑜(√𝑥 ln 𝑥). 

 

➢ Focus of asymptotic analysis 

Series 

𝑓(𝑛) = ∑ 𝑎𝑘

𝑛

𝑘=1

, 𝑓𝑛(𝑥) = ∑ 𝑎𝑘(𝑥)

𝑛

𝑘=1

, 𝑘 → ∞ 

Integral 

𝑓(𝑥) = ∫ 𝑔(𝑥, 𝑡) d𝑡
𝐼(𝑥)

, 𝑓(𝑥) = ∫ 𝜔(𝑥)
𝑆(𝑥)

 

Limiting behaviors 

𝑥 − 𝑥0 → 0, 𝑥 → +∞, −∞, ±∞, 𝑧 → ∞  for  𝑧 ∈ ℂ 

  



Dimensional Analysis 

➢ Example: Pendulum 

Consider the following physical quantities 

𝑀 = 𝑚 [kg], 𝐿 = 𝑙 [m], 𝑔 = 𝑔0 [m/s2], 𝜃 = 𝜃0, 𝑇 = 𝑡 [s] 

Now we define another unit system 

[kg] = 𝜆1 [u1], [m] = 𝜆2 [u2], [s] = 𝜆3 [u3] 

Under this unit system, we have 

𝑀 = 𝜆1𝑚 [u1], 𝐿 = 𝜆2𝑙 [u2], 𝑔 =
𝜆2

𝜆3
2 𝑔0  [u2/u3

2] 

The period of the pendulum should be consistent under different unit systems, which gives 

𝑇 = 𝜆3𝑓(𝑚, 𝑙, 𝑔0, 𝜃0) = 𝑓 (𝜆1𝑚, 𝜆2𝑙,
𝜆2

𝜆3
2 𝑔0, 𝜃0) 

Note that 𝜆1 does not show up in the LHS, so mass 𝑀 does not influence period 𝑇. We choose 

𝜆2 =
1

𝑙
, 𝜆3 = √

𝑔0

𝑙
 

The dimensional analysis gives the formula of period 𝑡 [s] as 

√
𝑔0

𝑙
𝑓(⋅, 𝑙, 𝑔, 𝜃0) = 𝑓(⋅ ,1,1, 𝜃0) = 𝐾(𝜃0), 𝑡 = 𝑓(⋅, 𝑙, 𝑔, 𝜃0) = 𝐾(𝜃0)√

𝑙

𝑔0
 

 

➢ International System of Units (SI) 

The SI units are obtained from the SI defining constants, instead of directly defining the units. 

Some SI defining constants include 

Δ𝜈Cs = 9 192 631 770  [s−1], 𝑐 = 299 792 458  [m/s] 

ℎ = 6.626 070 15 × 10−34  [kg ⋅ m2/s], 𝑒 = 1.602 176 634 × 10−19  [A ⋅ s] 

𝑘 = 1.380 649 × 10−23  [kg ⋅ m2/(s2 ⋅ K)], 𝑁𝐴 = 6.022 140 76 × 1023  [mol−1] 

 

➢ Buckingham 𝜋 theorem 

Consider a problem that involves basic units [u𝑖] for 𝑖 = 1,2, ⋯ , 𝑛. The physical quantities are 

denoted as 𝐴𝑗 for 𝑗 = 1,2, ⋯ , 𝑚. We want to study another quantity 𝐵 = 𝑓(𝐴1, ⋯ , 𝐴𝑚). Let 

𝐴𝑖 = 𝑎𝑖[u1]𝑥𝑖1[u2]𝑥𝑖2 ⋯ [u𝑛]𝑥𝑖𝑛 , 𝐵 = 𝑏[u1]𝑦1[u2]𝑦2 ⋯ [u𝑛]𝑦𝑛 

Denote 𝛼𝑖 = (𝑥𝑖1, 𝑥𝑖2, ⋯ , 𝑥𝑖𝑛)𝑇 , 𝛽 = (𝑦1, 𝑦2, ⋯ , 𝑦𝑛)𝑇 are vectors in ℝ𝑛. Consider a basis of the 

space 𝑉 = span(𝛼1, ⋯ , 𝛼𝑚) as {𝛼1, ⋯ , 𝛼𝑘}. Therefore, we have 

𝛼𝑗 = 𝑧𝑗1𝛼1 + ⋯ 𝑧𝑗𝑘𝛼𝑘 , for  𝑗 > 𝑘, 𝛽 = 𝑤1𝛼1 + ⋯ + 𝑤𝑘𝛼𝑘 

Now consider a new set of units [ũ𝑖] given as 

[u𝑖] = 𝜆𝑖[ũ𝑖], 𝑖 = 1,2, ⋯ , 𝑛, 𝜆𝑖 ∈ ℝ>0 



Then we obtain 

𝐴𝑖 = 𝑎𝑖𝜆1
𝑥𝑖1 ⋯ 𝜆𝑛

𝑥𝑖𝑛[ũ1]𝑥𝑖1 ⋯ [ũ𝑛]𝑥𝑖𝑛 , 𝐵 = 𝑏𝜆1
𝑦1 ⋯ 𝜆𝑛

𝑦𝑛[ũ1]𝑦1 ⋯ [ũ𝑛]𝑦𝑛 

The consistency of 𝐵 under the two unit systems leads to 

𝜆1
𝑦1 ⋯ 𝜆𝑛

𝑦𝑛𝑓(𝑎1, ⋯ , 𝑎𝑚) = 𝑓(𝑎1𝜆1
𝑥11 ⋯ 𝜆𝑛

𝑥1𝑛 , ⋯ , 𝑎𝑚𝜆1
𝑥𝑚1 ⋯ 𝜆𝑛

𝑥𝑚𝑛) 

Choose 𝜆1, ⋯ , 𝜆𝑛 such that 

𝑎𝑖𝜆1
𝑥𝑖1 ⋯ 𝜆𝑛

𝑥𝑖𝑛 = 1, for  1 ≤ 𝑖 ≤ 𝑘, 𝑘 = dim(𝑉) 

This is equivalent to 

𝑥𝑖1 ln 𝜆1 + ⋯ + 𝑥𝑖𝑛 ln 𝜆𝑛 = − ln 𝑎𝑖 , for  1 ≤ 𝑖 ≤ 𝑘 

There are 𝑘 equations for 𝑛 unknowns 𝜆𝑖, which implies that we can successfully choose them. 

Now the equation becomes 

𝜆1
𝑦1 ⋯ 𝜆𝑛

𝑦𝑛𝑓(𝑎1, ⋯ , 𝑎𝑚) = 𝑓(1, ⋯ ,1, 𝑎𝑘+1𝜆1

𝑥(𝑘+1)1 ⋯ 𝜆𝑛

𝑥(𝑘+1)𝑛, ⋯ , 𝑎𝑚𝜆1
𝑥𝑚1 ⋯ 𝜆𝑛

𝑥𝑚𝑛) 

Note that for 𝑗 > 𝑘, we have 𝛼𝑗 = 𝑧𝑗1𝛼1 + ⋯ 𝑧𝑗𝑘𝛼𝑘, which implies that 

𝜆1

𝑥𝑗1 ⋯ 𝜆𝑛

𝑥𝑗𝑛 = (𝜆1
𝑥11 ⋯ 𝜆𝑛

𝑥1𝑛)
𝑧𝑗1

⋯ (𝜆1
𝑥𝑘1 ⋯ 𝜆𝑛

𝑥𝑘𝑛)
𝑧𝑗𝑘

= (
1

𝑎1
)

𝑧𝑗1

⋯ (
1

𝑎𝑘
)

𝑧𝑗𝑘

, for  𝑗 > 𝑘 

The equation further becomes 

𝑓(𝑎1, ⋯ , 𝑎𝑚)

𝑎1
𝑤1 ⋯ 𝑎𝑘

𝑤𝑘
= 𝑓 (1, ⋯ ,1, 𝑎𝑘+1 (

1

𝑎1
)

𝑧(𝑘+1)1

⋯ (
1

𝑎𝑘
)

𝑧(𝑘+1)𝑘

, ⋯ , 𝑎𝑚 (
1

𝑎1
)

𝑧𝑚1

⋯ (
1

𝑎𝑘
)

𝑧𝑚𝑘

) 

There are 𝑚 − 𝑘 additional parameters left, assuming that we have 𝑘 independent parameters. 

This non-dimensional procedure is important. 

 

Example: Quantum states of neutrons in the Earth’s gravitational field 

This is an experiment from Nesvizhevsky et al. (2002, Nature). We want to find the discrete 

energy state from dimensional analysis. Given the following physical quantities 

Mass of neutron 𝑚 Earth’s gravity 𝑔 Planck constant ℏ 

1.675×10-27 9.8 1.0545×10-34 

[kg] [m⋅s-2] [kg⋅m2⋅s-1] 

The energy 𝐸 has a unit of [kg⋅m2⋅s-2]. The dimensional analysis gives 

𝐸𝑔 ∝ 𝑚
1
3 𝑔

2
3 ℏ

2
3 ∝ 1 peV 

This shows that the quantum states of neutrons in the Earth’s gravitational field is observable. 

The constants are related to the zeros of the Airy function. However, if for the gravitational 

effect between two neutrons, we need to replace 𝑔 by gravitational constant 𝐺 as our relevant 

physical quantity, which is 6.674×10-11 [kg-1⋅m3⋅s-2]. In this case, we have 



𝐸𝐺 ∝ 𝑚5𝐺2ℏ−2 ∝ 10−58 peV 

The gravitational effect between two neutrons cannot be observed as expected. 

 

Example: QED fine-structure constant 

The relevant physical quantities are listed below 

𝑒 𝜀0 ℎ 𝑐 

1.602×10-19 8.854×10-12 6.676×10-34 2.99×108 

[A⋅s] [A2⋅s4⋅kg-1⋅m-3] [kg⋅m2⋅s-1] [m⋅s-1] 

We want to obtain a dimensionless number 𝛼 that quantifies the strength of the electromagnetic 

interaction between elementary charged particles. Based on the units, we have 

𝛼 ∝
𝑒2

𝜀0ℎ𝑐
, 𝛼 =

𝑒2

2𝜀0ℎ𝑐
≈

1

137
 

 

Example: KdV equation 

𝑎𝑢𝑡 + 𝑏𝑢𝑥 + 𝑐𝑢𝑢𝑥 + 𝑑𝑢𝑥𝑥𝑥 = 0 

The non-dimensional version can be obtained by considering 

𝑥 = 𝜆1�̃�, 𝑡 = 𝜆2�̃�, 𝑢 = 𝜆3�̃� 

Then we have 

𝑎
𝜆3

𝜆2
�̃�𝑡 + 𝑏

𝜆3

𝜆1
�̃�𝑥 + 𝑐

𝜆3
2

𝜆1
�̃��̃�𝑥 + 𝑑

𝜆3

𝜆1
3 �̃��̃��̃��̃� = 0 

We choose 𝜆𝑖 satisfying 

𝑎
𝜆3

𝜆2
= 1, 𝑐

𝜆3
2

𝜆1
= 6, 𝑑

𝜆3

𝜆1
3 = 1, 𝑢𝑡 + 𝛾𝑢𝑥 + 6𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0 

Furthermore, with the Galileo transform 𝑥 = 𝑥 − 𝛾𝑡, we have 

𝑢𝑡 + 6𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0 

 

Example: Lorenz equation 

�̇� = 𝑎1𝑦 − 𝑎2𝑥, �̇� = 𝑎3𝑥 − 𝑎4𝑦 − 𝑎5𝑥𝑧, �̇� = 𝑎6𝑥𝑦 − 𝑎7𝑧 

Consider 

𝑥 → 𝜆1𝑥, 𝑦 → 𝜆2𝑦, 𝑧 → 𝜆3𝑧, 𝑡 → 𝜆4𝑡 

We can reduce the number of parameters from 7 to 3 as 

�̇� = 𝜎(𝑦 − 𝑥), �̇� = 𝑥(𝜌 − 𝑧) − 𝑦, �̇� = 𝑥𝑦 − 𝛽𝑧 

Typically, we choose 𝜎 = 10, 𝛽 = 8/3. At 𝜌 = 28, the Lorenz system has chaotic solutions.  

 

 



➢ Dimensional analysis as differential equation 

Consider a simple version with only one parameter 

𝑓(𝜆𝑥1𝑎1, ⋯ , 𝜆𝑥𝑚𝑎𝑚) = 𝜆𝑦𝑓(𝑎1, ⋯ , 𝑎𝑚) 

The derivative with respect to 𝜆 gives 

∑ 𝑥𝑖𝜆
𝑥𝑖−1𝑎𝑖

𝜕𝑓

𝜕𝑎𝑖

𝑚

𝑖=1

(𝜆𝑥1 𝑎1, ⋯ , 𝜆𝑥𝑚𝑎𝑚) = 𝑦𝜆𝑦−1𝑓(𝑎1, ⋯ , 𝑎𝑚) 

Let 𝜆 = 1, we obtain a differential equation 

∑ 𝑥𝑖𝑎𝑖

𝜕𝑓

𝜕𝑎𝑖

𝑚

𝑖=1

= 𝑦𝑓, 𝑓 = 𝑓(𝑎1, ⋯ , 𝑎𝑚) 

We can choose the following solution form 

𝑓 = 𝑎1
𝑦/𝑥1 ⋅ 𝑔 (

𝑎2

𝑎1
𝑥2/𝑥1

, ⋯ ,
𝑎𝑚

𝑎1
𝑥𝑚/𝑥1

) 

The trick of first taking the derivative and then setting a special value to the parameter is useful. 

 

➢ Exercise 

Navier-Stokes equation 

𝜕𝒖

𝜕𝑡
+ 𝒖 ⋅ ∇𝒖 = −

1

𝜌
∇𝑝 + 𝜈∇2𝒖 − 𝑔�̂� 

With the scales 𝜌, 𝑃, 𝑈, 𝐿, we have 

𝑈2

𝐿
(

𝜕�̃�

𝜕�̃�
+ �̃� ⋅ ∇̃�̃�) = −

𝑃

𝜌𝐿
∇̃�̃� +

𝜈𝑈

𝐿2
∇̃2�̃� − 𝑔�̂� 

The non-dimensional N-S equation becomes 

𝜕�̃�

𝜕�̃�
+ �̃� ⋅ ∇̃�̃� = −

𝑃

𝜌𝑈2
∇̃�̃� +

1

Re
∇̃2�̃� −

1

Fr2
�̂�, Re =

𝑈𝐿

𝜈
, Fr =

𝑈

√𝑔𝐿
 

The Reynolds number Re denotes the ratio of inertia to viscous dissipation. The Froude number 

Fr denotes the ratio of inertia to the external force. 

 

Planck units 

With 𝑐, 𝐺, ℏ, 𝜀0, 𝑘𝐵 all considered as 1, we have the Planck units [ũ𝑖]. From the SI units of these 

physical constants, we have 

[�̃�][�̃�]−1 = 𝑐 [m ⋅ s−1], [�̃�]
−1

[�̃�]3[�̃�]−2 = 𝐺 [kg−1 ⋅ m3 ⋅ s−2] 

[�̃�][�̃�]2[�̃�]−1 = ℏ [kg ⋅ m2 ⋅ s−1], [𝐼]2[�̃�]
−1

[�̃�]−3[�̃�]4 = 𝜀0 [A2 ⋅ kg−1 ⋅ m−3 ⋅ s4] 

[�̃�][�̃�]2[�̃�]−2[�̃�]
−1

= 𝑘𝐵  [kg ⋅ m2 ⋅ s−2 ⋅ K−1] 



There are 5 independent units to be determined by these 5 physical constants. We thus have 

[�̃�] = √ℏ𝐺/𝑐3 [m], [�̃�] = √ℏ𝐺/𝑐5 [s] , [�̃�] = √ℏ𝑐/𝐺 [kg] 

[𝐼] = 𝑐3√
𝜀0

𝐺
 [A], [�̃�] =

𝑐2

𝑘𝐵

√
ℏ𝑐

𝐺
 [K] 

 

Volterra (predator-prey) equation 

�̇� = 𝑥(𝛼 − 𝛽𝑦), �̇� = −𝑦(𝛾 − 𝛿𝑥), 𝑥(0) = 𝑥0, 𝑦(0) = 𝑦0 

We want to analyze the period 𝑇(𝛼, 𝛽, 𝛾, 𝛿, 𝑥0, 𝑦0). The unit of each parameter is 

[𝛼] = [𝛾] = [s−1], [𝛽] = [𝛿] = [m−1 ⋅ s−1], [𝑥0] = [𝑦0] = [m], [𝑇] = [s] 

With another unit system 

[m] = 𝜆1 [u1], [s] = 𝜆2 [u2] 

The consistency of period 𝑇 gives 

𝑇 = 𝜆2𝑓(𝛼, 𝛽, 𝛾, 𝛿, 𝑥0, 𝑦0) = 𝑓 (
𝛼

𝜆2
,

𝛽

𝜆1𝜆2
,

𝛾

𝜆2
,

𝛿

𝜆1𝜆2
, 𝜆1𝑥0, 𝜆1𝑦0) 

Since the LHS does not involve 𝜆1, we conclude that 𝛽, 𝛿, 𝑥0, 𝑦0 do not influence the period. 

Now we choose 𝜆2 = 𝛼, and we obtain 

𝑇 = 𝑓(𝛼, 𝛾) =
1

𝛼
𝑓 (1,

𝛾

𝛼
) 

The period of the system only depends on 𝛼 and 𝛾, and under the non-dimensional sense, the 

function form only depends on the ratio 𝛾/𝛼. 

  



Euler-Maclaurin Formula 

Consider approximating an integral over 𝐼 = [𝑎, 𝑏] by separating into 𝑛 intervals as 

∫ 𝑓(𝑥) d𝑥
𝑏

𝑎

≈ 𝑇𝑛 = ∑
𝑓(𝑥𝑖−1) + 𝑓(𝑥𝑖)

2

𝑛

𝑖=1

⋅
𝑏 − 𝑎

𝑛
 

Another perspective is to approximate the sum of a series by an integral 

𝑆𝑛 = ∑ 𝑓(𝑘)

𝑛

𝑘=1

≈ ∫ 𝑓(𝑥) d𝑥
𝑛

1

 

We want to analyze the difference between the integral and the sum. The Euler-Maclaurin 

formula originates from these two applications. 

 

Example: Power function 

Consider 𝜇 ∈ ℕ and 𝑓(𝑥) = 𝑥𝜇. Denote the interval step as ℎ = (𝑏 − 𝑎)/𝑛. 

𝑆𝑛 = ℎ ∑ 𝑓(𝑥𝑖)

𝑛−1

𝑖=0

= ℎ ∑(𝑎 + 𝑖ℎ)𝜇

𝑛−1

𝑖=0

= ℎ ∑ ∑ (
𝜇
𝑗 ) 𝑎𝜇−𝑗(𝑖ℎ)𝑗

𝜇

𝑗=0

𝑛−1

𝑖=0

= ∑ (
𝜇
𝑗 ) 𝑎𝜇−𝑗ℎ𝑗+1 ∑ 𝑖𝑗

𝑛−1

𝑖=0

𝜇

𝑗=0

 

The sum of powers can be calculated from the exponential generating function 

𝑔(𝑧) = ∑
𝑧𝑗

𝑗!

∞

𝑗=0

∑ 𝑖𝑗

𝑛−1

𝑖=0

= ∑ ∑
(𝑖𝑧)𝑗

𝑗!

∞

𝑗=0

𝑛−1

𝑖=0

= ∑ 𝑒𝑖𝑧

𝑛−1

𝑖=0

=
𝑒𝑛𝑧 − 1

𝑒𝑧 − 1
 

Note that the Bernoulli numbers satisfy 

𝑧

𝑒𝑧 − 1
= ∑

𝐵𝑝

𝑝!
𝑧𝑝

∞

𝑝=0

 

We thus have 

𝑔(𝑧) =
𝑧

𝑒𝑧 − 1
⋅

𝑒𝑛𝑧 − 1

𝑧
= ∑

𝐵𝑝

𝑝!
𝑧𝑝

∞

𝑝=0

⋅ ∑
𝑛𝑞+1

(𝑞 + 1)!

∞

𝑞=0

𝑧𝑞 = ∑ 𝑎𝑗

𝑧𝑗

𝑗!

∞

𝑗=0

 

The sum of powers is then obtained as 

𝑎𝑗 = ∑ 𝑖𝑗

𝑛−1

𝑖=0

=
1

𝑗 + 1
∑ (

𝑗 + 1
𝑝

) 𝐵𝑝 𝑛𝑗+1−𝑝

𝑗

𝑝=0

 

Finally, we have 

𝑆𝑛 = ∑ (
𝜇
𝑗 ) 𝑎𝜇−𝑗ℎ𝑗+1

1

𝑗 + 1
∑ (

𝑗 + 1
𝑘

) 𝐵𝑘  𝑛𝑗+1−𝑘

𝑗

𝑘=0

𝜇

𝑗=0

 

= ∑
𝐵𝑘

𝑛𝑘−1
∑ (

𝜇
𝑗 ) 𝑎𝜇−𝑗ℎ𝑗+1

1

𝑗 + 1
(

𝑗 + 1
𝑘

) 𝑛𝑗

𝜇

𝑗=𝑘

𝜇

𝑘=0

 



The combinatorial numbers can be simplified to 

𝑆𝑛 = ∑
𝐵𝑘

𝑛𝑘−1
𝑎𝜇ℎ

𝜇!

𝑘! (𝜇 + 1 − 𝑘)!
[(1 +

𝑛ℎ

𝑎
)

𝜇+1−𝑘

− 1] (
𝑛ℎ

𝑎
)

𝑘−1
𝜇

𝑘=0

 

= ∑
𝐵𝑘

𝑛𝑘−1
𝑎𝜇ℎ

𝜇!

𝑘! (𝜇 + 1 − 𝑘)!
(

𝑏𝜇+1−𝑘 − 𝑎𝜇+1−𝑘

𝑎𝜇+1−𝑘
) (

𝑏 − 𝑎

𝑎
)

𝑘−1
𝜇

𝑘=0

 

= ∑ 𝐵𝑘 (
𝜇
𝑘

) ℎ𝑘 ⋅
𝑏𝜇+1−𝑘 − 𝑎𝜇+1−𝑘

𝜇 + 1 − 𝑘

𝜇

𝑘=0

 

=
1

𝜇 + 1
(𝑏𝜇+1 − 𝑎𝜇+1) + ∑

𝐵𝑘

𝑘!
ℎ𝑘

𝜇

𝑘=1

[
𝜇! ⋅ 𝑏𝜇+1−𝑘

(𝜇 + 1 − 𝑘)!
−

𝜇! ⋅ 𝑎𝜇+1−𝑘

(𝜇 + 1 − 𝑘)!
] 

Recall that 𝑓(𝑥) = 𝑥𝜇 , and we obtain 

𝑆𝑛 = ∫ 𝑓(𝑥) d𝑥
𝑏

𝑎

+ ∑
𝐵𝑘

𝑘!
ℎ𝑘

∞

𝑘=1

[𝑓(𝑘−1)(𝑏) − 𝑓(𝑘−1)(𝑎)] 

Note that the Bernoulli numbers are 

𝐵0 = 1, 𝐵1 = −
1

2
, 𝐵2𝑘+1 = 0  for  𝑘 ≥ 1 

We can thus write 

𝑆𝑛 = ∫ 𝑓(𝑥) d𝑥
𝑏

𝑎

−
ℎ

2
[𝑓(𝑏) − 𝑓(𝑎)] + ∑

𝐵2𝑙

(2𝑙)!
ℎ2𝑙

∞

𝑙=1

[𝑓(2𝑙−1)(𝑏) − 𝑓(2𝑙−1)(𝑎)] 

In fact, the trapezoidal rule approximate the integral as 

𝑇𝑛 = 𝑆𝑛 +
ℎ

2
[𝑓(𝑏) − 𝑓(𝑎)] 

Finally, we have 

𝑇𝑛 = ∫ 𝑓(𝑥) d𝑥
𝑏

𝑎

+ ∑
𝐵2𝑙

(2𝑙)!
ℎ2𝑙

∞

𝑙=1

[𝑓(2𝑙−1)(𝑏) − 𝑓(2𝑙−1)(𝑎)] 

Usually, we can write it as 

∫ 𝑓(𝑥) d𝑥
𝑏

𝑎

= 𝑇𝑛 − ∑
𝐵2𝑙

(2𝑙)!
ℎ2𝑙

𝑚

𝑙=1

[𝑓(2𝑙−1)(𝑏) − 𝑓(2𝑙−1)(𝑎)] + 𝑅𝑚𝑛 

 

➢ Euler-Maclaurin formula 

Consider a function 𝑓 ∈ 𝐶𝑚[𝑎, 𝑏]. For 𝑛 ∈ ℕ+ we have 

∫ 𝑓(𝑥) d𝑥
𝑏

𝑎

= 𝑇𝑛 − ∑
𝐵𝑘

𝑘!
ℎ𝑘

𝑚

𝑘=2

[𝑓(𝑘−1)(𝑏) − 𝑓(𝑘−1)(𝑎)] + 𝑅𝑚𝑛 

The remainder term 𝑅𝑚𝑛 is given by 



𝑅𝑚𝑛 =
(−1)𝑚

𝑚!
ℎ𝑚 ∫ 𝐵𝑚 ({

𝑥 − 𝑎

𝑏 − 𝑎
𝑛}) 𝑓(𝑚)(𝑥) d𝑥

𝑏

𝑎

 

Note that {𝑦} = 𝑦 − [𝑦] and the Bernoulli polynomial 𝐵𝑚(𝑡) is 

𝐵𝑚(𝑡) = ∑ (
𝑚
𝑘

) 𝐵𝑘𝑡𝑚−𝑘

𝑚

𝑘=0

 

 

Proof. First consider 𝑛 = 1 case with ℎ = 𝑏 − 𝑎. We need to prove 

∫ 𝑓(𝑥) d𝑥
𝑏

𝑎

=
𝑏 − 𝑎

2
[𝑓(𝑎) + 𝑓(𝑏)] − ∑

𝐵𝑘

𝑘!
(𝑏 − 𝑎)𝑘

𝑚

𝑘=2

[𝑓(𝑘−1)(𝑏) − 𝑓(𝑘−1)(𝑎)] + 𝑅𝑚1 

Denote 𝐹(𝑥) as the integral function 

𝐹(𝑥) = ∫ 𝑓(𝑥) d𝑥
𝑥

𝑎

, 𝐹(𝑎) = 0 

Now we need to prove 

𝐹(𝑏) =
𝑏 − 𝑎

2
[𝐹′(𝑎) + 𝐹′(𝑏)] − ∑

𝐵𝑘

𝑘!
(𝑏 − 𝑎)𝑘

𝑚

𝑘=2

[𝐹(𝑘)(𝑏) − 𝐹(𝑘)(𝑎)] + 𝑅𝑚1 

As a comparison, the Taylor expansion is 

𝐹(𝑏) = 𝐹′(𝑎)(𝑏 − 𝑎) + ∑
1

𝑘!
(𝑏 − 𝑎)𝑘𝐹(𝑘)(𝑎)

𝑚

𝑘=2

+ �̃�𝑚 

Consider two functions 𝑓, 𝑔 ∈ 𝐶𝑚[𝑎, 𝑏]. The formula of integration by parts is 

∫ 𝑓(𝑥)𝑔(𝑚)(𝑥) d𝑥
𝑏

𝑎

= [ ∑ (−1)𝑘𝑓(𝑘)(𝑥)𝑔(𝑚−1−𝑘)(𝑥)

𝑚−1

𝑘=0

]

𝑎

𝑏

+ (−1)𝑚 ∫ 𝑓(𝑚)(𝑥)𝑔(𝑥) d𝑥
𝑏

𝑎

 

With a change of variable, we have 

∫ 𝑓(𝑥)𝑔(𝑚)(𝑎 + 𝑏 − 𝑥) d𝑥
𝑏

𝑎

= ∑ [𝑓(𝑘)(𝑎)𝑔(𝑚−1−𝑘)(𝑏) − 𝑓(𝑘)(𝑏)𝑔(𝑚−1−𝑘)(𝑎)]

𝑚−1

𝑘=0

 

+ ∫ 𝑓(𝑚)(𝑥)𝑔(𝑎 + 𝑏 − 𝑥) d𝑥
𝑏

𝑎

(∗) 

We need to choose 𝑔(𝑥) properly. To prove the Taylor expansion, we require 

𝑔(𝑚)(𝑥) ≡ 1, 𝑔(𝑘)(𝑎) = 0, 𝑘 = 0,1, ⋯ , 𝑚 − 1 

This sets the function 𝑔(𝑥) as 

𝑔(𝑥) =
(𝑥 − 𝑎)𝑚

𝑚!
 

To prove the E-M formula, we also require that 𝑔(𝑥) is a polynomial, in order to obtain 𝐹(𝑏) on 

the LHS of the formula. 



𝑔(𝑚)(𝑥) ≡ 1        ⟹         𝑔(𝑥) = ∑ 𝑏𝑝

(𝑥 − 𝑎)𝑚−𝑝

(𝑚 − 𝑝)!

𝑚

𝑝=0

, 𝑏0 = 1 

The derivative becomes 

𝑔(𝑘)(𝑥) = ∑ 𝑏𝑝

(𝑥 − 𝑎)𝑚−𝑘−𝑝

(𝑚 − 𝑘 − 𝑝)!

𝑚−𝑘

𝑝=0

 

Furthermore, the 𝑘 = 0 term requires 

𝑔(𝑚−1)(𝑏) =
𝑏 − 𝑎

2
, 𝑔(𝑚−1)(𝑎) =

𝑎 − 𝑏

2
        ⟹         𝑏1 =

𝑎 − 𝑏

2
 

Similarly, for other terms we require 

𝑔(𝑘)(𝑎) = 𝑔(𝑘)(𝑏), for  𝑘 = 0,1, ⋯ , 𝑚 − 2 

This leads to a linear system 

∑ 𝑏𝑝

(𝑏 − 𝑎)𝑚−𝑘−𝑝

(𝑚 − 𝑘 − 𝑝)!

𝑚−𝑘−1

𝑝=0

= 0, ∑
𝑝! 𝑏𝑝

(𝑏 − 𝑎)𝑝

𝑙−1

𝑝=0

(
𝑙
𝑝

) = 0, 𝑙 ≥ 2 

Based on the following identity of the Bernoulli numbers 

∑ 𝐵𝑝

𝑙−1

𝑝=0

(
𝑙
𝑝

) = 0, 𝑙 ≥ 2 

The coefficients 𝑏𝑝 are solved as 

𝑏𝑝 =
(𝑏 − 𝑎)𝑝

𝑝!
𝐵𝑝 

Therefore, we choose 𝑔(𝑥) as 

𝑔𝑚(𝑥) = ∑
(𝑏 − 𝑎)𝑝

𝑝!
𝐵𝑝

(𝑥 − 𝑎)𝑚−𝑝

(𝑚 − 𝑝)!

𝑚

𝑝=0

 

=
(𝑏 − 𝑎)𝑚

𝑚!
∑ 𝐵𝑃 (

𝑚
𝑝 ) (

𝑥 − 𝑎

𝑏 − 𝑎
)

𝑚−𝑝
𝑚

𝑝=0

=
(𝑏 − 𝑎)𝑚

𝑚!
𝐵𝑚 (

𝑥 − 𝑎

𝑏 − 𝑎
) 

Its derivative becomes 

𝑔𝑚
(𝑘)(𝑥) = ∑

(𝑏 − 𝑎)𝑝

𝑝!
𝐵𝑝

(𝑥 − 𝑎)𝑚−𝑘−𝑝

(𝑚 − 𝑘 − 𝑝)!

𝑚−𝑘

𝑝=0

= 𝑔𝑚−𝑘(𝑥) 

Substitute into (∗), we have 

∫ 𝑓(𝑥) d𝑥
𝑏

𝑎

=
𝑏 − 𝑎

2
[𝑓(𝑎) + 𝑓(𝑏)] − ∑

𝐵𝑘

𝑘!
(𝑏 − 𝑎)𝑘

𝑚

𝑘=2

[𝑓(𝑘−1)(𝑏) − 𝑓(𝑘−1)(𝑎)] + 𝑅𝑚1 

For the remainder term, note that 

𝐵𝑚(1 − 𝑥) = (−1)𝑚𝐵𝑚(𝑥) 

This can be demonstrated from the generating function of 𝐵𝑚(𝑥), which is 



𝑧𝑒𝑥𝑧

𝑒𝑧 − 1
= ∑ 𝐵𝑚(𝑥)

𝑧𝑚

𝑚!

∞

𝑚=0

 

Substitute 𝑥 → 1 − 𝑥, and we have 

∑ 𝐵𝑚(1 − 𝑥)
𝑧𝑚

𝑚!

∞

𝑚=0

=
𝑧𝑒(1−𝑥)𝑧

𝑒𝑧 − 1
=

−𝑧𝑒−𝑥𝑧

𝑒−𝑧 − 1
= ∑ 𝐵𝑚(𝑥)

(−𝑧)𝑚

𝑚!

∞

𝑚=0

 

With this, we can show that 

𝑅𝑚1 =
(𝑏 − 𝑎)𝑚

𝑚!
∫ 𝑓(𝑚)(𝑥)𝐵𝑚 (

𝑏 − 𝑥

𝑏 − 𝑎
)  d𝑥

𝑏

𝑎

 

=
(−1)𝑚

𝑚!
(𝑏 − 𝑎)𝑚 ∫ 𝐵𝑚 (

𝑥 − 𝑎

𝑏 − 𝑎
) 𝑓(𝑚)(𝑥) d𝑥

𝑏

𝑎

 

 

For all other cases with 𝑛 > 1, within each interval 𝐼𝑖 = [𝑥𝑖−1, 𝑥𝑖] with 𝑖 = 1,2, ⋯ , 𝑛, we can 

apply the E-M formula as 

∫ 𝑓(𝑥) d𝑥
𝑥𝑖

𝑥𝑖−1

=
ℎ

2
[𝑓(𝑥𝑖−1) + 𝑓(𝑥𝑖)] − ∑

𝐵𝑘

𝑘!
ℎ𝑘

𝑚

𝑘=2

[𝑓(𝑘−1)(𝑥𝑖) − 𝑓(𝑘−1)(𝑥𝑖−1)] 

+
(−1)𝑚

𝑚!
ℎ𝑚 ∫ 𝐵𝑚 (

𝑥 − 𝑥𝑖−1

ℎ
) 𝑓(𝑚)(𝑥) d𝑥

𝑥𝑖

𝑥𝑖−1

 

Before adding up the results from each 𝐼𝑖, we need to manipulate the remainder term. Note that 

𝑥𝑖−1 = 𝑎 + (𝑖 − 1)ℎ ≤ 𝑥 < 𝑥𝑖 = 𝑎 + 𝑖ℎ, 𝑖 − 1 ≤
𝑥 − 𝑎

𝑏 − 𝑎
𝑛 < 𝑖, 𝑖 − 1 = [

𝑥 − 𝑎

𝑏 − 𝑎
𝑛] 

Then we have 

𝐵𝑚 (
𝑥 − 𝑥𝑖−1

ℎ
) = 𝐵𝑚 (

𝑥 − 𝑎

𝑏 − 𝑎
𝑛 − [

𝑥 − 𝑎

𝑏 − 𝑎
𝑛]) = 𝐵𝑚 ({

𝑥 − 𝑎

𝑏 − 𝑎
𝑛}) 

The sum over all intervals gives the final E-M formula.          ∎ 

 

Corollary 

Let 𝑓 ∈ 𝐶𝑚(ℝ>0), with 𝑎, 𝑏 ∈ ℕ and 𝑎 < 𝑏. We have 

∑ 𝑓(𝑘)

𝑎≤𝑘<𝑏

= ∫ 𝑓(𝑥) d𝑥
𝑏

𝑎

+ ∑
𝐵𝑙

𝑙!

𝑚

𝑙=1

[𝑓(𝑙−1)(𝑏) − 𝑓(𝑙−1)(𝑎)] 

+
(−1)𝑚+1

𝑚!
∫ 𝐵𝑚({𝑥}) 𝑓(𝑚)(𝑥) d𝑥

𝑏

𝑎

  

To prove this, consider 𝑛 = 𝑏 − 𝑎 and ℎ = 1.            ∎ 

 



Properties of Bernoulli polynomial / function 

𝐵0(𝑥) = 1, 𝐵1({𝑥}) = {𝑥} −
1

2
 

𝐵𝑚
′ (𝑥) = 𝑚𝐵𝑚−1(𝑥) 

∫ 𝐵𝑚(𝑥) d𝑥
1

0

= 0, for  𝑚 ≥ 1 

𝐵𝑚(0) = 𝐵𝑚(1), for  𝑚 ≥ 2 

 

Fourier series of Bernoulli function 

𝐵𝑚({𝑥}) is continuous, piecewise smooth with period 1. This implies that its Fourier series is 

pointwise convergent. Denote 

𝑎𝑚𝑘 = ∫ 𝐵𝑚(𝑥) 𝑒−𝑖2𝜋𝑘𝑥 d𝑥
1

0

, 𝑘 ∈ ℤ 

Specifically, we have 

𝑎00 = 1, 𝑎0𝑘 = 0, for  𝑘 ≠ 0, 𝑎𝑚0 = 0, for  𝑚 ≥ 1 

We can first calculate 

𝑎1𝑘 = ∫ (𝑥 −
1

2
) 𝑒−𝑖2𝜋𝑘𝑥 d𝑥

1

0

=
𝑖

2𝜋𝑘
 

For 𝑚 ≥ 2, using the recursive relation and integration by parts gives 

𝑎𝑚𝑘 =
𝑚

2𝜋𝑖𝑘
𝑎(𝑚−1)𝑘 , 𝑎𝑚𝑘 = −

𝑚!

(2𝜋𝑖𝑘)𝑚
, for  𝑚 ≥ 1  and  𝑘 ≠ 0 

The Fourier series becomes 

𝐵𝑚({𝑥}) = −
𝑚!

(2𝜋𝑖)𝑚
∑

𝑒𝑖2𝜋𝑘𝑥

𝑘𝑚

𝑘≠0

 

The series is absolutely convergent for 𝑚 ≥ 2. 

 

Bernoulli number 

In the Fourier series, taking 𝑥 = 0 gives 

𝐵𝑚 = −(−𝑖)𝑚
𝑚!

(2𝜋)𝑚
∑

1

𝑘𝑚

𝑘≠0

 

When 𝑚 is odd, we have 𝐵𝑚 = 0 due to cancellation for positive and negative 𝑘. When 𝑚 is 

even with 𝑚 = 2𝑙, we have 

𝐵2𝑙 = (−1)𝑙+1
(2𝑙)!

(2𝜋)2𝑙
⋅ 2𝜁(2𝑙), 𝜁(2𝑙) = (−1)𝑙+1𝐵2𝑙

22𝑙−1𝜋2𝑙

(2𝑙)!
 

This is the relation between the Riemann zeta function and Bernoulli number.  



As 𝑙 → ∞, the Bernoulli number behaves as 

|𝐵2𝑙| ∼
2 ⋅ (2𝑙)!

(2𝜋)2𝑙
∼ √2𝜋 ⋅ 2𝑙 (

2𝑙

𝑒
)

2𝑙 1

22𝑙−1𝜋2𝑙
 , as  𝑙 → ∞ 

 

Bound of the Bernoulli function 

|𝐵𝑚({𝑥})| ≤
𝑚!

(2𝜋)𝑚
∑

1

𝑘𝑚

𝑘≠0

= |𝐵𝑚| 

 

Example 1 

𝑓(𝑥) = 𝑥𝑠 , 𝑠 ∈ ℕ 

Note that when we choose 𝑚 > 𝑠, we have 

𝑓(𝑚)(𝑥) = 0, for  𝑚 > 𝑠 

From E-M formula, with [𝑎, 𝑏] = [0, 𝑛], we have 

∑ 𝑘𝑠

1≤𝑘<𝑛

=
𝑛𝑠+1

𝑠 + 1
−

𝑛𝑠

2
+ ∑

𝐵𝑙

𝑙!

𝑠!

(𝑠 − 𝑙 + 1)!
𝑛𝑠−𝑙+1

𝑠

𝑙=2

 

The sum of powers is thus obtained as 

∑ 𝑘𝑠

1≤𝑘≤𝑛

=
1

𝑠 + 1
[𝑛𝑠+1 +

𝑠 + 1

2
𝑛𝑠 + ∑ 𝐵𝑙 (

𝑠 + 1
𝑙

) 𝑛𝑠−𝑙+1

𝑠

𝑙=2

] 

As an example, for 𝑠 = 4 we have 

𝐵2 =
1

6
, 𝐵4 = −

1

30
, ∑ 𝑘4

1≤𝑘≤𝑛

=
1

5
(𝑛5 +

5

2
𝑛4 +

5

3
𝑛3 −

1

6
𝑛)  

 

Example 2 

𝑓(𝑥) =
1

𝑥
, [𝑎, 𝑏] = [1, 𝑛] 

The partial sum of the harmonic series can be written as 

∑
1

𝑘
1≤𝑘<𝑛

= ln 𝑛 + ∑
𝐵𝑙

𝑙!

2𝑚

𝑙=1

[(−1)𝑙−1(𝑙 − 1)! (
1

𝑛𝑙
− 1)] 

+
(−1)2𝑚+1

(2𝑚)!
∫ 𝐵2𝑚({𝑥}) (−1)2𝑚

(2𝑚)!

𝑥2𝑚+1
 d𝑥

𝑛

1

 

= ln 𝑛 + (−
1

2
) (

1

𝑛
− 1) + ∑

𝐵2𝑙

2𝑙

𝑚

𝑙=1

(1 −
1

𝑛2𝑙
) − ∫ 𝐵2𝑚({𝑥})

1

𝑥2𝑚+1
 d𝑥

𝑛

1

 

 



We thus obtain 

𝐻𝑛 = ∑
1

𝑘
1≤𝑘≤𝑛

= ln 𝑛 +
1

2
+

1

2𝑛
+ ∑

𝐵2𝑙

2𝑙

𝑚

𝑙=1

(1 −
1

𝑛2𝑙
) − ∫

𝐵2𝑚({𝑥})

𝑥2𝑚+1
 d𝑥

𝑛

1

 

Consider the limit 𝑛 → ∞, we can express the Euler’s constant 𝛾 as 

𝐻𝑛 − ln 𝑛 → 𝛾, 𝛾 =
1

2
+ ∑

𝐵2𝑙

2𝑙

𝑚

𝑙=1

− ∫
𝐵2𝑚({𝑥})

𝑥2𝑚+1
 d𝑥

∞

1

 

Therefore, we have 

𝐻𝑛 = ln 𝑛 + 𝛾 +
1

2𝑛
− ∑

𝐵2𝑙

2𝑙

𝑚

𝑙=1

1

𝑛2𝑙
+ ∫

𝐵2𝑚({𝑥})

𝑥2𝑚+1
 d𝑥

∞

𝑛

 

The remainder term is now bounded as 

|∫
𝐵2𝑚({𝑥})

𝑥2𝑚+1
 d𝑥

∞

𝑛

| ≤ |𝐵2𝑚| ⋅ ∫
1

𝑥2𝑚+1
 d𝑥

∞

𝑛

=
|𝐵2𝑚|

2𝑚

1

𝑛2𝑚
  

The partial sum 𝐻𝑛 is usually expressed as 

𝐻𝑛 = ln 𝑛 + 𝛾 +
1

2𝑛
− ∑

𝐵2𝑙

2𝑙

𝑚−1

𝑙=1

1

𝑛2𝑙
− 𝜃𝑚𝑛

𝐵2𝑚

2𝑚

1

𝑛2𝑚
, 0 < 𝜃𝑚𝑛 < 1 

For 𝑛 = 𝑚 = 5, we can achieve an accuracy of 

|𝜃𝑚𝑛

𝐵2𝑚

2𝑚

1

𝑛2𝑚
| < 10−10 

This is the general procedure of using E-M formula to obtain a well-constrained remainder. 

 

Example 3 

𝑓(𝑥) =
1

𝑥𝑠
, 𝑠 > 1, [𝑎, 𝑏] = [1, 𝑛] 

Note that 

𝑓(𝑘)(𝑥) = (−1)𝑘
Γ(𝑠 + 𝑘)

Γ(𝑠)

1

𝑥𝑠+𝑘
  

Following the same procedure, we can obtain a way to compute Riemann 𝜁 function 

𝜁(𝑠) = ∑
1

𝑘𝑠

∞

𝑘=1

= ∑
1

𝑘𝑠

1≤𝑘≤𝑛

+
1

𝑠 − 1

1

𝑛𝑠−1
−

1

2𝑛𝑠
+ ∑

𝐵2𝑙

(2𝑙)!

Γ(𝑠 + 2𝑙 − 1)

Γ(𝑠)

1

𝑛𝑠+2𝑙−1

𝑚−1

𝑙=1

 

+𝜃𝑚𝑛

𝐵2𝑚

(2𝑚)!

Γ(𝑠 + 2𝑚 − 1)

Γ(𝑠)

1

𝑛𝑠+2𝑚−1
 

For 𝑠 = 2, we have 

𝜁(2) =
𝜋2

6
≈ ∑

1

𝑘2

1≤𝑘≤𝑛

+
1

𝑛
−

1

2𝑛2
+ ∑

𝐵2𝑙

𝑛2𝑙+1

𝑚−1

𝑙=1

 



Example 4 

𝑓(𝑥) = ln 𝑥 , [𝑎, 𝑏] = [1, 𝑛] 

Note that 

𝑓(𝑘)(𝑥) = (−1)𝑘−1
(𝑘 − 1)!

𝑥𝑘
 

Following the same procedure, we obtain the Stirling formula 

ln 𝑛! = (𝑛 +
1

2
) ln 𝑛 − 𝑛 + 𝐶 + ∑

𝐵2𝑙

2𝑙(2𝑙 − 1)

1

𝑛2𝑙−1

𝑚

𝑙=1

+ 𝜃𝑚𝑛

𝐵2𝑚+2

(2𝑚 + 2)(2𝑚 + 1)

1

𝑛2𝑚+1
 

The constant 𝐶 is given as 

𝐶 =
1

2
ln(2𝜋) , 𝑒𝐶 = lim

𝑛→∞

𝑛!

√𝑛 (
𝑛
𝑒

)
𝑛 = lim

𝑛→∞

(2𝑛)!

√2𝑛 (
2𝑛
𝑒 )

2𝑛 = √2𝜋 

This result uses the Wallis formula 

lim
𝑛→∞

22𝑛(𝑛!)2

√𝑛 (2𝑛)! 
= √𝜋 

In the previous examples, we all have 

∫ 𝑓(𝑥) d𝑥
𝑏

𝑎

 integrable, ∫ |𝑓(𝑚)(𝑥)| d𝑥
∞

1

 convergent 

 

Example 5 

𝑓(𝑥) = 𝑥𝑥 

Note that 

𝑆𝑛 = ∑ 𝑘𝑘

𝑛

𝑘=1

, lim
𝑛→∞

𝑆𝑛

𝑛𝑛
= lim

𝑛→∞

𝑆𝑛 − 𝑆𝑛−1

𝑛𝑛 − (𝑛 − 1)𝑛−1
= 1 

Therefore, we can consider 

𝑆𝑛 = 𝑛𝑛 (1 +
𝐶

𝑛
+ 𝑜 (

1

𝑛
)) 

The coefficient 𝐶 is 

𝐶 = lim
𝑛→∞

𝑛 (
𝑆𝑛

𝑛𝑛
− 1) = lim

𝑛→∞

𝑆𝑛−1

(𝑛 + 1)𝑛
=

1

𝑒
 

We can iteratively solve all coefficients, but it is not efficient. 

 

Now consider 

𝑆𝑛 = 𝑛𝑛 (𝐶0 +
𝐶1

𝑛
+

𝐶2

𝑛2
+ ⋯

𝐶𝑚

𝑛𝑚
+ 𝑜 (

1

𝑛𝑚
)) 



We have 

𝑛𝑛 = 𝑆𝑛 − 𝑆𝑛−1 = 𝑛𝑛 ∑
𝐶𝑘

𝑛𝑘

𝑚

𝑘=0

− (𝑛 − 1)𝑛−1 ∑
𝐶𝑘

(𝑛 − 1)𝑘

𝑚

𝑘=0

 

1 = ∑
𝐶𝑘

𝑛𝑘

𝑚

𝑘=0

− (1 −
1

𝑛
)

𝑛

∑
𝐶𝑘

(𝑛 − 1)𝑘+1

𝑚

𝑘=0

 

Substitute 𝑥 = 1/𝑛 and we obtain 

1 = ∑ 𝐶𝑘𝑥𝑘

𝑚

𝑘=0

−
1

𝑒
(∑ 𝑏𝑛𝑥𝑛

𝑛≥0

) [∑ 𝐶𝑘𝑥𝑘+1

𝑚

𝑘=0

(∑ 𝑑𝑘𝑙𝑥𝑙

𝑙≥0

)] + 𝑜(𝑥𝑚) 

The two series with coefficients {𝑏𝑛} and {𝑑𝑛} are obtained as 

(1 − 𝑥)
1
𝑥 =

1

𝑒
∑ 𝑏𝑛𝑥𝑛

𝑛≥0

=
1

𝑒
(1 −

𝑥

2
−

5

24
𝑥2 −

5

48
𝑥3 −

337

5760
𝑥4 + 𝑜(𝑥4)) 

1

(1 − 𝑥)𝑘+1
= ∑ 𝑑𝑘𝑙𝑥

𝑙

𝑙≥0

= ∑ (
𝑘 + 𝑙

𝑙
) 𝑥𝑙

𝑙≥0

 

Comparing the coefficients, we can solve for 𝐶𝑘  as 

𝐶0 = 1, 𝐶1 =
1

𝑒
, 𝐶2 =

1

𝑒2
+

1

2𝑒
, 𝐶3 =

1

𝑒3
+

2

𝑒2
+

7

24𝑒
 

𝐶4 =
1

𝑒4
+

9

2𝑒3
+

10

3𝑒2
+

3

16𝑒
, 𝐶5 =

1

𝑒5
+

8

𝑒4
+

117

8𝑒3
+

16

3𝑒2
+

743

5760𝑒
 

 

➢ Exercise 

Barnes G-function 

We directly start from the following representation of 𝐺(1 + 𝑧) 

ln 𝐺(1 + 𝑧) =
𝑧(1 − 𝑧)

2
+

𝑧

2
ln(2𝜋) + 𝑧 ln Γ(𝑧) − ∫ ln Γ(𝑥) d𝑥

𝑧

0

  

From the Stirling formula, we have the asymptotic expansion 

ln Γ(𝑧) = (𝑧 −
1

2
) ln 𝑧 − 𝑧 +

1

2
ln(2𝜋) +

1

12𝑧
+ ∑

𝐵2𝑙

2𝑙(2𝑙 − 1)

1

𝑧2𝑙−1

𝑁

𝑙=2

+ 𝑜 (
1

𝑧2𝑁+1
) 

= (𝑧 −
1

2
) ln 𝑧 − 𝑧 +

1

2
ln(2𝜋) +

1

12𝑧
+ ∑

𝐵2𝑙+2

(2𝑙 + 1)(2𝑙 + 2)

1

𝑧2𝑙+1

𝑁

𝑙=1

+ 𝑜 (
1

𝑧2𝑁+3
) 

The integral of ln Γ(𝑥) can be decomposed into two parts. The integral from 0 to 1 is a constant, 

while from 1 to 𝑧 we have 

− ∫ ln Γ(𝑥) d𝑥
𝑧

1

= −
𝑧2

2
ln 𝑧 +

3

4
𝑧2 +

𝑧

2
ln 𝑧 −

𝑧

2
−

𝑧

2
ln(2𝜋) −

1

12
ln 𝑧 −

1

4
+

1

2
ln(2𝜋) 



+ ∑
𝐵2𝑙+2

2𝑙(2𝑙 + 1)(2𝑙 + 2)
(

1

𝑧2𝑙
− 1)

𝑁

𝑙=1

+ 𝑜 (
1

𝑧2𝑁+2
) 

Also note that 

∑
𝐵2𝑙+2

(2𝑙 + 1)(2𝑙 + 2)

1

𝑧2𝑙
⋅ (

1

2𝑙
+ 1)

𝑁

𝑙=1

= ∑
𝐵2𝑙+2

4𝑙(𝑙 + 1)

1

𝑧2𝑙

𝑁

𝑙=1

 

Therefore, we have 

ln 𝐺(1 + 𝑧) = 𝑧2 ln 𝑧 −
3

4
𝑧2 +

𝑧

2
ln(2𝜋) −

1

12
ln 𝑧 +

1

12
− ln 𝐴 

+ ∑
𝐵2𝑙+2

4𝑙(𝑙 + 1)

1

𝑧2𝑙

𝑁

𝑙=1

+ 𝑜 (
1

𝑧2𝑁+2
) 

 

Smoothed sum of arithmetic functions (link) 

The asymptotic behavior of a divergent partial sum can be analyzed by introducing a smoothing 

function 𝜂(𝑥) and consider the infinite sum 

∑ 𝑎(𝑛) 𝜂 (
𝑛

𝑁
)

∞

𝑛=1

 

We study the case 𝑎(𝑥) = 𝑥𝑠 for 𝑠 ∈ ℕ using the cutoff function 𝜂(𝑥), a compactly supported 

bounded function in 𝐶∞ with 𝜂(𝑥) = 1 for 𝑥 ≤ 1/2 and 𝜂(𝑥) = 0 for 𝑥 ≥ 1. Note that 

𝑓(𝑥) = 𝑥𝑠𝜂 (
𝑥

𝑁
) , 𝑓(𝑘)(𝑥) = {

0, 𝑥 ≥ 𝑁
𝑠!

(𝑠 − 𝑘)!
𝑥𝑠−𝑘 , 𝑥 ≤

𝑁

2
  and  𝑘 ≤ 𝑠

 

The Euler-Maclaurin formula gives (as 𝑁 → ∞) 

∑ 𝑓(𝑛)

𝑁−1

𝑛=0

= ∫ 𝑓(𝑥) d𝑥
𝑁

0

−
1

2
[𝑓(𝑁) − 𝑓(0)] 

+ ∑
𝐵2𝑙

(2𝑙)!

𝑚

𝑙=1

[𝑓(2𝑙−1)(𝑁) − 𝑓(2𝑙−1)(0)] −
1

(2𝑚)!
∫ 𝐵2𝑚({𝑥})𝑓(2𝑚)(𝑥) d𝑥

𝑁

0

 

The integral term is evaluated as 

∫ 𝑥𝑠𝜂 (
𝑥

𝑁
)  d𝑥

𝑁

0

= 𝑁𝑠+1 ∫ 𝑥𝑠𝜂(𝑥) d𝑥
1

0

= 𝐶𝜂,𝑠𝑁𝑠+1 

The remainder term is bounded as 

|𝑅| ≤
𝐵2𝑚

(2𝑚)!
∫ 𝑓(2𝑚)(𝑥) d𝑥

𝑁

0

= 𝑂(𝑁 ⋅ ‖𝑓‖𝐶2𝑚), ‖𝑓‖𝐶2𝑚 = sup
𝑥∈ℝ

|𝑓(2𝑚)(𝑥)| 
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For 𝑠 ≥ 1, we can choose 2𝑚 ≥ 𝑠 + 2 and obtain 

∑ 𝑓(𝑛)

∞

𝑛=1

= ∑ 𝑥𝑠𝜂 (
𝑥

𝑁
)

𝑁−1

𝑛=0

= 𝐶𝜂,𝑠𝑁𝑠+1 −
𝐵𝑠+1

(𝑠 + 1)!
𝑓(𝑠)(0) + 𝑂(𝑁 ⋅ ‖𝑓‖𝐶𝑠+2) 

= −
𝐵𝑠+1

𝑠 + 1
+ 𝐶𝜂,𝑠𝑁𝑠+1 + 𝑂 (

1

𝑁
) , 𝑁 → ∞ 

For 𝑠 = 0, we can choose 𝑚 = 1 and obtain 

∑ 𝑓(𝑛)

∞

𝑛=1

= ∑ 𝜂 (
𝑥

𝑁
)

𝑁−1

𝑛=0

− 1 = 𝐶𝜂,0𝑁 +
1

2
𝜂(0) + 𝑂(𝑁 ⋅ ‖𝑓‖𝐶2) − 1 

= −
1

2
+ 𝐶𝜂,0𝑁 + 𝑂 (

1

𝑁
) , 𝑁 → ∞ 

We recognize that the leading term is the specific values of the Riemann zeta function 

𝜁(−𝑠) = −
𝐵𝑠+1

+

𝑠 + 1
, with  𝐵1

+ =
1

2
 

 

Now we extend to complex 𝑠 with function 

𝑔(𝑥) =
1

𝑥𝑠
[𝜂 (

𝑥

𝑁
) − 𝜂 (

2𝑥

𝑁
)] , 𝑠 ∈ ℂ, Re(s) < 1 

The reason is that now 𝑥−𝑠 is singular at the origin, which prevents us from taking the value 

at 𝑥 = 0. With this telescoped sum, we immediately obtain 

𝐺𝑁(𝑛) = ∑ 𝑔(𝑛)

∞

𝑛=1

= 𝐶𝜂,−𝑠 [𝑁1−𝑠 − (
𝑁

2
)

1−𝑠

] + 𝑂 (
1

𝑁
) , 𝑁 → ∞ 

By summing the telescoping series, we have 

∑ 𝐺2𝑘(𝑛)

log2 𝑁

𝑘=1

= [∑
1

𝑛𝑠
𝜂 (

𝑛

2
)

∞

𝑛=1

− ∑
1

𝑛𝑠
𝜂(𝑛)

∞

𝑛=1

] + [∑
1

𝑛𝑠
𝜂 (

𝑛

4
)

∞

𝑛=1

− ∑
1

𝑛𝑠
𝜂 (

𝑛

2
)

∞

𝑛=1

] + ⋯ 

= 𝐶𝜂,−𝑠[21−𝑠 − 11−𝑠] + 𝐶𝜂,−𝑠[41−𝑠 − 21−𝑠] + ⋯ + 𝑂 (
1

𝑁
) 

This shows that 

∑
1

𝑛𝑠
𝜂 (

𝑛

𝑁
)

∞

𝑛=1

= 𝜁(𝑠) + 𝐶𝜂,−𝑠𝑁1−𝑠 + 𝑂 (
1

𝑁
) 

The following limit thus exists 

𝜁(𝑠) = lim
𝑁→∞

[∑
1

𝑛𝑠
𝜂 (

𝑛

𝑁
)

∞

𝑛=1

− 𝐶𝜂,−𝑠𝑁1−𝑠] 

  



Formal Power Series & Lagrange Inversion Theorem 

➢ Formal power series 

Definitions 

For a domain 𝐾 with char 𝐾 = 0 (e.g., ℚ, ℝ, ℂ) 

 Series: {𝑎𝑛}, ℤ → 𝐾 

 Laurent series: There exists 𝑛0 ∈ ℤ such that 𝑎𝑛 = 0 for 𝑛 < 𝑛0 

 Formal power series 

𝑓(𝑧) = ∑ 𝑎𝑛𝑧𝑛

𝑛∈ℤ

 

 Addition, multiplication 

(𝑓 + 𝑔)(𝑧) = ∑(𝑎𝑛 + 𝑏𝑛)𝑧𝑛

𝑛∈ℤ

, (𝜆𝑓)(𝑧) = ∑(𝜆𝑎𝑛)𝑧𝑛

𝑛∈ℤ

 

(𝑓 ⋅ 𝑔)(𝑧) = ∑ 𝑐𝑛𝑧𝑛

𝑛∈ℤ

, 𝑐𝑛 = ∑ 𝑎𝑝𝑏𝑛−𝑝

𝑝∈ℤ

 

 Division: Given two formal power series 

𝑓(𝑧) = ∑ 𝑎𝑛𝑧𝑛

𝑛≥𝑛0

, 𝑔(𝑧) = ∑ 𝑏𝑚𝑧𝑚

𝑚≥𝑚0

, 𝑏𝑚0
≠ 0 

Consider ℎ(𝑧) = (𝑓/𝑔)(𝑧) has the form 

ℎ(𝑧) = ∑ 𝑑𝑘𝑧𝑘

𝑘≥𝑛0−𝑚0

 

From multiplication, we obtain the linear system and can solve for all coefficients 𝑑𝑘 

𝑎𝑛 = ∑ 𝑏𝑝𝑑𝑛−𝑝

𝑝∈ℤ

 

 The set 𝒜(𝐾) = {𝑓(𝑧) | {𝑎𝑛} is a Laurent series} is also a domain. 

 For 𝑓 ∈ 𝒜, define the order of 𝑓 as the minimal 𝑛 such that 𝑎𝑛 ≠ 0, denoted as ord(𝑓). 

We specify ord(0) = +∞. 

 For 𝑓, 𝑔 ∈ 𝒜, define distance as 

𝑑(𝑓, 𝑔) = 𝑒−ord(𝑓−𝑔) 

 Corollary. Distance  𝑑(𝑓, 𝑔)  is a complete metric, and  (𝒜, 𝑑)  is complete. Consider a 

Cauchy series {𝑓𝑛} ⊂ 𝒜, we have 

∀𝜀 > 0,   ∃𝑁 ∈ ℕ,   ∀𝑚, 𝑛 > 𝑁,   𝑑(𝑓𝑚 , 𝑓𝑚) < 𝜀,   ord(𝑓𝑚 − 𝑓𝑛) > − ln 𝜀 

Let 𝑀 = [− ln 𝜀], then for any 𝑘 < 𝑀, the 𝑧𝑘  coefficients of 𝑓𝑚  and 𝑓𝑛 are the same. 



 If ord(𝑓) = 1, then 𝑓 is invertible. Denote the set 𝒜∗ = {𝑓 ∈ 𝒜 | 𝑓 invertible}  

 For 𝑛 ∈ ℤ, denote [𝑧𝑛]: 𝑓 → 𝐾 as the operation 

[𝑧𝑛] (∑ 𝑎𝑛𝑧𝑛

𝑛∈ℤ

) = 𝑎𝑛 

 Corollary. For 𝑓, 𝑔 ∈ 𝒜 with ord(𝑔) ≥ 1, we have 

𝑓(𝑔(𝑧)) = ∑ 𝑎𝑛(𝑔(𝑧))
𝑛

𝑛≥𝑛0

∈ 𝒜 

Proof. Denote ord(𝑔) = 𝑚0 ≥ 1, and 

(𝑔(𝑧))
𝑛

= ∑ 𝑏𝑚
(𝑛)

𝑧𝑚

𝑚≥𝑛𝑚0

, 𝑓(𝑔(𝑧)) = ∑ 𝑎𝑛 ∑ 𝑏𝑚
(𝑛)

𝑧𝑚

𝑚≥𝑛𝑚0𝑛≥𝑛0

 

Since 𝑚0 ≥ 1, we have 

𝑓(𝑔(𝑧)) = ∑ ∑ 𝑎𝑛𝑏𝑚
(𝑛)

𝑧𝑚

[𝑚/𝑚0]

𝑛=𝑛0𝑚≥𝑛0𝑚0

∈ 𝒜 ∎ 

 Corollary. For 𝑔 ∈ 𝒜∗, there exists a unique ℎ = 𝑔−1 ∈ 𝒜∗ such that 

𝑔(ℎ(𝑧)) = ℎ(𝑔(𝑧)) = 𝑧 

Proof. Since 𝑔 ∈ 𝒜∗, we have 𝑏1 ≠ 0 and 𝑏𝑛
(𝑛)

= 𝑏1
𝑛 ≠ 0. We have 

ℎ(𝑧) = ∑ 𝑎𝑛𝑧𝑛

𝑛≥1

, ℎ(𝑔(𝑧)) = 𝑧 

This leads to a linear system, and we can solve for coefficients as 

𝑎1 =
1

𝑏1
, 𝑎2 = −

𝑎1𝑏2
(1)

𝑏1
2 , ⋯ 

We then need to show that 𝑔(ℎ(𝑧)) = 𝑧 also holds. For ℎ ∈ 𝒜∗, we can also find ℎ̃ ∈ 𝒜∗ 

such that ℎ̃(ℎ(𝑧)) = 𝑧. Now with 𝑧 → ℎ(𝑧), we have 

ℎ(𝑔(𝑧)) = 𝑧, ℎ (𝑔(ℎ(𝑧))) = ℎ(𝑧), ℎ̃ (ℎ (𝑔(ℎ(𝑧)))) = ℎ̃(ℎ(𝑧)) 

From the property of ℎ̃(𝑧), we prove 

𝑔(ℎ(𝑧)) = 𝑧 ∎ 

 (𝒜∗,⋅) is a group, where ⋅ denotes composition. 

 

 



➢ Multinomial theorem 

For a commutative ring 𝑅 

(𝑦1 + ⋯ + 𝑦𝑚)𝑛 = ∑
𝑛!

𝑑1! ⋯ 𝑑𝑚!
𝑦1

𝑑1 ⋯ 𝑦𝑚
𝑑𝑚

 
𝑑1,⋯,𝑑𝑚≥0

𝑑1+⋯+𝑑𝑚=𝑛

, 𝑦𝑖 ∈ 𝑅 

This can be proved by induction over 𝑚. The binomial theorem corresponds to 𝑚 = 2. 

 

Inverse of a formal power series 

To calculate 𝑓/𝑔, we only need 1/𝑔, which is 

𝑔 = 𝑏𝑚0
𝑧𝑚0 + 𝑏𝑚0+1𝑧𝑚0+1 + ⋯ ,

1

𝑔
=

1

𝑏𝑚0
𝑧𝑚0

⋅
1

1 +
𝑏𝑚0+1

𝑏𝑚0

𝑧 +
𝑏𝑚0+2

𝑏𝑚0

𝑧2 + ⋯

 

Now we focus on a specific type of 𝑔 ∈ 𝒜 with 

𝑔 = ∑ 𝑏𝑛𝑧𝑛

𝑛≥0

, 𝑏0 ≠ 0 

Then for 𝑚 ∈ ℕ, the coefficients of 1/𝑔 are given as 

[𝑧𝑚] (
1

𝑔(𝑧)
) =

1

𝑏0
∑

(𝑑1 + ⋯ + 𝑑𝑚)!

𝑑1! ⋯ 𝑑𝑚!
(−

𝑏1

𝑏0
)

𝑑1

⋯ (−
𝑏𝑚

𝑏0
)

𝑑𝑚

 
𝑑1,⋯,𝑑𝑚≥0

𝑑1+2𝑑2+⋯+𝑚𝑑𝑚=𝑚

 

 

Proof. Define a new series 𝑦(𝑧) and we have 

𝑦(𝑧) = ∑ 𝑐𝑘𝑧𝑘

𝑘≥1

= ∑ (−
𝑏𝑘

𝑏0
) 𝑧𝑘

𝑘≥1

,
1

𝑔(𝑧)
=

1

𝑏0
⋅

1

1 − 𝑦(𝑧)
= ∑(𝑦(𝑧))

𝑛

𝑛≥0

 

The coefficients become 

[𝑧𝑚] (
1

𝑔(𝑧)
) =

1

𝑏0
∑[𝑧𝑚](𝑦(𝑧))

𝑛
𝑚

𝑛=0

 

Note the truncation to 𝑛 = 𝑚 as we focus on [𝑧𝑚]. We only need to prove 

[𝑧𝑚](𝑦(𝑧))
𝑛

= ∑
𝑛!

𝑑1! ⋯ 𝑑𝑚!
𝑐1

𝑑1 ⋯ 𝑐𝑚
𝑑𝑚

 
𝑑1,⋯,𝑑𝑚≥0

𝑑1+𝑑2+⋯+𝑑𝑚=𝑛
𝑑1+2𝑑2+⋯+𝑚𝑑𝑚=𝑚

 

Using the multinomial theorem, we have 

[𝑧𝑚](𝑦(𝑧))
𝑛

= [𝑧𝑚](𝑐1𝑧 + 𝑐2𝑧2 + ⋯ + 𝑐𝑚𝑧𝑚)𝑛 



= [𝑧𝑚] ∑
𝑛!

𝑑1! ⋯ 𝑑𝑚!
(𝑐1𝑧)𝑑1 ⋯ (𝑐𝑚𝑧𝑚)𝑑𝑚

 
𝑑1,⋯,𝑑𝑚≥0

𝑑1+⋯+𝑑𝑚=𝑛

 

= ∑
𝑛!

𝑑1! ⋯ 𝑑𝑚!
𝑐1

𝑑1 ⋯ 𝑐𝑚
𝑑𝑚

 
𝑑1,⋯,𝑑𝑚≥0

𝑑1+𝑑2+⋯+𝑑𝑚=𝑛
𝑑1+2𝑑2+⋯+𝑚𝑑𝑚=𝑚

∎
 

 

Example 

Roll the dice 10 times. We want to find the probability of the total sum being equal to 30. This 

problem is equivalent to 

𝑃 = [𝑥30] (
1

6
𝑥 +

1

6
𝑥2 + ⋯ +

1

6
𝑥6)

10

=
1

610
[𝑥20] (

1 − 𝑥6

1 − 𝑥
)

10

 

=
1

610
[𝑥20]

1

(1 − 𝑥)10
(1 − 10𝑥6 + (

10
2

) 𝑥12 − (
10
3

) 𝑥18) 

=
1

610
([𝑥20] − 10 ⋅ [𝑥14] + (

10
2

) [𝑥8] − (
10
3

) [𝑥2])
1

(1 − 𝑥)10
 

Note that 

[𝑥𝑚]
1

(1 − 𝑥)10
= (−1)𝑚 (

−10
𝑚

) 

Then this probability can be computed. 

 

➢ Bell polynomials 

For 𝑚, 𝑛 ∈ ℕ with 𝑚 ≥ 𝑛, we have a formal power series 𝑦(𝑧) with coefficients 𝐶 = {𝑐𝑖}𝑖≥1. 

The Bell polynomial is defined as 

𝐵𝑚𝑛(𝐶) = [𝑧𝑚](𝑦(𝑧))
𝑛

= ∑
𝑛!

𝑑1! ⋯ 𝑑𝑚!
𝑐1

𝑑1 ⋯ 𝑐𝑚
𝑑𝑚

 
𝑑1,⋯,𝑑𝑚≥0

𝑑1+𝑑2+⋯+𝑑𝑚=𝑛
𝑑1+2𝑑2+⋯+𝑚𝑑𝑚=𝑚

 

 

Theorem. Consider 𝑔(𝑧) ∈ 𝒜∗ with 

𝑔(𝑧) = ∑ 𝑏𝑛𝑧𝑛

𝑛≥1

 

Then for any 𝑚, 𝑛 ∈ ℤ with 𝑚 ≥ 𝑛, we have 

[𝑧𝑚](𝑔(𝑧))
𝑛

= ∑ (
𝑛
𝑘

) 𝑏1
𝑛−𝑘𝐵(𝑚−𝑛)𝑘(𝑏′)

𝑚−𝑛

𝑘=0

, 𝑏′ = (𝑏2, 𝑏3, ⋯ ) 

 



Theorem. For 𝑓, 𝑔 ∈ 𝒜 with ord(𝑓) ≥ 0 and ord(𝑔) ≥ 1, we have 

[𝑧𝑚]𝑓(𝑔(𝑧)) = ∑ 𝑎𝑛𝐵𝑚𝑛(𝑏)

𝑚

𝑛=0

 

 

The above result implies the formula of the higher derivatives. Consider 𝑓, 𝑔 ∈ 𝐶∞ with 

𝑎𝑛 = [𝑧𝑛]𝑓(𝑧) =
1

𝑛!
𝑓(𝑛)(𝑦0), 𝑏𝑚 = [𝑧𝑚]𝑔(𝑧) =

1

𝑚!
𝑔(𝑚)(𝑥0) 

Note that 

[𝑧𝑚]𝑓(𝑔(𝑧)) =
1

𝑚!
(𝑓 ∘ 𝑔)(𝑚)(𝑥0) 

From this, we can obtain the Faà di Bruno’s formula 

(𝑓 ∘ 𝑔)(𝑚)(𝑥0) = 𝑚! ∑ 𝑎𝑛𝐵𝑚𝑛(𝑏)

𝑚

𝑛=0

 

= 𝑚! ∑
𝑓(𝑛)(𝑔(𝑥0))

𝑛!
𝐵𝑚𝑛 (

𝑔(1)(𝑥0)

1!
,
𝑔(2)(𝑥0)

2!
, ⋯ ,

𝑔(𝑚)(𝑥0)

𝑚!
)

𝑚

𝑛=0

 

 

➢ Derivatives and residues of formal power series 

𝑓′(𝑧) = ∑ 𝑛𝑎𝑛𝑧𝑛−1 , Res 𝑓 = 𝑎−1 = [𝑧−1] 𝑓 

 

Properties of derivatives 

 Derivative operator 𝒜 → 𝒜 is linear 

 If 𝑓′ = 𝑔′ and [𝑧0]𝑓 = [𝑧0]𝑔, then 𝑓 = 𝑔 

 (𝑓𝑔)′ = 𝑓′𝑔 + 𝑓𝑔′ 

 If ord(𝑔) ≥ 1, then 

[𝑓(𝑔(𝑧))]
′

= 𝑓′(𝑔(𝑧))𝑔′(𝑧) 

 If 𝑔 ∈ 𝒜∗, then 

[𝑔−1(𝑧)]′ =
1

𝑔′(𝑔−1(𝑧))
 

Proof. From 4 to 5, the result is obvious since 

[𝑔(𝑔−1(𝑧))]
′

= 𝑔′(𝑔−1(𝑧)) ⋅ [𝑔−1(𝑧)]′ = 1, [𝑔−1(𝑧)]′ =
1

𝑔′(𝑔−1(𝑧))
 

To prove property 4, first consider 𝑓(𝑧) = 𝑧𝑛. By induction, we have 

[(𝑔(𝑧))
𝑛

]
′

= [𝑔(𝑧)(𝑔(𝑧))
𝑛−1

]
′

= 𝑔′(𝑧)(𝑔(𝑧))
𝑛−1

+ 𝑔(𝑧) ⋅ (𝑛 − 1)(𝑔(𝑧))
𝑛−2

𝑔′(𝑧) 



This directly gives 

[(𝑔(𝑧))
𝑛

]
′

= 𝑛(𝑔(𝑧))
𝑛−1

𝑔′(𝑧) 

When 𝑛 < 0, consider 

(𝑔(𝑧))
𝑛

⋅ (𝑔(𝑧))
−𝑛

= 1, [(𝑔(𝑧))
𝑛

]
′

⋅ (𝑔(𝑧))
−𝑛

+ (𝑔(𝑧))
𝑛

⋅ [(𝑔(𝑧))
−𝑛

]
′

= 0 

Using the previous result for positive exponents, we also have 

[(𝑔(𝑧))
𝑛

]
′

= −(𝑔(𝑧))
2𝑛

⋅ (−𝑛)(𝑔(𝑧))
−𝑛−1

𝑔′(𝑧) = 𝑛(𝑔(𝑧))
𝑛−1

𝑔′(𝑧) 

 

Now we return to a general 𝑓(𝑧), which can be expressed as 

𝑓(𝑧) = lim
𝑁→∞

∑ 𝑎𝑛𝑧𝑛

𝑁

𝑛=𝑛0

 

We only need to prove 

[𝑧𝑚] [𝑓(𝑔(𝑧))]
′

= [𝑧𝑚] [𝑓′(𝑔(𝑧))𝑔′(𝑧)] 

For LHS, the truncated summation implies that we can switch the operators 

[𝑧𝑚] [𝑓(𝑔(𝑧))]
′

= [𝑧𝑚] [ lim
𝑁→∞

∑ 𝑎𝑛(𝑔(𝑧))
𝑛

𝑁

𝑛=𝑛0

]

′

= ∑ [𝑧𝑚] [𝑎𝑛(𝑔(𝑧))
𝑛

]
′

𝑚+1

𝑛=𝑛0

 

For RHS we can similarly truncate the summation. The two sides are equal.    ∎ 

 

Properties of residue 

 Taking the residue is a linear operation 

 Res 𝑓′ = 0, Res(𝑓′𝑔) = −Res(𝑓𝑔′) 

 If ord(𝑔) ≥ 1, then 

𝑅es{𝑓(𝑔(𝑧)) 𝑔′(𝑧)} = ord(𝑔(𝑧)) ⋅ Res 𝑓(𝑧) 

When 𝑓(𝑧) = 𝑧−1, we have 

𝑅es {
𝑔′(𝑧)

𝑔(𝑧)
} = Res {

𝑛0𝑏0𝑧𝑛0−1 + ⋯

𝑏0𝑧𝑛0 + ⋯
} = 𝑛0 = ord(𝑔(𝑧)) 

When 𝑓(𝑧) = 𝑧𝑛 with 𝑛 ≠ −1, we have 

𝑅es{𝑔𝑛(𝑧) 𝑔′(𝑧)} = 𝑅es {(
𝑔𝑛+1(𝑧)

𝑛 + 1
)

′

} = 0 

 

 



➢ Lagrange inversion theorem 

Theorem. For 𝑓 ∈ 𝒜∗, its inverse is denoted as 𝑔 = 𝑓−1. For ∀𝑚, 𝑛 ∈ ℤ∗, we have 

𝑚[𝑧𝑚][(𝑔(𝑧))
𝑛

] = 𝑛[𝑧−𝑛][(𝑓(𝑧))
−𝑚

] 

 

Proof. We can directly calculate both sides from the perspective of residue 

𝑚[𝑧𝑚][(𝑔(𝑧))
𝑛

] = 𝑚 Res{𝑔𝑛(𝑧) ⋅ 𝑧−𝑚−1} 

Substitute 𝑧 → 𝑓(𝑧), and then use integration by parts 

𝑚[𝑧𝑚][(𝑔(𝑧))
𝑛

] = 𝑚 Res{𝑧𝑛 ⋅ 𝑓−𝑚−1(𝑧) ⋅ 𝑓′(𝑧)} = −Res{𝑧𝑛 ⋅ [𝑓−𝑚(𝑧)]′} 

= 𝑛 Res{𝑧𝑛−1 ⋅ 𝑓−𝑚(𝑧)} = 𝑛[𝑧−𝑛][(𝑓(𝑧))
−𝑚

] ∎ 

 

Corollary. For 𝑓 ∈ 𝒜∗, 𝑔 = 𝑓−1. For ∀𝑚, 𝑛 ∈ ℤ, 𝑛 ≠ 0, 𝑚 ≥ 𝑛, we have 

[𝑧𝑚][(𝑔(𝑧))
𝑛

] = 𝑛 ∑ (−1)𝑘
(𝑚 + 1) ⋯ (𝑚 + 𝑘 − 1)

𝑘!
𝑎1

−𝑚−𝑘𝐵(𝑚−𝑛)𝑘(𝑎′)

𝑚−𝑛

𝑘=0

 

Note that 

𝑎𝑛 = [𝑧𝑛] 𝑓(𝑧), 𝑎′ = (𝑎2, 𝑎3, ⋯ ) 

For 𝑛 = 1, we have the higher derivatives of the inverse function. 

 

Proof. When 𝑚 ≠ 0, we directly have 

[𝑧𝑚][(𝑔(𝑧))
𝑛

] =
𝑛

𝑚
[𝑧−𝑛][(𝑓(𝑧))

−𝑚
] =

𝑛

𝑚
∑ (

−𝑚
𝑘

) 𝑎1
−𝑚−𝑘𝐵(𝑚−𝑛)𝑘(𝑎′)

𝑚−𝑛

𝑘=0

 

When 𝑚 = 0, we can consider −𝑛 with 𝑛 ≥ 1. Substitute 𝑧 → 𝑓(𝑧), and we obtain 

[𝑧0][(𝑔(𝑧))
−𝑛

] = Res {
𝑔−𝑛(𝑧)

𝑧
} = Res {𝑧−𝑛

𝑓′(𝑧)

𝑓(𝑧)
} 

Define a new function ℎ(𝑧) as 

ℎ(𝑧) =
𝑓(𝑧)

𝑎1𝑧
− 1 =

𝑎2

𝑎1
𝑧 +

𝑎3

𝑎1
𝑧2 + ⋯ , 𝑓(𝑧) = 𝑎1𝑧(1 + ℎ(𝑧)) 

The residue becomes 

Res {𝑧−𝑛
𝑎1(1 + ℎ) + ℎ′𝑎1𝑧

𝑎1𝑧(1 + ℎ)
} = Res {𝑧−𝑛 ⋅ (

1

𝑧
+

ℎ′(𝑧)

1 + ℎ(𝑧)
)} = Res {𝑧−𝑛

ℎ′(𝑧)

1 + ℎ(𝑧)
} 

Define the logarithmic function 𝐿(𝑧) as 

𝐿(𝑧) = ∑
(−1)𝑘−1

𝑘
𝑧𝑘

𝑘≥1

, 𝐿′(𝑧) =
1

1 + 𝑧
 



We thus obtain 

Res {𝑧−𝑛
ℎ′(𝑧)

1 + ℎ(𝑧)
} = Res {𝑧−𝑛[𝐿(ℎ(𝑧))]

′
} = −Res{−𝑛𝑧−𝑛−1𝐿(ℎ(𝑧))} 

This shows that 

[𝑧0][(𝑔(𝑧))
−𝑛

] = 𝑛 [𝑧𝑛] 𝐿(ℎ(𝑧)) = 𝑛 ∑
(−1)𝑘−1

𝑘
𝐵𝑛𝑘 (

𝑎2

𝑎1
,
𝑎3

𝑎1
, ⋯ )

𝑛

𝑘=1

∎ 

 

Lagrange-Bürmann formula 

For ℎ ∈ 𝒜 with ord(ℎ) = 0, define 𝑓(𝑧) = 𝑧/ℎ(𝑧) ∈ 𝒜∗ and 𝑔 = 𝑓−1. We have 

[𝑧𝑚] 𝑔(𝑧) =
1

𝑚
[𝑧𝑚−1] (ℎ(𝑧))

𝑚
, 𝑚 ≥ 1 

[𝑧𝑚] 𝜙(𝑔(𝑧)) =
1

𝑚
[𝑧𝑚−1] 𝜙′(𝑧)(ℎ(𝑧))

𝑚
, 𝑚 ≥ 1 

 

Proof. Directly using the Lagrange inversion theorem with 𝑛 = 1, we obtain 

[𝑧𝑚] 𝑔(𝑧) =
1

𝑚
[𝑧−1] [

𝑧

ℎ(𝑧)
]

−𝑚

=
1

𝑚
[𝑧𝑚−1](ℎ(𝑧))

𝑚
∎ 

 

Example 1. Lambert W-function 

𝑧 = 𝑥𝑒𝑥         ⟹         𝑥 = 𝑊(𝑧) = ∑ 𝑎𝑛𝑧𝑛

𝑛≥1

 

Based on the Lagrange-Bürmann formula, denote ℎ(𝑧) = 𝑒−𝑧 and we have 

𝑥 = 𝑧𝑒𝑧 =
𝑧

ℎ(𝑧)
, [𝑧𝑚] 𝑊(𝑧) =

1

𝑚
[𝑧𝑚−1] 𝑒−𝑚𝑧 = (−1)𝑚−1

𝑚𝑚−1

𝑚!
 

The Lambert W-function is defined as 

𝑊(𝑧) = ∑ (−1)𝑚−1
𝑚𝑚−1

𝑚!
𝑧𝑚

𝑚≥1

 

It is applied to solve equations with the form 

𝑎𝑥 + 𝑏 = 𝑒𝑥, − (𝑥 +
𝑏

𝑎
) 𝑒

−(𝑥+
𝑏
𝑎)

= −
1

𝑎
𝑒−

𝑏
𝑎, 𝑥 +

𝑏

𝑎
= −𝑊 (−

1

𝑎
𝑒−

𝑏
𝑎) 

 

Corollary. For 𝑓 ∈ 𝒜 with ord(𝑓) ≥ 2, define 𝐹(𝑧) = 𝑧 − 𝑓(𝑧) ∈ 𝒜∗ and 𝑊 = 𝐹−1. For any 

𝑔 ∈ 𝒜, we have 

𝑔(𝑊(𝑧)) = 𝑔(𝑧) + ∑
1

𝑘!
[𝑓𝑘(𝑧)𝑔′(𝑧)](𝑘−1)

𝑘≥1

 



Proof. We only need to consider 𝑔(𝑧) = 𝑧𝑛, which gives 

𝑊𝑛(𝑧) = 𝑧𝑛 + ∑
1

𝑘!
[𝑓𝑘(𝑧) 𝑛𝑧𝑛−1](𝑘−1)

𝑘≥1

 

For 𝑚 ≥ 𝑛, we need to prove [𝑧𝑚] is the same for both sides. The case 𝑚 = 𝑛 is trivial, and 

now we can set 𝑚 ≥ 𝑛 + 1. Note that 

[𝑧1] 𝐹(𝑧) = 1, [𝑧𝑛] 𝐹(𝑧) = −𝑎𝑛 = −[𝑧𝑛] 𝑓(𝑧), 𝑛 ≥ 2 

From the previous corollary, we have 

[𝑧𝑚][(𝑊(𝑧))
𝑛

] = 𝑛 ∑
(𝑚 + 1) ⋯ (𝑚 + 𝑘 − 1)

𝑘!
𝐵(𝑚−𝑛)𝑘(𝑎2, 𝑎3, ⋯ )

𝑚−𝑛

𝑘=0

 

For the RHS, using the following result 

[𝑧𝑚] (∑ 𝑐𝑙𝑧
𝑙

𝑙∈ℤ

)

(𝑘−1)

= [𝑧𝑚] ( ∑ 𝑐𝑙 ⋅ 𝑙(𝑙 − 1) ⋯ (𝑙 − 𝑘 + 2) 𝑧𝑙−𝑘+1

𝑙∈ℤ

) 

= (𝑚 + 1) ⋯ (𝑚 + 𝑘 − 1) ⋅ [𝑧𝑚+𝑘−1] ∑ 𝑐𝑙𝑧𝑙

𝑙∈ℤ

 

We can switch the order between derivative and [𝑧𝑚] as 

[𝑧𝑚] RHS = 𝑛[𝑧𝑚] ∑
1

𝑘!
[𝑓𝑘(𝑧) 𝑧𝑛−1](𝑘−1)

𝑘≥1

 

= 𝑛 ∑
(𝑚 + 1) ⋯ (𝑚 + 𝑘 − 1)

𝑘!
⋅ [𝑧𝑚+𝑘−1] [𝑓𝑘(𝑧) 𝑧𝑛−1]

𝑘≥1

 

= 𝑛 ∑
(𝑚 + 1) ⋯ (𝑚 + 𝑘 − 1)

𝑘!

𝑚−𝑛

𝑘=1

⋅ [𝑧𝑚−𝑛] (
𝑓(𝑧)

𝑧
)

𝑘

 

We can show that both sides are equal to each other.          ∎ 

 

Lagrange reversion theorem 

𝑊(𝑧) = 𝑧 + ∑
1

𝑘!
[𝑓𝑘(𝑧)](𝑘−1)

𝑘≥1

, ord(𝑓) ≥ 2 

 

Example 2 

𝑓(𝑧) = 𝑧𝑑 , 𝐹(𝑧) = 𝑧 − 𝑧𝑑 , 𝑑 ≥ 2 

The inverse 𝑊 = 𝐹−1 is given as 

𝑊(𝑧) = 𝑧 + ∑
1

𝑘!
[𝑓𝑘(𝑧)](𝑘−1)

𝑘≥1

= 𝑧 + ∑ (
𝑘𝑑
𝑘

)
𝑧𝑘𝑑−𝑘+1

𝑘𝑑 − 𝑘 + 1
𝑘≥1

 



➢ Inversion formula for 𝐶∞ 

For 𝑓 ∈ 𝐶∞(ℝ) with a bounded derivative |𝑓′| ≤ 𝑀, consider the equation 

𝑣(𝑥, 𝑦) = 𝑥 + 𝑦𝑓(𝑣(𝑥, 𝑦)) 

We want to know when this defines a function 𝑣(𝑥, 𝑦). Denote the implicit equation as follows 

𝑢(𝑥, 𝑦, 𝑣) = 𝑥 + 𝑦𝑓(𝑣) − 𝑣 = 0,
𝜕𝑢

𝜕𝑣
= 𝑦𝑓′(𝑣) − 1 

When |𝑦| < 𝑀−1, the bound |𝑓′(𝑣)| ≤ 𝑀 implies 𝜕𝑢/𝜕𝑣 ≠ 0 and 𝑣(𝑥, 𝑦) exists. We can see 

that 𝑣(𝑥, 𝑦) satisfies the PDE with 𝑣(𝑥, 0) = 𝑥 

𝜕𝑣

𝜕𝑥
= −

𝜕𝑢

𝜕𝑥
(

𝜕𝑢

𝜕𝑣
)

−1

=
1

1 − 𝑦𝑓′(𝑣)
,

𝜕𝑣

𝜕𝑦
=

𝑓(𝑣)

1 − 𝑦𝑓′(𝑣)
= 𝑓(𝑣)

𝜕𝑣

𝜕𝑥
 

For 𝑔 ∈ 𝐶∞(ℝ), if 𝑔(𝑣) converges then we have 

𝑔(𝑣(𝑥, 𝑦)) = 𝑔(𝑥) + ∑
𝑦𝑘

𝑘!
𝜕𝑥

𝑘−1(𝑓𝑘(𝑥)𝑔′(𝑥))

∞

𝑘=1

 

If 𝑔(𝑣) does not converge, we can truncate the series to 𝑘 = 𝑁 and then add 𝑜(𝑦𝑁). 

 

Corollary. 

𝜕𝑦
𝑘𝑔(𝑣(𝑥, 𝑦)) = 𝜕𝑥

𝑘−1[𝑔′(𝑣(𝑥, 𝑦))𝑓𝑘(𝑣(𝑥, 𝑦))𝑣𝑥] 

 

Proof. When 𝑘 = 1, the expression holds. By induction, for 𝑘 + 1 we have 

𝜕𝑦
𝑘+1𝑔(𝑣(𝑥, 𝑦)) = 𝜕𝑦{𝜕𝑥

𝑘−1[𝑔′(𝑣)𝑓𝑘(𝑣)𝑣𝑥]} 

= 𝜕𝑥
𝑘−1 {

𝜕𝑔′(𝑣)𝑓𝑘(𝑣)

𝜕𝑣
𝑣𝑦𝑣𝑥 + 𝑔′(𝑣)𝑓𝑘(𝑣)𝑣𝑥𝑦} 

= 𝜕𝑥
𝑘−1 {

𝜕𝑔′(𝑣)𝑓𝑘(𝑣)

𝜕𝑣
𝑓(𝑣)𝑣𝑥

2 + 𝑔′(𝑣)𝑓𝑘(𝑣)
𝜕𝑓(𝑣)𝑣𝑥

𝜕𝑥
} 

= 𝜕𝑥
𝑘−1 {

𝜕𝑔′(𝑣)𝑓𝑘(𝑣)

𝜕𝑥
𝑓(𝑣)𝑣𝑥 + 𝑔′(𝑣)𝑓𝑘(𝑣)

𝜕𝑓(𝑣)𝑣𝑥

𝜕𝑥
} 

= 𝜕𝑥
𝑘[𝑔′(𝑣(𝑥, 𝑦))𝑓𝑘(𝑣(𝑥, 𝑦))𝑣𝑥] ∎ 

 

Now we can prove the inversion formula for 𝐶∞. We only need to show that 

𝜕𝑦
𝑘𝑔(𝑣) = 𝜕𝑥

𝑘−1(𝑔′(𝑥)𝑓𝑘(𝑥)), at  𝑦 = 0 

The result from the corollary can directly be applied with 𝑣(𝑥, 0) = 𝑥. Furthermore, we have 



𝑣𝑥(𝑥, 0) =
1

1 − 𝑦𝑓′(𝑣)
|

𝑦=0

= 1 

Therefore, we demonstrate the coefficients of the Taylor series. For 𝑔(𝑣) = 𝑣, we have 

𝑣(𝑥, 𝑦) = 𝑥 + ∑
𝑦𝑘

𝑘!
𝜕𝑥

𝑘−1𝑓𝑘(𝑥)

∞

𝑘=1

, for  𝑣 = 𝑥 + 𝑓(𝑣)𝑦 ∎ 

 

Example 1. Kepler equation 

For 𝑓(𝑣) = sin 𝑣 and 𝑦 = 𝜀 with |𝜀| ≪ 1, we have 

𝑣 − 𝜀 sin 𝑣 = 𝑥 

We can obtain the solution as an expansion of 𝜀 as 

𝑣(𝑥; 𝜀) = 𝑥 + ∑
𝜀𝑘

𝑘!
𝜕𝑥

𝑘−1(sin𝑘 𝑥)

∞

𝑘=1

 

As a comparison, the Fourier expansion of 𝑣 is 

𝑣(𝑥; 𝜀) = 𝑥 + ∑
2

𝑚
𝐽𝑚(𝑚𝜀) sin(𝑚𝑥)

∞

𝑚=1

 

 

Example 2 

𝑣(𝑥, 𝒕) = 𝑥 + 𝑡0 + 𝑡1𝑣 +
1

2!
𝑡2𝑣2 +

1

3!
𝑡3𝑣3 + ⋯ 

This is equivalent to the following PDE 

𝜕𝑣

𝜕𝑡𝑘
=

𝑣𝑘

𝑘!
𝑣𝑥, 𝑘 = 0,1,2, ⋯ , 𝑣(𝑥, 𝟎) = 𝑥 

We can consider 𝑦 = 1 with 𝑓(𝑣) = 𝑡0 + 𝑡1𝑣 + ⋯. This leads to 

𝑣 = 𝑥 + ∑
1

𝑘!
𝜕𝑥

𝑘−1 [(∑
𝑡𝑙

𝑙!
𝑥𝑙

𝑙≥0

)

𝑘

]

∞

𝑘=1

 

Note that 𝑣(𝑥, 𝒕) = 𝑣(0, 𝑥 + 𝑡0, 𝑡1, ⋯ ), we can just solve for 

𝑣(0, 𝒕) = ∑
1

𝑘!
𝜕𝑥

𝑘−1 [(∑
𝑡𝑙

𝑙!
𝑥𝑙

𝑙≥0

)

𝑘

]|

𝑥=0

∞

𝑘=1

= ∑
1

𝑘!
𝜕𝑥

𝑘−1 [(∑
𝑡𝑙

𝑙!
𝑥𝑙

𝑘−1

𝑙=0

)

𝑘

]|

𝑥=0
𝑘≥1

 

= ∑ ∑
(𝑘 − 1)!

𝑑0! ⋯ 𝑑𝑘−1!
∏ (

𝑡𝑙

𝑙!
)

𝑑𝑙
𝑘−1

𝑙=0
 

𝑑0,⋯,𝑑𝑘−1≥0
𝑑0+⋯+𝑑𝑘−1=𝑘

𝑑1+2𝑑2+⋯(𝑘−1)𝑑𝑘−1=𝑘−1

𝑘≥1

 



➢ Exercise 

Todd power series 

We want to find a formal power series 𝑓(𝑧) such that 

𝑓(𝑧) = ∑ 𝑎𝑛𝑧𝑛

𝑛≥0

, [𝑧𝑚] (𝑓(𝑧))
𝑚+1

= 1, ∀𝑚 ∈ ℕ 

Define ℎ(𝑧) = 𝑧/𝑓(𝑧) and its inverse 𝑔 = ℎ−1. The Lagrange-Bürmann formula gives 

[𝑧𝑚+1] 𝑔(𝑧) =
1

𝑚 + 1
[𝑧𝑚] (𝑓(𝑧))

𝑚+1
=

1

𝑚 + 1
, 𝑚 ∈ ℕ 

The invertibility implies ord(𝑔) = 1. Now we directly obtain 

𝑔(𝑧) = ∑
𝑧𝑛

𝑛
𝑛≥1

= − ln(1 − 𝑧) 

Since ℎ = 𝑔−1, we have 

ℎ(𝑧) = 1 − 𝑒−𝑧 , 𝑓(𝑧) =
𝑧

ℎ(𝑧)
=

𝑧

1 − 𝑒−𝑧
 

 

Faà di Bruno’s formula 

For two functions 𝑓 and 𝑔, the chain rule for higher derivatives is 

d𝑚

d𝑥𝑚
𝑓(𝑔(𝑥0)) = 𝑚! ∑

𝑓(𝑛)(𝑔(𝑥0))

𝑛!
𝐵𝑚𝑛 (

𝑔(1)(𝑥0)

1!
,
𝑔(2)(𝑥0)

2!
, ⋯ ,

𝑔(𝑚)(𝑥0)

𝑚!
)

𝑚

𝑛=0

 

= ∑ 𝑓(𝑛)(𝑔(𝑥0)) ∑
𝑚!

𝑑1! ⋯ 𝑑𝑚!
(

𝑔(1)(𝑥0)

1!
)

𝑑1

⋯ (
𝑔(𝑚)(𝑥0)

𝑚!
)

𝑑𝑚

 
𝑑1,⋯,𝑑𝑚≥0

𝑑1+𝑑2+⋯+𝑑𝑚=𝑛
𝑑1+2𝑑2+⋯+𝑚𝑑𝑚=𝑚

𝑚

𝑛=0

 

 

Formula for higher derivatives of inverse function 

Denote 𝑔 = 𝑓−1 as the inverse function of 𝑓. The higher derivatives for 𝑔 are given as 

d𝑚

d𝑥𝑚
𝑔(𝑓(𝑥0)) = 𝑚! ∑ (−1)𝑛

(𝑚 + 1) ⋯ (𝑚 + 𝑛 − 1)

𝑛! [𝑓(1)(𝑥0)]𝑚+𝑛
𝐵(𝑚−1)𝑛 (

𝑓(2)(𝑥0)

2!
, ⋯ ,

𝑓(𝑚)(𝑥0)

𝑚!
)

𝑚−1

𝑛=0

 

= ∑
(−1)𝑛 ⋅ (𝑚 + 𝑛 − 1)!

[𝑓(1)(𝑥0)]𝑚+𝑛
∑

1

𝑑2! ⋯ 𝑑𝑚!
(

𝑓(2)(𝑥0)

2!
)

𝑑2

⋯ (
𝑓(𝑚)(𝑥0)

𝑚!
)

𝑑𝑚

 
𝑑2,⋯,𝑑𝑚≥0

𝑑2+𝑑3+⋯+𝑑𝑚=𝑛

𝑑2+2𝑑3+⋯+(𝑚−1)𝑑𝑚=𝑚−1

𝑚−1

𝑛=0

 

 

 

 



Roll the dice 

The probability of the total sum being equal to 𝑚 after rolling 𝑛 times can be expressed as 

𝑃(𝑆𝑛 = 𝑚) = [𝑥𝑚] (
1

6
𝑥 +

1

6
𝑥2 + ⋯ +

1

6
𝑥6)

𝑛

=
1

6𝑛
𝐵𝑚𝑛(1,1,1,1,1,1) 

On the other hand, we have 

𝑥𝑛 (
1 − 𝑥6

1 − 𝑥
)

𝑛

= 𝑥𝑛 ∑(−1)𝑘 (
𝑛
𝑘

) 𝑥6𝑘 ∑(−1)𝑙 (
−𝑛

𝑙
) 𝑥𝑙

+∞

𝑙=0

𝑛

𝑘=0

 

= 𝑥𝑛 ∑(−1)𝑘 (
𝑛
𝑘

) 𝑥6𝑘 ∑ (
𝑛 + 𝑙 − 1

𝑙
) 𝑥𝑙

+∞

𝑙=0

𝑛

𝑘=0

 

This gives 

𝑃(𝑆𝑛 = 𝑚) =
1

6𝑛
[𝑥𝑚] 𝑥𝑛 (

1 − 𝑥6

1 − 𝑥
)

𝑛

=
1

6𝑛
∑(−1)𝑘 (

𝑛
𝑘

) (
𝑚 − 6𝑘 − 1
𝑚 − 6𝑘 − 𝑛

)

𝑛

𝑘=0

 

The summation only contributes when 𝑚 − 6𝑘 − 𝑛 ≥ 0, which leads to 

𝑃(𝑆𝑛 = 𝑚) =
1

6𝑛
∑ (−1)𝑘 (

𝑛
𝑘

) (
𝑚 − 6𝑘 − 1

𝑛 − 1
)

⌊
𝑚−𝑛

6 ⌋

𝑘=0

 

 

Fuss-Catalan number 

When we solve for the power series of the inverse 𝑊 = 𝐹−1 with 𝐹(𝑧) = 𝑧 − 𝑧𝑑, we obtain 

𝑊(𝑧) = 𝑧 + ∑ (
𝑘𝑑
𝑘

)
𝑧𝑘𝑑−𝑘+1

𝑘𝑑 − 𝑘 + 1
𝑘≥1

 

The coefficients are positive integers, and in fact they are the Fuss-Catalan numbers 

𝑐𝑑
 

𝑘 =
1

𝑘𝑑 − 𝑘 + 1
(

𝑘𝑑
𝑘

) 

 

 


