Applied Analysis

Topics to be covered:
1. Dimensional analysis
2. Euler-Maclaurin formula
3. Formal power series & Lagrange inversion formula
4. Fundamentals of asymptotic analysis
¢ Asymptotic sequence and series
¢  Asymptotic root finding
5. Asymptotic analysis of exponential integrals
¢  Watson’s lemma
¢ Laplace’s method
¢  Method of steepest descents
¢ Method of stationary phase
¢ Analysis of integral transformation: Fourier, Laplace, Mellin transforms
6. Asymptotic analysis of differential equations
¢  Majorant series, Cauchy theorem
¢ Asymptotic behavior near ordinary and regular singular points
¢ Asymptotic behavior near irregular singular points, Stokes phenomenon
7. Asymptotic solutions of ODE with respect to parameters
¢ Poincaré-Lighthill-Kuo (PLK) method (i.e., method of strained coordinates)
¢ Method of multiple scales
¢  WKBJ method
8.  Asymptotic solutions of linear boundary-value problem (BVP)
¢ Outer and inner asymptotics

¢ Boundary layers and internal layers

Textbooks:

e Peter D. Miller, Applied Asymptotic Analysis

e James D. Murray, Asymptotic Analysis

o Wolfgang Wasow, Asymptotic Expansions for Ordinary Differential Equations



Introduction

» Examples of asymptotic analysis
Taylor expansion

Consider a smooth function f € C*(a, b), for any n € N we have
fi )( )
f()—EI = (= x0) + 0((x = x0)")
If the Taylor series is convergent in B (x,, ), for any x € B(x,,7) we have

€9)
lim $y() = £0), &@-Zf(”(xw

k!
k=0

On the other hand, the Peano form of the remainder states that

_ fx) =S (x)
xIon (x — x)" =0

Note that there are two limits considering N — oo and x — x,, respectively. The convergence
of Taylor series studies the limit of N — co. However, for asymptotic analysis, we consider one

fixed n and study the behavior as x — x,,.

Stirling formula

o (MY (4 L 1 1
n= ”"(E) +m+288n2+0(ﬁ>’ n=e

Note that the power series usually does not converge in asymptotic analysis. It needs to be

truncated in order to compute the values.

Exponential integral

Keep using integration by parts, the exponential integral has the following expansion
© o=t et ® © o=t e~* et
Ei(X)=f —dtzl——l +f —Zdt=—+f — dt
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Sum of powers

n
1 1
k? =€n(n+1)(2n+1), Zk?’ =an(n+1)2
k=1 =



The sum of powers can be calculated based on the Faulhaber's formula, in which the Bernoulli

numbers B, are used.

n
nstt 1 s s(s=1(s—2)
kp= S _ aaS—1 s—2 __
; s+1t2" Tt 720 n
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Prime number theorem (PNT)
The prime-counting function 7 (x) is defined to be the number of primes less than or equal to x,

for any real number x. The asymptotic expansion of 7(x) is

ﬂ(x)Zﬁ—i-o(ﬁ), X — o0

The Riemann hypothesis is equivalent to proving the remainder as o(ﬁ In x).

» Focus of asymptotic analysis

Series

n n

f(n)=zak, fn(X)=Zak(x), k> oo

k=1 k=1
Integral

FG) = f, _gtendt, 0= fs e

Limiting behaviors

x—x9—0, X — +00, —00, +00, z—> o for ze C



Dimensional Analysis

» Example: Pendulum
Consider the following physical quantities
M=mlkgl, L=I[m], g=golm/s?], 6=6, T=tls]
Now we define another unit system
[kg] = 44 [w], [m] = 24, [u,], [s] = 23 [us]

Under this unit system, we have

A
M=imlul,  L=2l[)  g=57g0 [uz/u}]
3

The period of the pendulum should be consistent under different unit systems, which gives

A
T =213f(m,1,90,00) = f <A1m' /12[;/1_;90» 90)
3

Note that A; does not show up in the LHS, so mass M does not influence period T. We choose

1 g
Azzf, A3=\/¥

The dimensional analysis gives the formula of period t [s] as

l
(B rCLg.00) = £ 11,00 = K(0y), t=ﬂﬂﬂﬁd=Kw@£%

» International System of Units (SI)
The SI units are obtained from the SI defining constants, instead of directly defining the units.
Some SI defining constants include
Aves = 9192631770 [s71], c =299792 458 [m/s]
h =6.626070 15 x 1073* [kg- m?/s], e=1.602176634x 10717 [A-5s]
k =1.380649 x 10723 [kg- m?/(s* - K)], N, = 6.022 140 76 x 10?3 [mol™?]

» Buckingham 7 theorem
Consider a problem that involves basic units [u;] for i = 1,2, -+, n. The physical quantities are
denoted as A; for j = 1,2,---,m. We want to study another quantity B = f(Ay, "+, A,). Let
A; = aifu "0 fup] 2 - [uy ¥, B = blug "1 [uy]72 - [u, P
Denote a; = (Xi1, X2, Xin) T, B = (Y1, V2, ¥,)T are vectors in R™. Consider a basis of the
space V = span(ay, -+, a,,) as {ay, -+, @y }. Therefore, we have
a; = zjjaq + - Zeay, for j >k, B =wia; + -+ wrap
Now consider a new set of units [{i;] given as

[ui] = Ai[ﬁi]’ i = 1,2,"‘,n, /1l' € R>0



Then we obtain

A; = aifl‘il ...Azin[fjl]xu i1, ]%im, B = b/lill e AP, ] [T )

The consistency of B under the two unit systems leads to
y y — x x X x.
P Brflay, -, ap) = f(a1/11“ e At e @A™ ...Anmn)
Choose A4, -, A,, such that

aAjt =1, for 1<i<k,  k=dim(V)

n

This is equivalent to
Xi1InAy + -+ x;,,In1, = —Inaq;, for 1<i<k
There are k equations for n unknowns 4;, which implies that we can successfully choose them.

Now the equation becomes

y Y. _ X(k+1)1 X(k+1 x x
D A f(ay, ) = f(l,---,l, Apy1ly A )",...,amllml ...Anmn)

Note that for j > k, we have a; = zj;a; + -+~ zj &), which implies that
: . . . 1N\Z1 [ 1\%k
,’1’1‘11 '--lz]n = (A ...,1;‘1171)211 e (AP ...Aflkn)zf" = (a_> <a_) ) for j >k
1 k
The equation further becomes

f(ali"':am) 1 \Zk+D1 1\ Zk+D)k 1 \?%m1 1 \%mk
fay - an) f<1,...,1,ak+1 ) () e ()T ()
' 1

a;’--a, ay a; ay

There are m — k additional parameters left, assuming that we have k independent parameters.

This non-dimensional procedure is important.

Example: Quantum states of neutrons in the Earth’s gravitational field
This is an experiment from Nesvizhevsky et al. (2002, Nature). We want to find the discrete

energy state from dimensional analysis. Given the following physical quantities

Mass of neutron m Earth’s gravity g Planck constant i
1.675x107%7 9.8 1.0545%10-3
[ke] [m-s] [kg-m®s']

The energy E has a unit of [kg-m?-s2]. The dimensional analysis gives
1.2 2
E; < m3 g3 h3 o« 1 peV
This shows that the quantum states of neutrons in the Earth’s gravitational field is observable.
The constants are related to the zeros of the Airy function. However, if for the gravitational

effect between two neutrons, we need to replace g by gravitational constant G as our relevant

physical quantity, which is 6.674x10!! [kg-'-m3-s2]. In this case, we have



E; «x m°G?h=2 o« 1078 peV

The gravitational effect between two neutrons cannot be observed as expected.

Example: QED fine-structure constant

The relevant physical quantities are listed below

e o h c
1.602x10°1° 8.854x10712 6.676x1073 2.99x10%
[A-s] [AZs*kg!-m] [kg-m?-s7!] [m-s!]

We want to obtain a dimensionless number « that quantifies the strength of the electromagnetic

interaction between elementary charged particles. Based on the units, we have

e? e? 1

gohc’ *= 2¢e9hc ~ 137

a X

Example: KdV equation
au; + bu, + cuuy, + duyy, =0
The non-dimensional version can be obtained by considering

X = /1196, t = Aziz, u= A3ﬁ

Then we have

b b B+ A dBa =0
a 12 Ug Al Uz C Al UU li Uiz =
We choose A; satistying
A3 & A3
a—=1, c— =6, d—==1, U + YUy + 6UU, + Uy = 0
Ay Aq A3

Furthermore, with the Galileo transform X = x — yt, we have

Up + 6UU, + Uyyy = 0

Example: Lorenz equation
X =a,y — ax, Y = azx — a,y — asXz, Z = agXy — a,Z
Consider
X = Aix, y = Ay, zZ = A3z, t > At
We can reduce the number of parameters from 7 to 3 as
x=0(y—x), y=x(p-2)-y, Z=xy—pz
Typically, we choose 0 = 10, f = 8/3. At p = 28, the Lorenz system has chaotic solutions.



» Dimensional analysis as differential equation
Consider a simple version with only one parameter
f(/lxlalJ ) Axmam) = Ayf(ali ) am)

The derivative with respect to A4 gives

m

9]
N e L @y, ) =y @y, an)

i=1 '
Let A = 1, we obtain a differential equation

m

0
D nas =, f = fayan)

i=1

We can choose the following solution form

f=a". 2 . _4m
- 9 axz/x1 ! ! axm/x1
1 1

The trick of first taking the derivative and then setting a special value to the parameter is useful.

> Exercise

Navier-Stokes equation

ou 1 R
—+u-Vu=—EVp+vV2u—gz

Jt
With the scales p, P, U, L, we have
U?pou _ - P__ v, _ R
T<%+u-Vu) = —ﬁVp+FV u-—gz
The non-dimensional N-S equation becomes
ou _ - p_ 1., 1 UL U
ﬁ+u-Vu=—p7Vp+R—eV u-v3% Re=7, Frzﬁ

The Reynolds number Re denotes the ratio of inertia to viscous dissipation. The Froude number

Fr denotes the ratio of inertia to the external force.

Planck units
With ¢, G, h, €y, kg all considered as 1, we have the Planck units [{i;]. From the ST units of these

physical constants, we have

~ ~1—1 _~

[T =clm-s7,  [M] "[LP[T]* =G [kg™" - m*-s7%]

(LT = hikg-m? 571, [T1[M] LT = & [A% - kg™ - m™ - s*]

[F)L2(712[8] " = kg kg m? 572 K]



There are 5 independent units to be determined by these 5 physical constants. We thus have

[L]=yhG/c3 [m], [T]1=+hG/c5[s], [M]=.hc/G [ke]

- ~ Z |h
7= |2 [A] M=%f§m

Volterra (predator-prey) equation
x=x(a—=By), y=-yr—==6x), x0)=x, y(0)=y,
We want to analyze the period T(«, B,V, 8, X, Vo). The unit of each parameter is
[al =yl =1[s""],  [Bl=1[61=[m™-s7'],  [x]=I[yl=I[m]  [T]

With another unit system

[s]

[m] =2, [u;],  [s] =23 [ug]
The consistency of period T gives

a L y 6
T = Af(a,B,v,8,x0,Y0) = f(Z,m,Z,m,A1xo'ﬂ1YO)

Since the LHS does not involve 1, we conclude that £, §, x, ¥, do not influence the period.

Now we choose 1, = a, and we obtain

1 Y
T=flan=—f(17)
The period of the system only depends on a and y, and under the non-dimensional sense, the

function form only depends on the ratio y/a.



Euler-Maclaurin Formula

Consider approximating an integral over I = [a, b] by separating into n intervals as

b o N fGe)+fx) b-a
Lf(x)dx~Tn—i= ARED

Another perspective is to approximate the sum of a series by an integral

5= 00~ [
k=1 1

We want to analyze the difference between the integral and the sum. The Euler-Maclaurin

formula originates from these two applications.

Example: Power function

Consider u € N and f(x) = x*. Denote the interval step as h = (b — a)/n.

n-1 K u n-1
S, = hZf(xl) = hZ(a+Lh)“ = hlz(;z a“ J(in)’ —;(?)a“‘jhj“;ij

The sum of powers can be calculated from the exponential generating function

n-1

o) .n—1 n— (0] nz
@:Zzzﬂ:ZETW i%e-ﬁ
g Ty e”—1
Jj=0 =0 i=0 j=0

Note that the Bernoulli numbers satisfy

p=0
We thus have
nz __ © o q+1 © j
(2) T ¢ I:ZB—ﬁ’zp.Z(n_i_l)' —2a12|
z p=0 p q=0 q =0 J
The sum of powers is then obtained as
n—-1 J
S
/ j+1 p
i=0 p=0
Finally, we have
u 1 J
— K U—jnj+1 Z j+1 j+1-k
Sn—Z)( )a h j+1k 0( I )Bn
]: =




The combinatorial numbers can be simplified to

S _i By “p wu! <1+nh) 1 (nh)
n= / pk1e kK'(u+1-—k)! a a

B u! pHt1=k _ qut1=k\ p g\ F1
k_akh ( )
nk-1 K'(u+1-—k)! akti-k a

-k -k
B (1) 1 b e
\k u+1—k

u+1-k k-1

(u+1—k)! (u+1-k)

7
1 B
— = (put1 _ ut1l 2Kk
0 —a )+;kh

,Ll' . bu+1—k ,Ll' . au+1—k l

Recall that f(x) = x*, and we obtain

Sn = f £ dx+Z 2 [0 (B) — £ ()

Note that the Bernoulli numbers are
BOZ]., Blz__, sz+1:Of0r k21

We can thus write

5= [ 70 4x =317 0) - @ + Z o [FD®) = (@)
In fact, the trapezoidal rule approximate the integral as

h
Tn=Sn+E[f(b)_f(a)]

Finally, we have

b
T, = fa f(x) dx + (2l)lh21 [f(zz 1)(b) f(21 1)(a)]
Usually, we can write it as
b m
| e ax= = D iy [P0 = FOD@] ¢ R

> FEuler-Maclaurin formula

Consider a function f € C™[a, b]. Forn € N* we have

b
| reax=t 2 R [ (b) = FED (@] + Ry

The remainder term R,,,,, is given by



=nm X—a
— (m)
Ry = — h J; B, ({b — an})f (x) dx
Note that {y} = y — [y] and the Bernoulli polynomial B, (t) is

m

m -
B, (t) = Z (k)Bktm k
k=0

Proof. First consider n = 1 case with h = b — a. We need to prove

b b— B
J f(x)dx = Ta [f(a) + f(B)] - Z k_l'( (b — ) [f*D(B) — F*V(a)] + Ry
a k=2

Denote F(x) as the integral function
X
F(x)=ff(x)dx, F(a)=0
a

Now we need to prove

m

P = 222 1F (@) + F () -2 (b~ @) [FOB) ~ FO@)] + Ry
k

As a comparison, the Taylor expansion is

m
1 ~
Fb) = @b - @)+ ) = (b - F®@ + Ry,
k=2
Consider two functions f, g € C™[a, b]. The formula of integration by parts is

m—-1 b

b
> D PRI + D [ FMEg60 da

k=0 a a

b
| reogme ax =

With a change of variable, we have

b m-1
[ 7eg™ @+ b= dx = Y [FO@g 0B - FOBYg @)
a k=0

b
+j fM™(x)gla+b—x)dx (%)

We need to choose g(x) properly. To prove the Taylor expansion, we require
g™ =1 g®¥@=0  k=01,,m-1

This sets the function g(x) as

&—@m

g(x) =
To prove the E-M formula, we also require that g(x) is a polynomial, in order to obtain F(b) on
the LHS of the formula.



— q\m-p
g(m)(x) =1 — g(x) = Z bp (sz a)p)' , by = 1

The derivative becomes

_ g ym—k-p
30 (x) = :E: b, 621 az >

Furthermore, the k = 0 term requires
a—b>b a—b>b

g™m=1(p) = b—_a' gmV(aq) = .

2
Similarly, for other terms we require
9®@=g®®), for k=01,m-2

This leads to a linear system
m—k—1

p-atr N _pl
2, k= = po(b—a)P() o t=2

p=0

Based on the following identity of the Bernoulli numbers

-1 ,

B(>=0, [>2
Z P\p
p=0

The coefficients bp are solved as
b—a)P
bp ( 1 ) p
p!

Therefore, we choose g(x) as

C(b—a)P  (x—a)™?
gm(x)=pZO B oy

(- )"~ —aymr _(b-—a)" x-
2066 G

p=0

Its derivative becomes

00 = mz_k (b-ap, Gam?

p (m —k _p)! = gm—k(x)

Substitute into (*), we have
b b— < B
[ 700 ax =232 1@+ F 0] - Y 2B = 0 [FEDB) - FED@) + R
a k=2

For the remainder term, note that

Bn(1—x) = (=1)"Bp(x)
This can be demonstrated from the generating function of B, (x), which is



(o] Zm

= Z Bm(x)ﬁ
m=0
Substitute x = 1 — x, and we have
(1-x)z op—XZ i (_
_ ze ze
ZB’”(l e? — 1 e—Z—1:zBm(x)
m=0

With this, we can show that

Ry = Mf f(m)(x)B (Z:;C) dx

m!

(_m)m( ™ f b (’;:Z)ﬂm)(x) dx

For all other cases with n > 1, within each interval I; = [x;_,,x;] withi = 1,2,:-,n, we can

apply the E-M formula as

[ Fe0 ax =517 + £ Zk,h"[f(" D) = F* D (xiy)]

Xi—-1

n (—1|)m pm fxi B (x —:i—l)f(m)(x) dx

m.
Xi—1

Before adding up the results from each I;, we need to manipulate the remainder term. Note that

. . . XxX—a . . X —a
Xii=a+({(—-1Dh<x<x;=a+ih, l—1£b_an<1, l—1=b_an]

Then we have

B () = 8 (=g = e = 2 (G=2n)

The sum over all intervals gives the final E-M formula. ]

Corollary
Let f € C"™(Rs,), witha,b € Nand a < b. We have

> a0 = j f(x)dx+z [F ) - fO-D (@)

as<k<b

-1 m+1 b
+ [ B )

To prove this, considern = b —aand h = 1. [



Properties of Bernoulli polynomial / function

1
By =1,  By(() =) -5
Bip(x) = mByyy ()

1
f B, (x) dx =0, for m>1
0

B,,(0) = B,,(1), for m > 2

Fourier series of Bernoulli function
B,, ({x}) is continuous, piecewise smooth with period 1. This implies that its Fourier series is

pointwise convergent. Denote
1 .
i = f Bn(x)e ?™*dx,  kEeL
0

Specifically, we have
ago = 1, apr =0, for k # 0, Amo = 0, form>1

We can first calculate

a =f1(x—l)e"i2"kxdx=;'
R A 2 2k

Form > 2, using the recursive relation and integration by parts gives

m m!

ke = 57— A=) Qi = —W for m>1and k#0

The Fourier series becomes

i2mwkx

m! e
Bn(b)) = ~ g Z =

The series is absolutely convergent for m > 2.

Bernoulli number

In the Fourier series, taking x = 0 gives

m! 1

— _(_—_i\m _

B = —(=0) (Zﬂmka
k#0

When m is odd, we have B,,, = 0 due to cancellation for positive and negative k. When m is

even with m = 21, we have

(Zl)' 221—11.[21

Ba= (D™ o K@D, (2D = (1) By~

This is the relation between the Riemann zeta function and Bernoulli number.



As | — oo, the Bernoulli number behaves as

2030 1
~V2n-2l<?) —_ as [ » o

221—17-[21 !

2. (2D)!
1B, ~amr

Bound of the Bernoulli function

! 1
Bn(GD] < o > = [yl

(2m k%0

Example 1
f(x) = x5, s€eN
Note that when we choose m > s, we have
fMx)=0, form>s

From E-M formula, with [a, b] = [0,n], we have

Sl nS o B, s!
Z kS = -+ —_! ns—l+1
+1 2 l_zl!(s—l+1)!

1<k<n

The sum of powers is thus obtained as

3 ¥
s+1

N

s+1
ns+1 + ns + z Bl (S + 1) ns—l+1]

2 l
1<ksn =2
As an example, for s = 4 we have
1 1 1 5 5 1
B, =—, B, = ——. Zk4:_<5 D 4 _3__)
27% +T 730 s\" T2 3 g
1<k=n
Example 2
1
f(x) = ;) [a, b] = [1,n]
The partial sum of the harmonic series can be written as
1 < B 1
i =Dt - - _
Z k-‘““z T [( DT 1)!<n’ 1)]
1<k<n =1
(_1)2m+1 (Zm)'

P f Bam () (—1)™ 20 dx

<imnt (-3) (5-1) D 2 1= 2 [ Bantl ok



We thus obtain
m
1 1 1 By 1 " Bym ({x})
Hi= ) z=1“"+z+z+zz—z(1‘ﬁ)‘fl ot
1<k=n =1
Consider the limit n — oo, we can express the Euler’s constant y as

H,—Ilnn -y, =—+2321 J BZm({x})

x21n+1

Therefore, we have

lei_i_jooBZm({x}) dx

1
=1nn+y+ﬂ— 21 n2l x2m+1
=1

The remainder term is now bounded as

mBZm({x}) ® 1 |BZm| 1
_[ 2m+1 dx| < [Byml J 2m+1 dx = Im n2m
n n
The partial sum H,, is usually expressed as
1 th 1 Bym 1
Hn=lnn+y+ﬁ— S ol Omn o 0<6,,<1

=1
Forn = m = 5, we can achieve an accuracy of
Bam

mn 2m n2m

< 10710

This is the general procedure of using E-M formula to obtain a well-constrained remainder.

Example 3
1
fx) = por. s> 1, [a,b] = [1,n]
Note that
I's+k) 1
(k) k
FO@) = (D s

Following the same procedure, we can obtain a way to compute Riemann ¢ function

(s) = Z z 1 1 +m By T(s+2l-1) 1
¢s) = ks s in 1 7m - 2D)! [(s) ns+2i-1

1<ks=n
Bym T(s+2m—-1) 1
+9mn —
(2m)! I'(s) nst2m-1

For s = 2, we have

m—1

m? 1 B,,
() = 6 ~ Z ﬁ n 2n2 + n2t+1
1<ksn

=1




Example 4
f(x) =Inx, [a,b] = [1,n]

Note that
Foo ) = (-t E D

Following the same procedure, we obtain the Stirling formula
1 Bam+2 1

m
1 B,
I !=< +—)1 —ntC+ Y +6
fm=nty)mnon £.2120=1)n?1 " O™ 2m +2) (2m + 1) nZme

The constant C is given as

1 ! 2n)!
=§ln(2n), eczlimwz lm%zm
n—-oo n—oo n
V() van (%)
This result uses the Wallis formula
22n Tl' 2
. (nh) _ VR
"—’°° \/_ (2n)!

In the previous examples, we all have

b o
f f(x) dx integrable, f | fm (x)| dx convergent
1

Example §
flx) =x*

Note that
Sn=Su1 _,

—zn:kk li Sn = lim
- ’ nl_r,{,lonn n1—>oon"—(n—1)n 1

k=1

Therefore, we can consider

(14840t
S, =n"{1+—+o0
n n

The coefficient C is
. Sn Sn 1 1
¢ Jmn(G-1)= I iiE e

We can iteratively solve all coefficients, but it is not efficient.

Now consider



We have

m

n”:Sn—Sn_lzn”Z—’;—(n—l)" 12( mEY:

k=0

m
&) 2
“/.onk U (n — 1)k+1
P n k:O(n 1)

Substitute x = 1/n and we obtain

1_chx (S )[z(;xkﬂ(gdmx)

n=0 =0

+o(x™)

The two series with coefficients {b, } and {d,,} are obtained as

5 5 337
1— = n — 1____ 2__3 4 4
(- )% = Zobx < 2" 24% Ta8% “57g0" TOO)
n=

(1_x)k+1 delx _Z(klu)xz

=0 120

Comparing the coefficients, we can solve for Cj, as

1 1 1 1 2 7

=l G=p G=pty G atata
C—1+9+10+3 C—1+8+117+16+743
47T et 2e3  3e2  16e 57 e5 " e+ 8e3  3e2 5760e

» Exercise
Barnes G-function
We directly start from the following representation of G(1 + z)

z(1-2)

InG(1+2) = >

+ gln(Zn) + zInT(z) — f InT(x) dx
0

From the Stirling formula, we have the asymptotic expansion

1 1
InT(z) = (Z_E) Inz —Z+—ln(27r) + +22l(21 — 1) 721 +o0 (Z_2N+1>
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The integral of In I'(x) can be decomposed into two parts. The integral from 0 to 1 is a constant,

while from 1 to z we have
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Also note that
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Therefore, we have

3 1 1
InG(1 + z) = z2 lnz—Zz +—ln(2n)——lnz+E—InA
+Z Bj142 ( 1 )
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Smoothed sum of arithmetic functions (link)
The asymptotic behavior of a divergent partial sum can be analyzed by introducing a smoothing

function n(x) and consider the infinite sum

n
2 a(n)n (N)
n=1
We study the case a(x) = x°® for s € N using the cutoff function n(x), a compactly supported
bounded function in C* with n(x) = 1 for x < 1/2 and n(x) = 0 for x > 1. Note that
0, x=N

x
fe) =x n(ﬁ)‘ fO0) = (si—!k)!xs‘k, xsg and k<s
The Euler-Maclaurin formula gives (as N — o)
N-1 N 1
> £ = [ 160 dx =51 - FO)
n=0 0
1 N
+Z Gl 00 ~ O] = o [ B (G e d

The integral term is evaluated as
N X 1
fo x5n (N) dx = N5+1f0 x*n(x) dx = C, N°**
The remainder term is bounded as

IR f FEE) dx=0WN - lIfllczm),  lfllczm = sgﬂglf(zm)(x)l
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https://terrytao.wordpress.com/2010/04/10/the-euler-maclaurin-formula-bernoulli-numbers-the-zeta-function-and-real-variable-analytic-continuation/

For s > 1, we can choose 2m > s + 2 and obtain

DI =y w0 () = 6N = SO0 + O - Ilesw)
n=1 n=0

BS+1 1 1

For s = 0, we can choose m = 1 and obtain

> Fm =Y n(5) = 1= CroN +51(0) + O - liflle2) ~ 1
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We recognize that the leading term is the specific values of the Riemann zeta function

B, _ 1
Z(—s)z—srl, with szz
Now we extend to complex s with function
1 x 2x
glx) = = [77 (ﬁ) -1 (W)]' s€eC, Re(s) <1

The reason is that now x~° is singular at the origin, which prevents us from taking the value

at x = 0. With this telescoped sum, we immediately obtain

6 () = i 9t =y [Nl-s - (g)] ro(3), Now

By summing the telescoping series, we have
log, N
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The following limit thus exists
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Formal Power Series & Lagrange Inversion Theorem

» Formal power series

Definitions
For a domain K with char K = 0 (e.g., Q, R, C)

¢
¢
¢

Series: {a,}, Z - K

Laurent series: There exists ny € Z such that a, = 0 forn < n,

f@ =) apm

nez

Formal power series

Addition, multiplication

F+D@ = (@ +be",  GH@ =) Ga)z"

nez nez

F @D =) e, = apbuy

nez PEZ

Division: Given two formal power series

f(z2) = Z a,z", g(z) = Z b,z™, b, #0

nzng mz2mg

Consider h(z) = (f/g)(z) has the form

h(z) = Z d, 2"

kETlo—mo
From multiplication, we obtain the linear system and can solve for all coefficients d;

an =) bydny

pEZL

The set A(K) = {f(2) | {a,,} is a Laurent series} is also a domain.
For f € A, define the order of f as the minimal n such that a,, # 0, denoted as ord(f).
We specify ord(0) = +oo.
For f, g € A, define distance as
d(f, g) = eordU-9)

Corollary. Distance d(f, g) is a complete metric, and (A, d) is complete. Consider a
Cauchy series {f,,} € A, we have

Ve>0, ANEN, vmn> N, d(f,, fm) <& ord(f, —f) > —Ine
Let M = [—In ], then for any k < M, the z* coefficients of f,, and f;, are the same.



¢
¢

¢

Iford(f) = 1, then f is invertible. Denote the set A* = {f € A | f invertible}
For n € Z, denote [z"]: f — K as the operation

[z"] <Z anzn> =a,

NezZ

Corollary. For f, g € A with ord(g) = 1, we have
fla@) = ) a(g@) e
nzng
Proof. Denote ord(g) = m, = 1, and
(9@)" = > bRz fg@)= Y ay ) b
m2nmg nzngy mznm

Since my = 1, we have

[m/my]

fla@)= > > abPime .

mz2nogmg n=ng

Corollary. For g € A*, there exists a unique h = g~ € A* such that

g(h(@) =h(g(2) =z

Proof. Since g € A*, we have b; # 0 and b,(ln) = bi" # 0. We have
h(z) = Z a,z", h(g(z)) =z
nz1

This leads to a linear system, and we can solve for coefficients as

1 a, bgl)

We then need to show that g(h(z)) = 7z also holds. For h € A*, we can also find h € A*

such that fl(h(z)) = z. Now with z — h(z), we have

Wg@) =2 h(g(h@))=h@,  &(r(9(r@)))=h(h)

From the property of h(z), we prove
g(h(z)) =z [

(A*,") is a group, where - denotes composition.



»  Multinomial theorem

For a commutative ring R

n!
1t tym)" = 2 Wyfl"-yi’”, yi €R
L dlyy!

dy, - dm=0
dyi++dm=n

This can be proved by induction over m. The binomial theorem corresponds to m = 2.

Inverse of a formal power series

To calculate f/g, we only need 1/g, which is
1 1 1

:b Zm0+b Zm0+1+"', —_ = .
) mg mo+1 g bmozmo L4 bm0+1
b,

bmo +2

Z+

b,

Now we focus on a specific type of g € A with
g = Z b,z", by, # 0
nz=0
Then for m € N, the coefficients of 1/g are given as

)5 2 arar (a)

dy,+dm=0
d1+2d2+~~~+mdm=m

dq

Proof. Define a new series y(z) and we have

k=1 k=1

The coefficients become

=" (o) = bii (@)

n=0

Note the truncation to n = m as we focus on [z™]. We only need to prove

n '
@) =) g e

dy,dm=0
di+dy++dm=n
d1+2d2+~~~+mdm=m

Using the multinomial theorem, we have

[zm](y(z))n = [z™](c12 + 2% + -+ + ¢, z™)"

ZZ + .-
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dq,dm=0
di++dm=n
n! dy dm
= —C; " C [
1 m
Z di! - dyy,!
dq,dm=20

d1+d2+-~-+dm=n
d1+2d2+-~-+mdm=m

Example
Roll the dice 10 times. We want to find the probability of the total sum being equal to 30. This

problem is equivalent to

1 1 1 N\ 1 1—x6\"°
— [+307(2 o R - — T [420
P=|x ]<6x+6x + +6x) 610[x ]<1—x>
=—[«x

610" (1 —1x)10 (1= 20x+ ()2 = (5) )

=g (110 041+ () 121 = () 1) =

1 20]

Note that

1 -10
— ((— m
== O ()
Then this probability can be computed.

» Bell polynomials
For m,n € N with m > n, we have a formal power series y(z) with coefficients C = {c;};1.

The Bell polynomial is defined as
n!
(@ =["6@) = Y e
leeedy,!

dq,,dm=0
d1+d2+~~-+dm=n
di+2dy+-+mdy,=m

Theorem. Consider g(z) € A" with
9@ =) byz”
nz=1

Then for any m,n € Z with m > n, we have

m-—-n

"(g@)" = > ()b Bonome®), b = (by, by, )

k=0



Theorem. For f, g € A with ord(f) = 0 and ord(g) = 1, we have

ZMIF(9@) = ) anBa(h)
n=0

The above result implies the formula of the higher derivatives. Consider f, g € C* with
1 1
an = Mf@D) = = OG0, by = (29 = — g™ (x)
Note that
1
M (9() =~  9)™(xo)

From this, we can obtain the Faa di Bruno’s formula

m

(f @)™ Cx0) = m! > @B (h)
M (gx) - (9D 9P ) 9™ (o)
=m!;T°an< o) 97 m!o)

» Derivatives and residues of formal power series

)= napz"™t,  Resf=a,=[z"f

Properties of derivatives
¢ Derivative operator A — A is linear
¢ Iff' =g and[z°]f = [z%]g,then f = g
¢ (f9'=fg+fg
¢ Iford(g) =1, then
[Fla@)] = f'(9@)g' @)

¢ Ifge A" then

S1eAT - 1
97" (2)] (0@
Proof. From 4 to 5, the result is obvious since
/ 1
-1 — -1 . -1 g 1’ -1 [
l9(97@)] =3g'(¢7' @) - g7 ()] [g71(2)] @)

To prove property 4, first consider f(z) = z™. By induction, we have

[(9)"] = [s@(9@)" ] =9 @D(9@)"" +9@ - - D(9@)" g'@



This directly gives

[(9@)"] =n(g@)" 'g'@

When n < 0, consider

@) (9@) " =1 [(6@)"] (@) " +@@)" [(s@) ] =0

Using the previous result for positive exponents, we also have

[(9@)"] = -(9@)" - ~m)(9@) " 'g'@ =n(9@)" 'g'@)

Now we return to a general f(z), which can be expressed as

N
f(Z) = 1\][1_1’)130 Z anZ"
n=ny

We only need to prove

2™ [f(g@)] = [2"1[f'(9(2)g' )]

For LHS, the truncated summation implies that we can switch the operators

!

N m+1
M (9@)] =12 [lim > an(9@)"| = ) ™ [an(9)"]

For RHS we can similarly truncate the summation. The two sides are equal.

Properties of residue

¢ Taking the residue is a linear operation

¢ Resf'=0, Res(f'g) = —Res(fg’)
¢ Iford(g) =1, then

Res{f(g(2)) g'(2)} = ord(g(2)) - Res f(z)
When f(z) =z~ !, we have

g'(z) nobgz™ ™1 4+ ...
e {g@} ) Res{ | = o = ord(g(@)

—

When f(z) = z™ withn # —1, we have

Res{g"(2) g'(2)} = Res{<g"+1(z)> } —0

n+1



» Lagrange inversion theorem

Theorem. For f € A*, its inverse is denoted as g = f~1. For Vm,n € Z*, we have

m[z™[(9(2))"] = nlz™[(f()) "]

Proof. We can directly calculate both sides from the perspective of residue

m[z™][(g(2))"] = m Res{g"(z) - 27" 1}

Substitute z = f(z), and then use integration by parts
m[z™][(9(2))"] = m Res{z"- f ™ () - f'(2)} = —Res{z" - [f ™ (2)]'}
= nRes{z" - f™(2)} = nlz"[(F) ]

Corollary. For f € A*, g = f1. ForVm,n € Z,n # 0, m = n, we have

ZMl(o@)] = n Y (e D koD
k=0

k!

al_m_kB(m—n)k (a)

Note that

an = [Zn] f(Z); a' = (aZ'a3"")

For n = 1, we have the higher derivatives of the inverse function.

Proof. When m # 0, we directly have

m-—-n

M[(9@)"] =~ (@) =2 > (1) @™ Bamon(@)

k=0
When m = 0, we can consider —n with n > 1. Substitute z - f(z), and we obtain

—ny g " (2)] _ o f' (@)
[ZO][(g(Z)) ] = Res{ ~ } = Res {Z f(Z)}

Define a new function h(z) as

];(122) —-1= Z_jz +Z_:ZZ +o, f@=aiz(1+h(2))

h(z) =

The residue becomes

,a(1+h)+h'az) . (1 h'(z) B ., W@
Res {Z @ z(1 + h) } = Res {Z | <E 1T h(z))} = Res {Z 1+ h(z)}

Define the logarithmic function L(z) as

—1)kt 1
L(z) = Z( 13 L@ =
k=1




We thus obtain

Res {z‘” %} = Res {z‘”[L(h(Z))]’} = —Res{—nz"""'L(h(2))}

This shows that

m o (—1)k-1
N(o@) " =l L(h@) =n Y T (2, .

k=1

Lagrange-Biirmann formula
For h € A with ord(h) = 0, define f(z) = z/h(z) € A* and g = f~1. We have

2] 9() = [ (a(2)",  mz1

¢>(g(z>)— 2" @' (2)(h(2)", m=1

Proof. Directly using the Lagrange inversion theorem with n = 1, we obtain

2 9@ = ] = () .

Example 1. Lambert W-function

z =xe* = x=W(z2) =Zanz”

nz1

Based on the Lagrange-Biirmann formula, denote h(z) = e ™% and we have
- Z m — 1 m 1 — m-1_" mm_l

The Lambert W—functlon is defined as

m-1

m
W(z) = Z (—pm-1t__m
m!
mz1
It is applied to solve equations with the form
b\ _(x4l 1 b b 1 b
ax-'—b:ex’ _<x+_)e (x+a)=——e a, x+—=—W<——e a)
a a a a

Corollary. For f € A with ord(f) = 2, define F(z) = z — f(z) € A* and W = F~1. Forany
g € A, we have

sW@) =9 + ) I @Dg DI

k=1



Proof. We only need to consider g(z) = z™, which gives

Wh(z) =z"+ Z%[f"(z) nz" 1] k-1D
o1

For m > n, we need to prove [z™] is the same for both sides. The case m = n is trivial, and

now we can set m = n + 1. Note that
[z'] F(z) =1, [z"] F(z) = —a, = —[z"] f(z2), mn=2

From the previous corollary, we have

k —
[(W(Z)) ] = z (n+ 1) (m+ 2 Bim-nyk(az,asz, )

For the RHS, using the following result

(k—1)
[z™] (Z C[Zl) = [z™] <Z - (-1 (U-k+2) Zl—k+1>

lEZ lEZ

=(m+1)---(m+k-1)- [Zm+k—1]z ClZl

leZ

We can switch the order between derivative and [z™] as

[ RHS = nlz™] Y = [f*(2) 27716

k=1

[ [ () 2]

:nz(‘m+1)---(m+k—1)

k!
k=1
Z (m+1)- (m+k—1) gmen (@ “
z
We can show that both sides are equal to each other. [

Lagrange reversion theorem

W(z)=z+ Z%[fk(z)](k‘l), ord(f) =2

k=1

Example 2
f(2) = z4, F(z) =z-2z¢%, d=>?2
The inverse W = F~!is given as

kd—k+1

_ k(z)]k-D = kd 4
W(z) = Z+Zk'f(z) Z+z kd k+1

k=1



» Inversion formula for C*

For f € C*(R) with a bounded derivative |f'| < M, consider the equation

v(x,y) = x +yf(v(x,y)

We want to know when this defines a function v(x, y). Denote the implicit equation as follows

0
Uy, v) =x +yf@) v =0, = =yf'®) -1

When |y| < M™%, the bound |f'(v)| < M implies 0u/dv # 0 and v(x, y) exists. We can see
that v(x, y) satisfies the PDE with v(x,0) = x

v dupouy 1 o f)
= ~ax (av) 1y dy 1-yf

For g € C*(R), if g(v) converges then we have

9]
= f@) 5

9(v0e) = g(x)+z o83 (7409’ ()

If g(v) does not converge, we can truncate the series to k = N and then add o(y").

Corollary.
0y g(v(x,y)) = 057 g' (v, 1)) f*(v (x, 1))

Proof. When k = 1, the expression holds. By induction, for k + 1 we have
o5 g(v(x,y)) = 0y {05 g’ W f* W)}
L1 [09' W) f (W) ,
= aplc( ! {a—v VyVUy + g (U)fk(v)vxy

k
_ a,’g-l{w F@)2 + g (W) w)

of (v)v }

a k
=6§‘1{Mf( Yoe + ' (W) F* )

f (v) vx}

= 059" (vCe, 1) F* (v, )] =

Now we can prove the inversion formula for C®. We only need to show that
ok gw) =0k (g'COf* ), aty=0

The result from the corollary can directly be applied with v(x,0) = x. Furthermore, we have



1
HEO =T rl,,

Therefore, we demonstrate the coefficients of the Taylor series. For g(v) = v, we have

k
v(x,y)=x+2%6,’§_1fk(x), for v=x+ f(v)y

Example 1. Kepler equation
For f(v) = sinvand y = ¢ with |e| < 1, we have
vV—esinv =x

We can obtain the solution as an expansion of € as
v(x;e) =x + Z—ak L(sin® x)

As a comparison, the Fourier expansion of v is

v(x;e) =x+ z %]m(ms) sin(mx)

Example 2
1 1
v(x,t) =x+t,+ t1v+§t2v +§t3v + -
This is equivalent to the following PDE
ov vk
E=va, k= 0,1,2,"' , U(X,O) =X

We can consider y = 1 with f(v) =ty + t;v + ---. This leads to

1) k
1 t
_ ~ ak-1 |
V=Xt Z 1 O ( n* )
k=1 120

Note that v(x, t) = v(0,x + t,, ty, ), we can just solve for

o k k—
1 t t
wo-Fhor (T |- ghor|Ei)
k=1 1=0

=0 k=1

- dol -+ di_q ! 1\11
kz1 do,dg—120 0 k-1 =0

d0+"'+dk_1=k
d1+2d2+'(k_1)dk_1=k_1

x=0



» Exercise
Todd power series

We want to find a formal power series f(z) such that

f@=) @z, (@) =1, vmeN
nz0
Define h(z) = z/f(z) and its inverse g = h™1. The Lagrange-Biirmann formula gives
m+1 — m me1 1
2" 9@ = — " (F@)" = —=,  meN

The invertibility implies ord(g) = 1. Now we directly obtain

g(z)zZ%z—ln(l—z)

nz1

Since h = g1, we have

hz)=1-e™*,  f(2)=

Z _ Z
h(z) 1—e2

Faa di Bruno’s formula

For two functions f and g, the chain rule for higher derivatives is

dm M ) 1) ) m)
M—mf(g<xo>)=mlzow3m<g (x0) 92() g (x0)>

2077 ml

u L (gP\" (g™ )\
— Zf(n)(g(xo)) z dllem!<g 1!x0 > <g m!xo )
n=0

dl,"',dm20
d1+d2+~~~+dm=n
d1+2d2+~--+mdm=m

Formula for higher derivatives of inverse function

Denote g = f~1 as the inverse function of f. The higher derivatives for g are given as

(m+1)-(m+n-1) <f(2)(x0) Fm (xo)>
(m—t)n

qm m-—1
= 0(F ) =m! ) (-1
n=0

n! [f D (xq)]m+n 207 7 m!
(=D (m4n— 1) 1 (DN (FM )\
- . [F @D (xg) ™+ Z dzl...dml< 21 > < m >
n= Ay =0

d2+d3+-~-+dm=n



Roll the dice

The probability of the total sum being equal to m after rolling n times can be expressed as
n

1 1 1 1
P(S, =m) = [x™] (gx + gxz + ot gx6) = Ean(1,1,1,1,1,1)

On the other hand, we have
1—x%\" N n ~- n
n _ . _1\k 6k N\ l
¥ (1—x> - Z( D¥ (i) x Z( ()
k=0 1=0
+o0

— 4N n(_l)k ny ek n+l—1\
D YSTAES YT

=0

This gives

P(S,=m) = l[xm] x™ L— %) = ii(_l)k <n) (m — 6k — 1)
" 6" 1—x 6" & k/\m — 6k —n
The summation only contributes when m — 6k —n > 0, which leads to
757

P(S, = m) = 61—n ; e (™ ;ikl_ h

Fuss-Catalan number

When we solve for the power series of the inverse W = F~! with F(z) = z — z%, we obtain
kd—k+1
kd\ Z
W(z) = _
@ Z+z(k)kd—k+1

k=1

The coefficients are positive integers, and in fact they are the Fuss-Catalan numbers

1
dck:kd—k+1(kl§i)



