MIT Integration Bee: 2022 Semifinal

Semifinal #1

Question 1

$$\int_0^{+\infty} \frac{x \left(e^{-x} + 1\right)}{e^x - 1} \, \mathrm{d}x \tag{1.1}$$

Solution The integral can be decomposed into two simpler integrals

$$I = -\int_0^{+\infty} xe^{-x} dx + \int_0^{+\infty} \frac{2x}{e^x - 1} dx = -1 + 2 \cdot \frac{\pi^2}{6} = \frac{\pi^2}{3} - 1.$$
 (1.2)

Note The second integral is in fact related to the Riemann zeta function

$$\zeta(s) = \sum_{n=1}^{+\infty} \frac{1}{n^s} = \frac{1}{\Gamma(s)} \int_0^{+\infty} \frac{x^{s-1}}{e^x - 1} \, \mathrm{d}x. \tag{1.3}$$

Therefore, we have

$$\int_0^{+\infty} \frac{x}{e^x - 1} \, \mathrm{d}x = \Gamma(2)\zeta(2) = \frac{\pi^2}{6}.$$
 (1.4)

Other integral representations of $\zeta(2)$, also related to the **Basel problem**, include

$$\zeta(2) = -\int_0^1 \frac{\ln x}{1 - x} \, \mathrm{d}x = \int_0^1 \frac{\ln^2 x}{(1 + x)^2} \, \mathrm{d}x. \tag{1.5}$$

$$\int_0^{+\infty} x^5 e^{-x} \sin x \, \mathrm{d}x \tag{2.1}$$

Solution Denote the following integrals

$$I_n = \int_0^{+\infty} x^n e^{-x} \sin x \, \mathrm{d}x, \qquad J_n = \int_0^{+\infty} x^n e^{-x} \cos x \, \mathrm{d}x, \qquad \text{for } n \in \mathbb{N}.$$
 (2.2)

When $n \ge 1$, the **reduction formula** can be obtained as

$$I_n = nJ_{n-1} - J_n, J_n = -nI_{n-1} + I_n.$$
 (2.3)

We can also write them as

$$I_n = \frac{n}{2} (I_{n-1} + J_{n-1}), \qquad J_n = \frac{n}{2} (-I_{n-1} + J_{n-1}).$$
 (2.4)

Since we have

$$I_0 = \int_0^{+\infty} e^{-x} \sin x \, dx = 1 - J_0, \qquad J_0 = I_0, \qquad \Longrightarrow \qquad I_0 = J_0 = \frac{1}{2},$$
 (2.5)

we can recursively obtain

$$I_1 = \frac{1}{2}$$
, $J_1 = 0$, $I_2 = \frac{1}{2}$, $J_2 = -\frac{1}{2}$, $I_3 = 0$, $J_3 = -\frac{3}{2}$, $I_4 = -3$, $J_4 = -3$. (2.6)

Eventually, we have

$$I_5 = \frac{5}{2} (I_4 + J_4) = -15. (2.7)$$

$$\int_{1/2}^{2} \ln \left(\frac{\ln \left(x + \frac{1}{x} \right)}{\ln \left(x^2 - x + \frac{17}{4} \right)} \right) \mathrm{d}x \tag{3.1}$$

Solution The integral can be decomposed into several parts

$$I = \int_{1/2}^{2} \ln \frac{1}{2} dx + \int_{1/2}^{2} \ln \left(\ln \left[\left(x - \frac{1}{x} \right)^{2} + 4 \right] \right) dx - \int_{1/2}^{2} \ln \left(\ln \left[\left(x - \frac{1}{2} \right)^{2} + 4 \right] \right) dx$$

$$= -\frac{3}{2} \ln 2 + J - K. \tag{3.2}$$

Now, we show J = K. For integral J, a change of variable $x = e^t$ gives

$$J = \int_{-\ln 2}^{\ln 2} \ln \ln \left(4 \cosh^2 t \right) e^t dt = 2 \int_0^{\ln 2} \ln \ln \left(4 \cosh^2 t \right) \cosh t dt.$$
 (3.3)

For integral K, we consider the following change of variable

$$x - \frac{1}{2} = 2\sinh u$$
, $u(x) = \sinh^{-1}\left(\frac{x}{2} - \frac{1}{4}\right)$, $u\left(\frac{1}{2}\right) = 0$, $u(2) = \ln 2$. (3.4)

Note that the inverse hyperbolic function is evaluated as

$$\sinh^{-1} x = \ln\left(x + \sqrt{x^2 + 1}\right). \tag{3.5}$$

Therefore, we obtain the same result

$$K = 2 \int_0^{\ln 2} \ln \ln \left(4 \cosh^2 t \right) \cosh t \, dt. \tag{3.6}$$

Eventually, we have

$$I = -\frac{3}{2}\ln 2. \tag{3.7}$$

$$\int_{2}^{5/2} \frac{\left(x^3 - 3x\right)^3 - 3\left(x^3 - 3x\right)}{\sqrt{x^2 - 4}} \, \mathrm{d}x \tag{4.1}$$

Solution With a **change of variable** $t = \sqrt{x^2 - 4}$, we have

$$x = \sqrt{t^2 + 4}, \qquad dx = \frac{t dt}{\sqrt{t^2 + 4}} = \frac{t}{x} dt.$$
 (4.2)

Now, the integral becomes

$$I = \int_{2}^{5/2} \frac{x^{3} (x^{2} - 3)^{3} - 3x (x^{2} - 3)}{t} dx$$

$$= \int_{0}^{3/2} \left[x^{2} (x^{2} - 3)^{3} - 3 (x^{2} - 3) \right] dt$$

$$= \int_{0}^{3/2} \left[(t^{2} + 4) (t^{2} + 1)^{3} - 3 (t^{2} + 1) \right] dt$$

$$= \int_{0}^{3/2} (t^{8} + 7t^{6} + 15t^{4} + 10t^{2} + 1) dt$$
(4.3)

We can evaluate the integral and obtain the following result

$$I = \left[\frac{t^9}{9} + t^7 + 3t^5 + \frac{10}{3}t^3 + t \right]_{t=0}^{t=3/2}$$

$$= \frac{1}{9} \left(\frac{3^9}{2^9} + \frac{3^9}{2^7} + \frac{3^8}{2^5} + \frac{5 \times 3^4}{2^2} + \frac{3^3}{2} \right)$$

$$= \frac{1}{9 \times 2^9} \left(3^9 + 2^2 \times 3^9 + 2^4 \times 3^8 \right) + \frac{1}{9 \times 2^2} \left(5 \times 3^4 + 2 \times 3^3 \right)$$

$$= \frac{262143}{9 \times 2^9} = \frac{2^9 - 2^{-9}}{9}.$$
(4.4)

Semifinal #2

Question 1

$$\int_{-1}^{1} \left| \left| \left| |x| - \frac{2}{3} \right| - \frac{2}{3^2} \right| - \frac{2}{3^3} \right| - \dots \right| dx$$
 (5.1)

Solution Denote the integrand as f(x), and its graph is a **fractal** shape. Based on symmetry, we have

$$I = 2 \int_0^1 \left| \left| \left| x - \frac{2}{3} \right| - \frac{2}{3^2} \right| - \frac{2}{3^3} \right| - \dots \right| dx = 2 \int_0^1 f(x) dx.$$
 (5.2)

Now denote the following infinite sequence and its sum

$$a_n = \frac{2}{3^n}, \qquad S = \lim_{n \to \infty} S_n = 1.$$
 (5.3)

We can obtain some special values of the function f(x) as follows

$$f(0) = a_1 - (S - a_1) = \frac{1}{3}, \qquad f\left(\frac{1}{3}\right) = 0, \qquad f(1) = 0.$$
 (5.4)

The integration within the sub-interval [0, 1/3] is trivial. For the rest of the interval, note that

$$f\left(x + \frac{2}{3}\right) = f\left(\frac{2}{3} - x\right) = \left\| \left|x - \frac{2}{3^2}\right| - \frac{2}{3^3}\right| - \dots \right| = \frac{1}{3}f(3x), \quad \text{for } x \in \left[0, \frac{1}{3}\right]. \tag{5.5}$$

Therefore, we have

$$I = 2 \int_0^{1/3} f(x) dx + 4 \int_0^{1/3} \frac{1}{3} f(3x) dx$$

= $\frac{1}{9} + \frac{4}{9} \int_0^1 f(x) dx = \frac{1}{9} + \frac{2}{9} I.$ (5.6)

The final result is thus obtained as

$$I = \frac{1}{9} + \frac{2}{9}I, \qquad I = \frac{1}{7}.$$
 (5.7)

$$\int \frac{1}{\left(x^2+1\right)^3} \, \mathrm{d}x \tag{6.1}$$

Solution Based on the following **change of variable**

$$x = \sinh t,$$
 $x^2 + 1 = \cosh^2 t,$ $dx = \cosh t dt,$ (6.2)

the integral now becomes

$$I_5 = \int \operatorname{sech}^5 t \, \mathrm{d}t. \tag{6.3}$$

For $n \ge 1$, the **reduction formula** can be obtained as

$$I_n = \frac{1}{n-1} \operatorname{sech}^{n-2} t \tanh t + \frac{n-2}{n-1} I_{n-2}, \qquad I_1 = \arctan\left(\sinh t\right) + C. \tag{6.4}$$

Therefore, we have

$$I_3 = \frac{1}{2}\operatorname{sech} t \tanh t + \frac{1}{2}\arctan\left(\sinh t\right) + C,\tag{6.5}$$

$$I_5 = \frac{1}{4} \operatorname{sech}^3 t \tanh t + \frac{3}{8} \operatorname{sech} t \tanh t + \frac{3}{8} \arctan (\sinh t) + C.$$
 (6.6)

Using the following relationships

$$\operatorname{sech}^{2} t = \frac{1}{x^{2} + 1}, \quad \operatorname{sech} t \, \tanh t = \frac{x}{x^{2} + 1},$$
 (6.7)

the original integral is calculated as

$$I = \frac{3}{8}\arctan x + \frac{3x^3 + 5x}{8(x^2 + 1)^2} + C.$$
 (6.8)

$$\int_{-\infty}^{+\infty} \frac{\mathrm{d}x}{x^2 - 2x\cot x + \csc^2 x} \tag{7.1}$$

Solution Based on the **Glasser's master theorem** (see 2023 Quarterfinal #3: Question 2 and 2024 Semifinal #1: Tiebreaker 2), the integral is equivalent to

$$I = \int_{-\infty}^{+\infty} \frac{\mathrm{d}x}{(x - \cot x)^2 + 1} = \int_{-\infty}^{+\infty} \frac{\mathrm{d}x}{x^2 + 1} = \pi.$$
 (7.2)

Question 4

$$\int_0^{\pi/6} \ln\left(\sqrt{3} + \tan x\right) dx \tag{8.1}$$

Solution

$$I = \int_0^{\pi/6} \ln\left[\frac{2\cos(x - \pi/6)}{\cos x}\right] dx$$

= $\frac{\pi}{6} \ln 2 + \int_0^{\pi/6} \ln\left[\cos\left(x - \frac{\pi}{6}\right)\right] dx - \int_0^{\pi/6} \ln\cos x \, dx.$ (8.2)

For the second term, we can show that

$$\int_0^{\pi/6} \ln\left[\cos\left(x - \frac{\pi}{6}\right)\right] dx = \int_{-\pi/6}^0 \ln\cos x \, dx = \int_0^{\pi/6} \ln\cos x \, dx. \tag{8.3}$$

Finally, we obtain the result of the integral

$$I = \frac{\pi}{6} \ln 2. \tag{8.4}$$