MIT Integration Bee: 2022 Semifinal

Semifinal #1

Question 1
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Solution The integral can be decomposed into two simpler integrals
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Note The second integral is in fact related to the Riemann zeta function
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Other integral representations of £(2), also related to the Basel problem, include
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Question 2
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Solution Denote the following integrals
+00 +00
I, = / x""e™ sin x dx, J, = / x""e™ cos x dx, for n € N.
0 0

When n > 1, the reduction formula can be obtained as

I, =nJ,_1 — Jy, Jp=—-nl,_1+1,.
We can also write them as
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I, = 5 (In—l + Jn—l) , Jp = 5 (_In—l +Jn—1) .

Since we have
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we can recursively obtain
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Eventually, we have
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Is = E (14 +J4) = —15.

==, =0, J3=-5, L=-3, Jy=-3.
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Question 3
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Solution The integral can be decomposed into several parts
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Now, we show J = K. For integral J, a change of variable x = ¢’ gives
In2 In2
J= / Inln (4 cosh? t) e dr = 2/ Inln (4 cosh? t) coshtdt.
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For integral K, we consider the following change of variable

1 1
X= 5= 2 sinhu, u(x) = sinh™! (%C - 4_1)’

1
2

Note that the inverse hyperbolic function is evaluated as
sinh™ x = In (x + V2 + 1),
Therefore, we obtain the same result
In2
K = 2/ Inln (4 cosh? t) coshrdr.
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Eventually, we have

I = —§1n2.
2

Jo

u (—) =0, u(2) =1n2.
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Question 4
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Solution With a change of variable 7 = Vx2 — 4, we have
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Now, the integral becomes
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We can evaluate the integral and obtain the following result
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Semifinal #2

Question 1

r

Solution Denote the integrand as f(x), and its graph is a fractal shape. Based on symmetry, we

—~~-‘dx 5.1)

have
12/] 2|_2 de/f()dx (5.2)
= x—=|- x .
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Now denote the following infinite sequence and its sum
2 .
a, = TR S=1lmS,=1. (5.3)

We can obtain some special values of the function f(x) as follows

1 1
f(O):al—(S—al):g, f(g):O, f(1)=0. 5.4
The integration within the sub-interval [0, 1/3] is trivial. For the rest of the interval, note that
2 2 2 2 1 1
f(x+§):f(§—x): X—3—2—§—"":§f(3)€), fOrXE[O,g]. (55)

Therefore, we have
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The final result is thus obtained as
1 2 1
I=—-—+-1I, I =—. 5.7
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Question 2

[

Solution Based on the following change of variable

x = sinh¢, x? + 1 = cosh? t, dx = coshtdt,

Is = / sech® z dr.

For n > 1, the reduction formula can be obtained as

the integral now becomes

n-—2

1
I, = sech” 2 ¢ tanh 7 +
n-— n-—

Therefore, we have

1 1
I; = > secht tanht + > arctan (sinh¢) + C,

1 3 3
Is = 7 sech’ 7 tanh 7 + 3 secht tanht + 3 arctan (sinhz) + C.

Using the following relationships

sech’t = , secht tanht = ,
x2+1 x2+1
the original integral is calculated as
3 3x3 + 5x
I= —arctanx+—2+C.
8 (x2 + 1)

T I,-2, Iy = arctan (sinh¢) + C.
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Question 3
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Solution Based on the Glasser’s master theorem (see 2023 Quarterfinal #3: Question 2 and 2024

Semifinal #1: Tiebreaker 2), the integral is equivalent to
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Question 4
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For the second term, we can show that
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Finally, we obtain the result of the integral

I =—=1n2.
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