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DAS ambient noise imaging: Example workflow

Linear DAS 
fiber segment

Cross-correlation
(Green’s function)

Rayleigh
phase velocity 

dispersion

1D subsurface 
shear velocity

(Ajo-Franklin et al. 2019)



Angular response of DAS ambient-noise cross-correlation
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Exploiting the potential of 2D array geometry

Stanford Campus

(Martin et al. 2017)
Likely both Rayleigh & Love
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Exploiting the potential of 2D array geometry

Colorado School of Mines Campus
(Luo et al. 2020)

- Extract Love waves from earthquake records
- Still use Rayleigh waves from noise interferometry 
on one single line

Oxnard, California
(Fang et al. 2022)

Dominant Rayleigh (0.5 - 1 Hz)
Rayleigh group velocity map  
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Our study
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(Ji et al. 2023, submitted)



DAS array configuration

Downtown 
San Jose

San Jose
State Univ.

William 
Street Park

DAS noise records: 3 days in June 2021
Cross-correlation data: 50 Hz

Gauge length: 10 m
Channel spacing: ~ 10 m



Three categories of DAS channel pairs 

Inline Oblique Parallel



Offset and theoretical response

Three categories of channel pairs: Inline, oblique, parallel



Inline Parallel
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Oblique Parallel
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Love wave dispersion, Group velocity

Windowed profile Single Trace, Wavelet TransformStacked over all tracesCommon offset gather



Reliable Love wave detection 

Parallel

𝐴! < 0.1
𝐴" > 0.2

Used for inversion



Reliable Love wave detection 
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Reliable Love wave detection 

Oblique



Reliable Love wave detection 

Oblique
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Inversion results

Fit 4 dispersion curves simultaneously
Sensitive to top ~ 100 m structures

Particle swarm optimization (Luu et al. 2018)
1,250,000 test models, 4-layer



Inversion results

Similar with model from Hayashi and Burns (2020) 
for William Street Park, ~2 km away from DAS array

They use Rayleigh dispersion and H/V ratio

High Poisson’s ratio (> 0.4) for top ~ 80 m

saturated Holocene alluvial sections
(Wentworth and Tinsley, 2005)



Summary

Orthogonal
DAS segments

in San Jose

Love signals in 
cross-correlation

ü Represent DAS grid in urban environment
ü Take advantage of 2D geometry

ü Guided by theoretical DAS angular response
ü Consistent Love wave signals from parallel, 

oblique channel pairs
ü Traffic noise, scattering from Rayleigh to Love



Summary

Rayleigh & Love
phase & group

(~ 1 - 6 Hz)

1D subsurface 
shear velocity

ü Reliable dispersion maps from 3 days of 
noise record

ü Accommodate both virtual source gathers 
and common offset gathers

ü Better fit and more stable inversion than using 
either Rayleigh or Love only

ü Consistent with local geology and results from 
other methods

Continuous monitoring of shallow subsurface in urban areas
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