Long-period seismic signals from hurricane landfalls:

Are these local or hurricane-wide effects?

Qing Ji & Eric M. Dunham

Stanford | **Doerr** School of Sustainability

Geophysics Department, Stanford University

Hurricane Isaac in Aug. 2012

Passed through Transportable Array (TA) stations with co-located

pressure sensors and seismometers

To explain observed vertical displacement:

Contributions from whole hurricane

Local contribution is sufficient

Time-frequency analysis using wavelet transform

Analyze wavelet power spectral density (PSD) for pressure and vertical displacement at one station

Hurricane Isaac in Aug. 2012

Analyze time snapshot at Aug. 30, UTC 00:00

Variation of PSDs with distance

from the hurricane center

Numerical Modeling

Pressure ----- Vertical Displacement

Discretized into 1 km \times 1 km grids

Within each grid, pressure fluctuations are coherent (correlation length L = 1 km). We represent it with a vertical point force

Forces from different grids are uncorrelated

Numerical Modeling

$$S_{z}(\boldsymbol{x}_{R},\omega) = \sum_{i=1}^{N(L)} \left| \tilde{G}(\boldsymbol{x}_{R},\omega;\boldsymbol{x}_{i}) \right|^{2} S_{p}(\boldsymbol{x}_{i},\omega) L^{4}$$

Input Pressure PSD: $S_p(x_i, \omega)$

- Median and inter-quartile range obtained from 1-hr wavelet PSD
- Fit with a parametric profile from hurricane study (Morris & Ruf 2017)
- Assume **axi-symmetric** source

Results of Numerical Modeling

Shallow compliant sediment layers are needed to explain the amplitude of seismic signal

Results of Numerical Modeling

Nearest 1 km² grid around station contributes ~ 90 % vertical displacement PSD

Better data fit can be obtained by assuming smaller correlation length at large distance (Tanimoto & Valovcin, 2015)

Two Key Points

Seismic observations are dominated by local coupling (~ 1 km potentially related to turbulent structures) between the atmosphere and the solid Earth.

Important to include the shallow compliant sediment layers

Caveat & Prospect

Trade-off between correlation length scale and topmost layer properties

Hurricane modeling and observation could better constrain the correlation structure of pressure field and its relationship with turbulence, e.g. roll vortices (Foster, 2005)